Two Triterpenoid Saponins from *Neonauclea sessilifolia*

Atsuko Itoh,^{*a*} Takao Tanahashi,^{*,*a*} Naotaka Nagakura,^{*a*} and Toyoyuki Nishi^b

aKobe Pharmaceutical University; Higashinada-ku, Kobe 658–8558, Japan: and b The Nippon Shinyaku Institute for Botanical Research; Yamashina-ku, Kyoto 607–8182, Japan. Received July 3, 2003; accepted August 8, 2003

From the dried roots of *Neonauclea sessilifolia* (Rubiaceae), two new triterpenoid saponins, 3-O- β -Dglucopyranosyl- $(1\rightarrow 2)$ - β -D-quinovopyranosyl quinovic acid (1) and $3-O-α$ -L-rhamnopyranosyl- $(1\rightarrow 4)$ - β -D**quinovopyranosyl pyrocincholic acid 28-***O***-**b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranosyl ester (2), were isolated, together with five known saponins. The structures of the new saponins were determined by spectroscopic and chemical means.**

Key words *Neonauclea sessilifolia*; Rubiaceae; roots; structure elucidation; triterpenoid saponin

In the course of our phytochemical studies on glycosidic constituents of the plants belonging to Rubiaceae, we recently examined the roots of *Neonauclea sessilifolia* (ROXB.) MERR. and isolated several unique chromone-secoiridoid glycosides and indole alkaloid glycosides.¹⁾ Further investigation of this plant material led us to isolate two new triterpenoid saponins, **1** and **2**, along with five known triterpenoid saponins, $3-O-\beta$ -D-glucopyranosyl quinovic acid,²⁾ $3-O-\beta$ -Dquinovopyranosyl quinovic acid (3) ,³⁾ 3-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl quinovic acid,⁴⁾ 3- O - α -Lrhamnopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl- $(1\rightarrow 3)$ - β -Dglucuronopyranosyl oleanolic acid $28-O-\beta$ -D-glucopyranosyl ester,⁵⁾ and 3 -*O*- α -L-rhamnopyranosyl-(1→2)- β -D-glucopyranosyl- $(1\rightarrow 3)$ -6-*O*-methyl- β -D-glucuronopyranosyl oleanolic acid 28- O - β -D-glucopyranosyl ester.⁵⁾

Saponin **1** was isolated as a colorless crystalline solid, mp $220 - 222$ °C. Its high resolution secondary ion mass spectrum (HR-SI-MS) showed a pseudomolecular ion at *m*/*z* 793.4386, indicating a molecular formula $C_{42}H_{66}O_{14}$. Acid hydrolysis of **1** afforded D-glucose and D-quinovose which were identified by GLC analysis of their thiazolizine derivatives.6) The ¹ H-NMR spectral features of **1** showed analogy to those of 3 - O - β -D-quinovopyranosyl quinovic acid (3), a major saponin of this plant, except that **1** showed the signals due to an additional glucose moiety. Two anomeric proton signals at δ 4.39 (d, *J*=7.5 Hz) and 4.66 (d, *J*=7.5 Hz) indicated β -linkage of quinovopyranose and glucopyranose units in **1**. The 13C-NMR spectrum of **1** showed, besides 12 signals due to two hexose moieties, 30 carbon signals which were observed in the nearly identical frequencies of those of 3-*O*- β -D-quinovopyranosyl quinovic acid (3), indicating a quinovic acid as an aglycone unit and the glycosidation at C-3. ¹ H-Detected heteronuclear multiple-bond connectivity (HMBC) correlations between H-1' of quinovose and C-3 (δ) 91.4), and between H-1" of glucose and C-2' of quinovose (δ 81.3) showed the attachment of $2-O$ - β -D-glucopyranosyl- β -D-quinovopyranose to C-3 of quinovic acid. The linkage of a terminal glucose to $C-2'$ of quinovosyl moiety was supported by a comparative study of the 13C-NMR spectra of **1** and **3** which showed the downfield shift of $C-2'$ of quinovose moiety (+5.4 ppm) and the upfield shift of C-1' and C-2' (-1.3) and -0.3 ppm, respectively). Consequently, glycoside 1 was deduced to be $3-O-B-D-glucopyranosyl-(1\rightarrow 2)-B-D-guinovopy$ ranosyl quinovic acid.

