Three Novel 5(6 \rightarrow 7)Abeoabietane-Type Diterpenes from the Bark of *Taiwania cryptomerioides*

Chi-I CHANG,^a Shih-Chang CHIEN,^b Shue-Mei LEE,^c and Yueh-Hsiung Kuo*,^b

^a Shu Zen College of Medicine & Management; Kaohsiung, Taiwan, 821 R.O.C.: ^b Department of Chemistry, National Taiwan University; Taipei, Taiwan, 106 R.O.C.: and ^c Department of Nursing, Mackay Junior College of Nursing; Taipei, Taiwan, 112 R.O.C. Received June 9, 2003; accepted August 7, 2003

Three new $5(6 \rightarrow 7)$ abeoabietane diterpenes with the uncommon skeleton of fused 6-5-6 rings were isolated from the bark of *Taiwania cryptomerioides* designated as taiwaniaquinone F (8), taiwaniaquinol C (9) and taiwaniaquinol D (10). Meanwhile, two known compounds, taiwaniaquinones A (1) and D (4), were also obtained. Their structures were determined principally from spectral evidence.

Key words Taiwania cryptomerioides; Taxodiaceae; diterpene; taiwaniaquinone F; taiwaniaquinol C; taiwaniaquinol D

Taiwania cryptomerioides HAYATA (Taxodiaceae), a decayresistant tree, is an endemic plant growing at elevations from 1800 to 2600 m in the central mountains of Taiwan. Previous phytochemical investigations on the heartwood,¹⁻³⁾ bark^{4–10)} and leaves^{11–14)} of this plant led to the isolation of various sesquiterpenes, lignans, diterpenes, and bisflavones.

Recently, many interesting novel skeletal compounds including seven diterpenes with the novel skeleton six-five-six fused-rings have been isolated from the leaves by Lin et al.^{11,12}) They named the skeletons of these compounds taiwaniaquinone [A (1), B (2), C (3), D (4), E (5)] and taiwaniaquinol [A (6) and B (7)]. Based on the different functionalities (quinone and phenol), the nomenclatures of these compounds are not suitable. More suitable nomenclatures are $5(6 \rightarrow 7)$ abeoabietane type (taiwaniaquinones A, B, C, D, E, and taiwaniaquinol A) and 6-nor-5(6 \rightarrow 7)abeoabietane type (taiwaniaquinol B). These novel skeletons were first isolated from the leaves of T. cryptomerioides. Because the early studies on its bark did not yield good results,^{4,5)} we reinvestigated the components of its bark again, and discovered twenty-three new podocapane-type derivatives.⁶⁻¹⁰⁾ In a continuation of our work on the same extract from the bark of the plant, we also obtained three new $5(6 \rightarrow 7)$ abeoabietanetype diterpenes. In this article, we describe the isolation and structural elucidation of three new $5(6\rightarrow7)$ abeoabietane-type diterpenes, taiwaniaquinone F (8), taiwaniaquinol C (9) and taiwaniaquinol D (10), as well as two known taiwaniaguinones A $(1)^{11}$ and D (4).¹²⁾

Taiwaniaquinone F (8) was isolated as an orange amorphous solid. The high resolution electron impact mass spectrum (HR-EI-MS) showed a molecular ion at m/z 344.1986, consistent with the molecular C21H28O4 and indicated eight degrees of unsaturation. Two absorption bands at 1660 and 1650 cm⁻¹ in the IR spectrum and the maximum absorption at λ_{max} 279 nm in the UV spectrum indicated the presence of a para-benzoquinone moiety. Further evidence included the observation of signals at δ 136.9, 146.2, 155.0, 156.3, 181.4 and 185.7 in the ¹³C-NMR spectrum (Table 1). The ¹H- and ¹³C-NMR (Table 1) spectra exhibited three methyl singlets $[\delta_{\rm H} 0.77, 1.02, 1.13 \text{ (3H each, s)]}, \text{ an isopropyl group } [\delta_{\rm H}]$ 3.13 (1H, sep, J=6.8 Hz, H-15) and 1.15 (6H, d, J=6.8 Hz, H-16, -17), a phenolic methyl group [$\delta_{\rm H}$ 3.89 (3H, s) and $\delta_{\rm C}$ 61.4] and the consecutive protons of an AMX system, an aldehyde [$\delta_{\rm H}$ 9.80 (1H, d, J=4.0 Hz, H-6) and $\delta_{\rm C}$ 200.5] and

