Tyromycic Acids F and G: Two New Triterpenoids from the Mushroom *Tyromyces fissilis*

Dang Ngoc Quang, Toshihiro Hashimoto, Masami Tanaka, and Yoshinori Asakawa*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University; Yamashiro-cho, Tokushima 770–8514, Japan. Received July 22, 2003; accepted August 27, 2003

Phytochemical examination of the methanol extract of the fruit bodies of the Japanese fungus *Tyromyces fissilis* led to the isolation of two new lanostane derivatives called tyromycic acids F (1) and G (2), together with two known compounds, tyromycic acid (3) and trametenolic acid B (4). Their structures were identified by 2D NMR, IR, and UV spectroscopy.

Key words Tyromyces fissilis; tyromycic acid; triterpene

Tyromyces sp. have been chemically investigated since 1967 by Gaudermer, who reported the isolation and structural elucidation of tyromycic acid (3) from Tyromyces albidus.1) Later, 4-but-3-enoxymethyl benzoate was obtained by fermentation of a Tyromyces species that inhibited phospholipase A2.27 Tyromycin A, 1,16-bis-[4-methyl-2,5-dioxo-3-furyl]hexadecane, was isolated from Tyromyces lacteus as an inhibitor of leucine and cysteine aminopeptidases.³⁾ In the course of screening of biologically active constituents from Japanese inedible mushrooms, we previously reported the isolation of tyromycic acids B—E from *Tyromyces fissilis*.⁴⁾ Further fractionation of its methanol extract resulted in the isolation of two new triterpenoids called tyromycic acids F (1) and G (2), together with two known lanostane triterpenoids, tyromycic acid (3) and trametenolic acid B (4). This paper describes their isolation and structural elucidation.

The methanol extract of T. fissilis was fractionated on a silica gel, DIOL column and finally reverse-phase HPLC to afford four compounds (1-4). The molecular formula of tyromycic acid F (1) was determined to be $C_{30}H_{42}O_3$ by high resolution (HR)-FAB-MS. The ¹H-NMR spectral data of 1 (Table 1) showed the presence of three olefinic protons, one exo-methylene ($\delta_{\rm H}$ 4.66 and 4.89, each d, J=2.2 Hz at H-18), four quaternary methyls, one secondary methyl ($\delta_{\rm H}$ 0.85, d, J=6.6 Hz), and one olefinic methyl ($\delta_{\rm H}$ 1.88, d, J=1.4 Hz). The ¹³C-NMR spectral data of 1 (Table 1) indicated the signals of one ketone and one carboxylic acid (δ_c 172.5), which was confirmed by the IR spectrum with absorption bands at 2500–3600 and 1706 cm⁻¹. Comparison of its spectral data with those of neokadsuranic acid B⁵⁾ suggests that compound 1 is a triterpenoid with a $14(13 \rightarrow 12)abeo$ -lanostane skeleton. Inspection of ¹H–¹H correlation spectroscopy (COSY) and heteronuclear multiple bond connectivity (HMBC) spectra of 1 indicated that two olefinic protons ($\delta_{\rm H}$ 5.35 and 5.29) were assigned at C-7 and C-11, respectively. In addition, the other olefinic proton in the low-field position ($\delta_{\rm H}$ 6.03) was determined to be C-24 due to conjugation with the carboxylic acid. The stereochemistry of 1 was deduced by a nuclear Overhauser effect spectroscopy (NOESY) experiment, which showed an nuclear Overhauser effect (NOE) correlation between 1) H-5 and H-28, and 2) H-12, H-17, and H-30, indicating that H-5, H-12, and H-17 were in an α -face. Further, the geometry of C_{24-25} was determined to be Z partly based on a comparison of its spectral data with those of neokadsuranic acid5) and partly based on the NOE correlation between H-24 and H-27 in the NOESY spectrum. Therefore tyromycic acid F (1) was determined to be (24Z)-3-oxo- $14(13\rightarrow 12)abeo$ -lanosta-7,9(11),13(18),24-tetraen-26-oic acid, as shown in Chart 1. In addition, $14(13\rightarrow 12)abeo$ lanostane structure is a rare skeleton from natural source⁵⁾ and **1** was the second example.