Saponin 2 was obtained as a white powder, $C_{53}H_{86}O_{21}$, $[\alpha]_{\text{D}}$ -43°. Acid hydrolysis of 2 gave p-glucose, p-

quinovose, and L -rhamnose. Its 1H - and ^{13}C -NMR spectra revealed the signals due to two β -glucopyranose, a β quinovopyranose and an α -rhamnopyranose unit. Furthermore, its ¹³C-NMR showed 29 carbon signals as an aglycone moiety involving six tertiary methyl groups, a carbonyl group and two quaternary olefinic carbon signals. The NMR spectral features were closely similar to those of $3-O-\beta$ -Dquinovopyranosyl pyrocincholic acid 28-O- β -D-glucopyranosyl- $(1\rightarrow6)$ - β -D-glucopyranosyl ester (4) ,⁷⁾ except for the signals arising from an additional α -rhamnose moiety. The downfield shift of $C-4'$ and upfield shift of $C-3'$ and $C-5'$ of **2**, relative to **4**, were ascribed to the glycosidation of 4'-hydroxy group in the quinovose moiety. The attachment of 4-*O*- α -L-rhamnopyranosyl- β -D-quinovopyranose unit to C-3 of pyrocincholic acid and the ester linkage of the carboxyl group at C-28 of pyrocincholic acid with 6 - O - β - D -glucopyranosyl- β -D-glucopyranose unit were further confirmed by detailed two dimensional (2D)-NMR experiments, which showed HMBC interactions between H-3 and C-1' of quinovose, between $H-1'$ of quinovose and C-3, between $H 4'$ of quinovose and C-1" of rhamnose, between H-1" of rhamnose and $C-4'$ of quinovose, between $H-1''$ of inner glucose and C-28, between H-6 $''$ of inner glucose and C-1 $''$ of terminal glucose, and between H-1"" of terminal glucose and C-6["] of inner glucose. Accordingly, glycoside 2 was assigned to $3-O-α$ -L-rhamnopyranosyl- $(1\rightarrow4)$ - β -D-quinovopyranosyl pyrocincholic acid 28-*O*- β -D-glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl ester.

Table 1. 13C-NMR Spectral Data of **1**—**4**

a) Measured in CD₃OD at 125 MHz. *b*) Measured in pyridine-*d*₅ at 125 MHz. *c*) Measured in CD₃OD at 75 MHz. *d*) Measured in pyridine-*d*₅ at 75 MHz. Data taken from ref. 7. *e*) Values are interchangeable. ∗ Overlapped with solvent signal.

While triterpenoid saponins have so far been isolated from the plant species of the genera *Nauclea* and *Adina* (Rubiaceae), the present work gave the first example of isolation of triterpenoid saponins **1** and **2** from the *Neonauclea* species of the same family.

Experimental

IR spectra were recorded on a Shimadzu FTIR-8200 spectrophotometer. Optical rotations were measured on a Jasco DIP-370 digital polarimeter. ¹H-(500 MHz) and 13C- (125 MHz) NMR spectra were recorded on a Varian VXR-500 spectrometer with TMS as an internal standard. MS and HR-MS were obtained with a Hitachi M-4100 mass spectrometer. Glycerol was used for SI-MS and HR-SI-MS as the matrix. Medium pressure liquid chromatography (MPLC) was carried out with Wakogel 40C18. TLC was performed on precoated Kieselgel $60F_{254}$ plates (Merck). HPLC was performed using a Waters system (600E System Controller, 486 Tunable Absorbance Detector). GLC was carried out on a Shimadzu GC-18A equipped with FID.

Isolation of Saponins The roots of *Neonauclea sessilifolia* were collected at Surat Thani, Thailand. A voucher specimen (NST-592) is deposited in the laboratory of Nippon Shinyaku Institute for Botanical Research. Dried roots (1.58 kg) of *N. sessilifolia* were extracted with hot MeOH and the extract was fractionated as previously reported in ref. 1. Fraction 9 in ref. 1 was purified by a combination of SiO₂ CC with MeOH–CHCl₃ (7:93— 2:3), prep. HPLC (μ Bondasphere 5 μ C18-100 Å, MeOH–H₂O, 3:1, 4:1, 3 : 2) and prep. TLC (CHCl₃–MeOH, 4 : 1, 7 : 3; AcOEt–C₆H₆–EtOH, 4:1:2) to afford $3-O-\beta$ -D-glucopyranosyl quinovic acid (13.5 mg), 3 (94.4 mg), 3-*O*-b-D-glucopyranosyl-(1→4)-a-L-rhamnopyranosyl quinovic acid (9.2 mg), **1** (19.6 mg), **2** (8.4 mg), 3-*O*-a-L-rhamnopyranosyl-(1→2)-b-D-glucopyranosyl-(1→3)-6-*O*-methyl-β-D-glucuronopyranosyl oleanolic acid 28- O - β -D-glucopyranosyl ester (19.4 mg), and 3- O - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl- $(1\rightarrow 3)$ - β -D-glucuronopyranosyl oleanolic acid 28- O - β -D-glucopyranosyl ester (65.8 mg).