two methine protons [$\delta_{\rm H}$ 2.03 (1H, d, J=11.3 Hz, H-5) and $\delta_{\rm H}$ 3.71 (1H, dd, J=4.0, 11.3 Hz, H-7)]. An obvious signal at $\delta_{\rm H}^{\rm I}$ 2.27 (1H, br d, J=12.9 Hz) was assigned as a H_β-1 signal. By comparison of the ¹³C- and ¹H-NMR signals between **8** and 1, the difference is an enol methyl ether in 8 instead of an enol in 1. It was considered to be a taiwaniaquinone A methyl ether derivative with the skeleton of 6-5-6 fused rings. Full characterization of the structure was accomplished by examination of the correlated spectroscopy (COSY), heteronuclear multiple-quantum coherence (HMQC), heteronuclear multiple-bond correlation spectroscopy (HMBC), and nuclear Overhauser enhancement exchange spectroscopy (NOESY) spectral data. In the HMBC spectrum, the methine proton at $\delta_{\rm H}$ 2.03 (H-5) showed cross-peaks with a quaternary carbon at $\delta_{\rm C}$ 33.6 (C-4) and methyl group C-18 ($\delta_{\rm C}$ 34.9); methine proton H-15 ($\delta_{\rm H}$ 3.13) exhibited coupling with C-12 ($\delta_{\rm C}$ 155.0), C-13 ($\delta_{\rm C}$ 136.9) and C-14 ($\delta_{\rm C}$ 185.7) supported C ring was a para-benzoquinone unit. HMBC correlations between H-7 ($\delta_{\rm H}$ 3.71) and olefinic carbons C-8 ($\delta_{\rm C}$ 146.2), C-9 ($\delta_{\rm C}$ 156.3) and aldehyde carbon C-6 ($\delta_{\rm C}$ 200.5) were also observed. The NOESY spectrum lead us to the assignment of its relative stereochemistry. The NOESY correlations (H-5/H₃-18, H-5/H-6, H-7/H₃-20, and H_b-1/H₃-20) indicated a trans-junction for the A and B rings and a trans ori-

© 2003 Pharmaceutical Society of Japan

Table 1.	¹ H- and ¹	¹³ C-NMR S	pectral Data	of Compo	ounds 8-	10 (300	0 MHz and	75 MHz in	CDCl ₂)
----------	----------------------------------	-----------------------	--------------	----------	----------	---------	-----------	-----------	---------------------

No.	8			9	10		
	$\delta_{ m C}$	$\delta_{ ext{ H}}$	$\delta_{ m C}$	$\delta_{ ext{H}}$	$\delta_{ m C}$	$\delta_{ ext{ H}}$	
1	34.3	1.50 m, 2.27 br d (12.9)	38.3	$1.63 \text{ m}, 2.45^{a}$	32.3	1.48 m, 2.64 br d (12.8)	
2	19.2	1.58 m, 1.72 m	19.8	1.62 m, 1.82 m	18.0	1.64 m, 1.90 m	
3	41.0	1.18 m, 1.42 m	43.3	1.21 m, 1.40 m	42.5	1.45 m, 1.85 m	
4	33.6		34.4		38.5		
5	61.4	2.03 d (11.3)	72.2	2.49 s	185.8		
6	200.5	9.80 d (4.0)	200.7	9.96 s	192.4	10.38 s	
7	53.9	3.71 dd (4.0, 11.3)	90.9		119.3		
8	146.2		119.4		135.8		
9	156.3		135.5		134.9		
10	49.0		45.4		53.8		
11	181.4		138.2		136.8		
12	155.0		146.6		145.1		
13	136.9		126.9		126.2		
14	185.7		147.4		144.6		
15	24.6	3.13 sep (6.8)	26.0	3.25 sep (7.0)	26.4	3.34 sep (7.0)	
16	20.0	1.15 d (6.8)	20.6	1.31 d (7.0)	20.6	1.40 d (7.0)	
17	20.0	1.15 d (6.8)	20.6	1.31 d (7.0)	20.6	1.40 d (7.0)	
18	34.9	0.77 s	32.4	1.00 s	35.6	1.51 s	
19	21.7	1.02 s	23.5	1.01 s	23.4	1.51 s	
20	20.4	1.13 s	25.3	1.47 s	29.1	1.49 s	
7-O <u>H</u>				4.23 s			
11-O <u>H</u>				5.18 s		5.15 br s	
14-O <u>H</u>				6.26 s		10.38 s	
$-O\underline{CH}_3$	61.4	3.89 s	62.1	3.73 s	62.1	3.73 s	

a) Obscured by another signal.

entation between H-5 and H-7 (with a large coupling constant J=11.3 Hz). Taiwaniaquinone F (8) was assigned to have a (5S,7R,10S)-configuration because the $[\alpha]_D$ of 8 showed the same negative values as 1.