Tyromycic acid G (2) was obtained as an oil with the molecular formula $C_{32}H_{46}O_5$ based on HR-FAB-MS. The ¹Hand ¹³C-NMR spectral data (Table 1) of compound 2 were similar to those of tyromycic acid (3)¹ except for the pres-

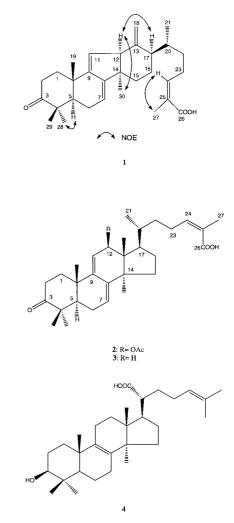


Chart 1. Structures of Compounds 1-4

Position	Compound 1		Compound 2		Compound
	$\delta_{ m H} \left(J ext{ in Hz} ight)$	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{ m c}$	$\delta_{ m c}$
1	2.19 ddd (2.8, 5.5, 13.5)	35.9 t	2.24 m	36.3 t	36.6 t
	1.82 dt (4.4, 13.5)		1.87 m		
2	2.78 dt (5.8, 14.8)	34.7 t	2.75 dt (5.8, 14.6)	34.6 t	34.8 t
	2.34 ddd (3.0, 4.4, 14.8)		2.36 ddd (3.0, 4.7, 14.6)		
3		216.2 s		216.2 s	216.9 s
4		47.8 s		47.4 s	47.5 s
5	1.55 dd (4.1, 11.8)	50.2 d	1.56 dd (3.9, 12.1)	50.3 d	50.7 d
6	2. 25 m	23.9 t	2.22 m	23.6 t	23.7 t
	2.13 m		2.08 m		
7	5.35 d (5.8)	113.7 d	5.60 d (6.6)	122.0 d	119.9 d
8	~ /	151.8 s		141.2 s	144.5 s
9		152.4 s		146.4 s	142.9 s
10		35.1 s		37.1 s	37.2 s
11	5.29 s	126.4 d	5.06 s	118.4 d	117.3 d
12	3.00 s	61.5 d	5.44 s	77.6 d	37.8 t
13		148.9 s		47.7 s	43.8 s
14		45.4 s		51.8 s	50.3 s
15	1.42 ddd (2.5, 6.6, 13.2)	36.0 t	1.74 m	31.5 t	31.5 t
	1.19 m	2010 1	1.38 m	0110 0	0110 0
16	1.58 m	24.9 t	2.20 m	26.6 t	27.9 t
	1.10 m	21.91	1.47 m	20.01	27.9 0
17	1.91 m	47.8 d	1.85 m	51.1 d	50.8 d
18	4.89 d (2.2)	114.2 t	0.67 s	11.1 g	15.7 q
	4.66 d (2.2)	114.2 t	0.073	11.1 q	15.7 q
19	1.20 s	19.5 g	1.23 s	21.8 g	22.0 g
20	1.34 m	37.0 d	1.43 m	34.7 d	36.2 d
20	0.85 d (6.6)	17.8 q	0.91 d (6.6)	19.9 q	18.3 q
22	1.56 m	33.7 t	1.58 m	35.2 t	35.7 t
	1.20 m	55.7 t	1.14 m	55.2 t	55.71
23	2.52 m	27.3 t	2.54 m	27.5 t	26.9 t
	2.32 m 2.44 m	27.5 t	2.34 m	27.5 t	20.91
24	6.03 dt (1.4, 8.0)	147.0 d	6.08 dt (1.4, 7.8)	146.7 d	147.2 d
24	0.05 dt (1.4, 8.0)	125.8 s	0.08 ut (1.4, 7.8)	125.8 s	147.2 u 125.7 s
23 26		123.8 s 172.5 s		125.8 s 171.8 s	123.7 s 172.3 s
20 27	1.99 d (1.4)		1.02 + (1.4)		
27 28	1.88 d (1.4) 1.13 s	20.6 q	1.92 d (1.4) 1.13 s	20.6 q	20.6 q
28 29	1.13 s 1.09 s	22.3 q	1.13 s 1.09 s	22.5 q	22.5 q
29 30		25.2 q		25.3 q	25.4 q
	1.06 s	27.0 q	1.00 s	25.3 q	25.3 q
12-OAc			2.27 s	21.8, 171.0	