3-*O*-β-D-Glucopyranosyl-(1→2)-β-D-quinovocyranosyl Quinovic Acid (**1**): Colorless crystalline solid. mp 220—222 °C (H₂O). $[\alpha]_D^{22} + 43^\circ (c=0.6,$

MeOH). IR (KBr) cm⁻¹: 3426, 2928, 1697, 1074. ¹H-NMR (CD₃OD) δ : 0.74 (1H, br d, J=11.5 Hz, H-5), 0.84 (3H, s, H₃-24), 0.89 (3H, s, H₃-26), 0.90 (3H, d, *J*=5.0 Hz, H₃-29), 0.92 (3H, d, *J*=5.0 Hz, H₃-30), 0.97 (3H, s, H₃-25), 1.04 (3H, s, H₃-23), 1.26 (3H, d, $J=6.0$ Hz, H₃-6'), 2.23 (1H, dd, *J*=11.0, 5.0 Hz, H-9), 2.25 (1H, brd, *J*=11.0 Hz, H-18), 2.99 (1H, t, *J*=9.0 Hz, H-4'), 3.12 (1H, dd, *J*=11.5, 4.5 Hz, H-3), 3.18 (1H, t, *J*=9.0 Hz, H-4"), 3.20 (1H, dd, *J*=9.0, 7.5 Hz, H-2"), 3.24 (1H, ddd, *J*=9.0, 6.0, 2.0 Hz, H-5"), 3.29 (1H, dq, *J*=9.0, 6.0 Hz, H-5'), 3.34 (1H, t, *J*=9.0 Hz, H-3"), 3.49 (1H, t, J=9.0 Hz, H-3'), 3.56 (1H, dd, J=9.0, 7.5 Hz, H-2'), 3.60 (1H, dd, $J=11.5$, 6.0 Hz, H-6"), 3.81 (1H, dd, $J=11.5$, 2.0 Hz, H-6"), 4.39 (1H, d, *J*=7.5 Hz, H-1'), 4.66 (1H, d, *J*=7.5 Hz, H-1"), 5.60 (1H, dd, *J*=5.0, 2.0 Hz, H-12). ¹³C-NMR: Table 1. Negative ion SI-MS m/z : 793 (M-H)⁻, 587. HR-SI-MS *m/z*: 793.4386 (Calcd for C₄₂H₆₅O₁₄: 793.4377). HMBC: H-18 to C-28; H-1' to C-3; H-1" to C-2'.