Taiwaniaquinol C (9) was obtained as a yellowish amorphous solid. Its molecular formula, C21H30O5, was determined from an $[M]^+$ ion at 362.2097 in the HR-EI-MS and indicated seven degrees of unsaturation. Analysis of the IR spectrum of 9 suggested that it contained a hydroxyl group (3363 cm^{-1}) and an aldehyde group (1712 cm^{-1}) . The ¹Hand ¹³C-NMR (Table 1) signals included three methyl groups $[\delta_{\rm H} 1.00, 1.01, 1.47 \text{ (each 3H, s)}]$, an isopropyl group $[\delta_{\rm H}$ 3.25 (1H, sep, J=7.0 Hz, H-15) and 1.31 (6H, d, J=7.0 Hz, H-16, -17)], a methoxy group [$\delta_{\rm H}$ 3.73 (3H, s) and $\delta_{\rm C}$ 62.1], and an aldehyde group [$\delta_{\rm H}$ 9.96 (1H, s, H-6) and $\delta_{\rm C}$ 200.7]. The ¹H- and ¹³C-NMR data (Table 1) of the A and B rings of 9 were similar to those of 3. The skeleton of the 6-5-6 fused ring was established by means of the COSY and HMBC experiments. Six quaternary aromatic carbons suggested the presence of a benzene ring with three alkylated carbons and three oxygenated carbons discernible from the signals of one phenolic methyl group at δ 3.76 (3H, s) and two exchangeable phenolic protons at δ 5.18 and 6.26. The placements of the aldehyde and hydroxyl groups at C-7 were confirmed by the HMBC spectrum, in which the H-6 ($\delta_{\rm H}$ 9.96) and 7-OH $(\delta_{\rm H} 4.23)$ showed long-range correlations with C-7 ($\delta_{\rm C} 90.9$). In the NOESY spectrum, the correlation 12-OMe ($\delta_{\rm H}$ 3.73)/ H-16 ($\delta_{\rm H}$ 1.31); $\delta_{\rm H}$ 6.26(OH)/H-16 ($\delta_{\rm H}$ 1.31), H-6 ($\delta_{\rm H}$ 9.96) and H_3-20 ($\delta_{\rm H}$ 1.47); $\delta_{\rm H}$ 5.18 (OH)/H_3-20 ($\delta_{\rm H}$ 1.47) supported the relative position of six substituents of the aromatic ring and β -oriented aldehyde group.

Taiwaniaquinol D (10) was obtained as a red-orange gum. The HR-EI-MS gave an $[M]^+$ ion at m/z 344.1989 corresponding to the molecular formula C₂₁H₂₈O₄ and indicated eight degrees of unsaturation. Compound 10 displayed an NMR spectrum similar to that of 4, in which the difference was observed in signals for para-benzoquinone moiety in 4. The IR spectrum exhibited a broad hydroxyl absorption band at 3377 cm^{-1} and a conjugated carbonyl at 1633 cm^{-1} . The ¹H-NMR (Table 1) spectrum showed three tertiary methyl groups [$\delta_{\rm H}$ 1.49 (3H, s), 1.51 (6H, s)], an isopropyl group attached on aromatic [$\delta_{\rm H}$ 3.34 (1H, sep, J=7.0 Hz, H-15) and 1.40 (6H, d, J=7.0 Hz, H-16, -17)], a phenolic methyl group $[\delta_{\rm H} 3.73 \text{ (3H, s)}]$, a lower field aldehyde group $[\delta_{\rm H} 10.38$ (1H, s, H-6)], and an H_{β}-1 signal [$\delta_{\rm H}$ 2.64 (1H, br d, J=12.8 Hz, H-1)]. The ¹³C-NMR (Table 1) spectrum showed 21 carbons including an aldehyde ($\delta_{\rm C}$ 192.4) and a methoxyl signal ($\delta_{\rm C}$ 62.1). Comparison of the NMR data among 4, 9 and 10 as well as the molecular formula, 10 was proposed to be a dehydrated product from 9. A distinguishable ¹³C spectral feature of 10 from 9 was the presence of two signals for a conjugated double bond ($\delta_{\rm C}$ 119.3, 185.8), which was suggested to locate between C-5 and C-7 ascribing to the presence of conjugated UV absorption and disappearance of the H-5 signal. Its structure was finally elucidated by means of HMBC and HMQC techniques. Treatment of taiwaniaquinol C (9) with AlCl₃ in CH_2Cl_2 yields a dehydration product, which was identified as taiwaniaquinol D (10).

Experimental

General Experimental Procedures IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded on a Bruker AM-300 at 300 and 75 MHz in CDCl₃, with tetra-methylsilane as an internal standard. EI-MS, FAB-MS, UV, and specific rotations were recorded on a JEOL JMS-HX 300, a JOEL JMS-HX 110, a Hitachi S-3200 spectrometer, and a JASCO DIP-180 digital polarimeter, respectively. Extracts were chromatographed on silica gel (Merck 70–230 mesh, 230–400 mesh, ASTM).