3-*O*-a-L-Rhamnopyranosyl-(1→4)-b-D-quinovopyranosyl Pyrocincholic Acid 28-*O*-β-D-Glucopyranosyl-(1→6)-β-D-glucopyranosyl Ester (2): Amorphous powder. $[\alpha]_D^{25}$ -43° (*c*=0.5, MeOH). IR (KBr) cm⁻¹: 3421, 2941, 1734, 1636, 1065. ¹H-NMR (pyridine-*d*₅) δ: 0.78 (1H, br d, *J*=12.0 Hz, H-5), 0.81 (3H, s, H₃-25), 0.90 (3H, s, H₃-30), 0.90 (3H, s, H₃-29), 0.95 (3H, s, H₃-24), 1.04 (1H, dd, *J*=12.0, 2.5 Hz, H-9), 1.14 (3H, s, H₃-26), 1.21 (1H, brt, *J*=13.0 Hz, H-19), 1.31 (3H, s, H₃-23), 1.41 (3H, d, *J*=5.5 Hz, H₃-6'), 1.71 (3H, d, *J*=6.0 Hz, H₃-6"), 1.89 (1H, br q, *J*=12.0 Hz, H-2), 2.77 (1H, dd, $J=12.0$, 4.0 Hz, H-18), 3.34 (1H, dd, $J=12.0$, 4.0 Hz, H-3), 3.67 (1H, dq, $J=9.0$, 5.5 Hz, H-5'), 3.70 (1H, t, $J=9.0$ Hz, H-4'), 3.90 (1H, ddd, $J=9.0$, 5.0, 2.0 Hz, H-5""), 3.98 (1H, brt, $J=8.0$ Hz, H-2'), 4.02 (1H, br t, $J=8.5$ Hz, H-2""), 4.08 (1H, br t, $J=8.5$ Hz, H-3'), 4.10 (1H, ddd, *J*=9.5, 4.5, 2.0 Hz, H-5"'), 4.14 (1H, brt, *J*=8.0 Hz, H-2"'), 4.20 (1H, brt, *J*=8.0 Hz, H-3""), 4.22 (1H, br t, *J*=8.0 Hz, H-3"'), 4.24 (1H, br t, *J*=8.5 Hz, H-4""), 4.35 (2H, brt, *J*=9.0 Hz, H-4", H-4"'), 4.37 (2H, m, H-6"', H-6""), 4.50 (1H, dd, $J=11.5$, 2.0 Hz, H-6""), 4.54 (1H, dd, $J=9.0$, 3.0 Hz, H-3"), 4.64 (1H, br s, H-2"), 4.73 (1H, dd, J=11.0, 2.0 Hz, H-6""), 4.78 (1H, d, *J*=8.0 Hz, H-1'), 4.90 (1H, dq, *J*=9.5, 6.0 Hz, H-5"), 5.05 (1H, d, *J*=8.0 Hz, H-1^{nm}), 5.59 (1H, d, *J*=1.0 Hz, H-1"), 6.27 (1H, d, *J*=8.0 Hz, H-1^m). ¹³C-NMR: Table 1. Negative ion SI-MS m/z : 1057 (M-H)⁻, 733. HR-SI-MS *m/z*: 1057.5571 (Calcd for C₅₃H₈₅O₂₁: 1057.5587). ROESY: H-3/H-1'; H- $4'/H-1''$; H-6"'/H-1"''. HMBC: H-18 to C-13, 14, 17, 19; H-16 to C-28; H₂-26 to C-7, 8, 9, 14; H-3 to C-1'; H-1' to C-3; H-4' to C-1"; H-1" to C-4'; H-1" to C-28; H_2 -6^{*m*} to C-1^{*m*}; H-1^{*m*} to C-6^{*m*}.

Acid Hydrolysis of Saponins 1 and 2 Each saponin (1 mg) was heated at 95 °C with dioxane (0.5 ml) and 5% H_2SO_4 (0.5 ml) for 1 h. After neutralization with Amberlite IRA-400 (OH^- form), the reaction mixture was concentrated and the residue was passed through a Sep-Pak C_{18} cartridge with H₂O. The eluate was concentrated and the residue was treated with L-cysteine methyl ester hydrochloride (1 mg) in pyridine (0.125 ml) at 60 °C for 1 h. The solution was then treated with *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (0.05 ml) at 60 °C for 1 h. The supernatant was applied to GLC; GLC conditions: column, Supelco SPBTM-1, $30 \text{ m} \times 0.25 \text{ mm}$; column temperature, 230 °C; N₂ flow rate, 0.8 ml/min; t_R of derivatives, D-glucose 13.1 min, L-glucose 13.6 min, D-quinovose 8.7 min, L-rhamnose 9.0 min. D-Glucose and D-quinovose were detected from **1** and **2**, and L-rhamnose was additionally detected from **2**.

Acknowledgements Our thanks go to Dr. M. Sugiura (Kobe Pharma-

ceutical University) for NMR spectra and to Dr. K. Saiki (Kobe Pharmaceutical University) for MS measurements. This research was financially supported by the Kobe Pharmaceutical University Collaboration Fund.

References

- 1) Itoh A., Tanahashi T., Nagakura N., Nishi T., *Phytochemistry*, **62**, 359—369 (2003).
- 2) Aquino R., De Simone F., Pizza C., Cerri R., De Mello J. F., *Phytochemistry*, **27**, 2927—2930 (1988).
- 3) Ahmad V. U., Ghazala, Uddin S., Bano S., *J. Nat. Prod.*, **53**, 1193— 1197 (1990).
- 4) Fang S.-Y., He Z.-S., Gao J.-H., Wang P., *Phytochemistry*, **39**, 1241— 1243 (1995).
- 5) Seshadri R., Rangaswami S., *Indian J. Chem.*, **13**, 447—452 (1975).
- 6) Hara S., Okabe H., Mihashi K., *Chem. Pharm. Bull.*, **34**, 1843—1845 (1986).
- 7) Um B.-H., Weniger B., Lobstein A., Pouplin T., Polat M., Aragon R., Anton R., *J. Nat. Prod.*, **64**, 1588—1589 (2001).