Plant Material The bark of *T. cryptomerioides* was collected in Tai-Chun, Taiwan, in 1996. The plant material was identified by Mr. Muh-Tsuen Gun, formerly a technician of the Department of Botany, National Taiwan University. A voucher specimen (no. 013542) has been deposited at the Herbarium of the Department of Botany of the National Taiwan University, Taipei, Taiwan.

Extraction and Isolation Air-dried pieces of *T. cryptomerioides* bark (12 kg) were extracted three times with acetone (60 l) at room temperature (7 d each time). The acetone extract was evaporated *in vacuo* to leave a black residue, which was suspended in H_2O (8 l), and then partitioned (3×) with 11 of ethyl acetate. The EtOAc fraction (360 g) was chromatographed on Si gel using *n*-hexane and EtOAc of increasing polarity as eluent and further purified by HPLC eluted with *n*-hexane : EtOAc (65 : 35). Three components, taiwaniaquinone F (8) (12 mg), taiwaniaquinol C (9) (12 mg), and taiwaniaquinol D (10) (4 mg), as well as taiwaniaquinones A (1, 10 mg) and (4, 15 mg) were obtained in pure form.

Taiwaniaquinone F (8): Orange amorphous; $[\alpha]_D^{23} = -166.2^{\circ}$ (c=0.29, CHCl₃); UV λ_{max}^{McOH} nm (log ε) 279 (3.6); IR (dry film) v_{max} 1739, 1660, 1650, 1573, 1460, 1255, 1009, 844 cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; EI-MS (70 eV) (rel. int. %) m/z 344 [M]⁺ (60), 315 (100), 247 (65), 233 (41); HR-EI-MS m/z 344.1986 (M⁺ Calcd for C₂₁H₂₈O₄, 314.1988).

Taiwaniaquinol C (9): Yellowish amorphous; $[\alpha]_D^{23} = -10.5^{\circ}$ (*c*=0.32, CHCl₃); UV λ_{max}^{MeOH} nm (log ε) 205 (4.1), 293 (3.8); IR (dry film) v_{max} 3363, 1712, 1639, 1447, 1310, 1288, 1222, 1129, 877 cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; EI-MS (70 eV) (rel. int. %) *m/z* 362 [M]⁺ (30), 344 (100), 333 (40), 316 (37), 274 (55), 247 (63), 233 (20); HR-EI-MS *m/z* 362.2097 (M⁺ Calcd for C₂₁H₃₀O₅, 362.2094).

Taiwaniaquinol D (10): Red-orange gum; $[\alpha]_D^{23} = -80.2^{\circ}$ (*c*=0.32, CHCl₃); UV λ_{max}^{MeOH} nm (log ε) 217 (4.1), 248 (3.5, sh), 301 (3.3); IR (dry film) v_{max} 3377, 1633, 1446, 1427, 1348, 1268, 1195, 1029, 903 cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; EI-MS (70 eV) (rel. int. %) *m/z* 344 [M]⁺ (100), 316 (37), 274 (55), 247 (63), 233 (20); HR-EI-MS *m/z* 344.1989 (M⁺ Calcd for C₂₁H₂₈O₄, 344.1988).

Acknowledgments This research was supported by the National Science Council of the Republic of China.

References

- Cheng Y. S., Kuo Y. H., Lin Y. T., J. Chem. Soc. Chem. Commun., 1967, 565—566 (1967).
- Lin Y. T., Cheng Y. S., Kuo Y. H., *Tetrahedron Lett.*, **1968**, 3881– 3882 (1968).
- Kuo Y. H., Cheng Y. S., Lin Y. T., Tetrahedron Lett., 1969, 2375– 2377 (1969).
- Kuo Y. H., Shih J. S., Lin Y. T., Lin Y. T., J. Chin. Chem. Soc., 26, 71-73 (1979).
- 5) Kuo Y. H., Lin Y. T., Lin Y. T., J. Chin. Chem. Soc., **32**, 381–383 (1985).
- Kuo Y. H., Chang C. I., Lee C. K., Chem. Pharm. Bull., 48, 597–599 (2000).
- 7) Kuo Y. H., Chang C. I., J. Nat. Prod., 63, 650-652 (2000).
- 8) Kuo Y. H., Chien S. C., Chem. Pharm. Bull., 49, 1033-1035 (2001).
- Kuo Y. H., Chien S. C., Huang S. L., Chem. Pharm. Bull., 50, 544– 546 (2002).
- 10) Kuo Y. H., Chien S. C., Kuo, C. C., *Planta Med.*, **68**, 1020–1023 (2002).
- 11) Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, **40**, 871–873 (1995).
- Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, 42, 1657–1663 (1996).
- 13) Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, **46**, 169–173 (1997).
- 14) Lin W. H., Fang J. M., Cheng Y. S., Phytochemistry, 48, 1391–1397 (1998).