Table 1. ¹H- and ¹³C-NMR (CDCl₃) Spectral Data for Compounds 1—3

ence of signals of an acetoxyl group ($\delta_{\rm H}$ 2.27; $\delta_{\rm C}$ 21.8, 171.0). The location of the acetoxyl group was determined to be at C-12 by the correlation between the acetoxyl group and C-12 in the HMBC spectrum and the low-field position of C-12 ($\delta_{\rm C}$ 77.6). The stereochemistry of H-12 was found to be in an α -face based on the NOE correlation between H-12 and H-17, and H-30. Thus tyromycic acid G (**2**) was determined to be (24*Z*)-12 β -acetoxylanosta-7,9(11),24-trien-26-oic acid, as shown in Chart 1.

Compounds **3** and **4** were identified as tyromycic acid¹⁾ and trametenolic acid B,⁶⁾ respectively, based on a comparison of their spectral data with those reported in the literature.^{1,6)}

It is noteworthy that *Tyromyces* species are rich sources of lanostane and rearranged lanostane carboxylic acids.

Experimental

UV spectra were obtained on a Shimadzu UV-1650PC spectrophotometer in MeOH. IR spectra were recorded on a JASCO FT/IR-5300 spectrophotometer. Specific optical rotations were measured on a JASCO DIP-1000 polarimeter with CHCl₃ as a solvent. The ¹H- and ¹³C-NMR spectra were recorded on a Varian Unity 600 (600 MHz for ¹H-NMR and 150 MHz for ¹³C-NMR) spectrometer, using CDCl₃ as a solvent. Chemical shifts were evaluated using TMS (δ : 0.00) as an internal standard (¹H-NMR), and δ : 77.03 (ppm) from CDCl₃ as a standard (¹³C-NMR). Mass spectra were recorded on a JEOL JMS AX-500 spectrometer. Preparative HPLC was performed on a Shimadzu liquid chromatograph model LC-10AS with RID-6A and SPD-10A detectors using a Waters 5C 18-AR-II column. Column chromatograph was carried out on silica gel 60 (0.2—0.5 mm, 0.04—0.063 mm, Merck).

Fungal Material Fruit bodies of *T. fissilis* were collected in October 2002 in Aichi prefecture, Higashikamo-gun, Japan, and identified by Kazuyuki Takase (Kansai Fungus Association). A voucher specimen (Taka-02-1) has been deposited in the Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan.

Extraction and Isolation Dried fruit bodies of *T. fissilis* (159 g) were extracted with MeOH. The filtrate was concentrated under reduced pressure to give a residue (7.5 g), which was subjected to SiO₂ column chromatography using hexane: EtOAc (1:1) to give six fractions. Fraction 1 (1680 mg) was rechromatographed on silica gel with the same solvent system to afford three subfractions. Subfraction 2 (248 mg) was purified on a reverse-phase column using $CH_3CN: H_2O$ as an eluent to give **3** (6 mg). Subfraction 3 (139.2 mg) was also separated on a reverse-phase column using $CH_3CN: H_2O$ (9:1) and then a DIOL column using hexane: EtOAc (2:1) to afford tyromycic acids F (1) (17.4 mg) and G (2) (5.7 mg).

Tyromycic Acid F (1): Oil, $[\alpha]_D^{20} - 103.1^{\circ}$ (*c*=0.10, CHCl₃). IR (KBr) cm⁻¹: 3400–2500, 2925, 1706, 1637, 1457, 1195, 842. UV λ_{max} (MeOH)

 $(\log \varepsilon)$: 214 (4.2). ¹H- and ¹³C-NMR (CDCl₃) data: see Table 1. HR-FAB-

MS: m/z 450.3095 [M]⁺ (Calcd for C₃₀H₄₂O₃: 450.3134). Tyromycic Acid G (**2**): Oil, $[\alpha]_D^{20} - 99.1^{\circ}$ (z=0.08, CHCl₃). IR (KBr) cm⁻¹: 3600–2500, 2927, 1708, 1642, 1457, 1376, 1243. UV λ_{max} (MeOH) nm (log ε): 221 (3.8), 235 (3.8), 244 (3.8). ¹H- and ¹³C-NMR (CDCl₃) data: see Table 1. HR-FAB-MS: m/z 533.3207 [M+Na]⁺ (Calcd for C₃₂H₄₆O₅Na: 533.3243).

Acknowledgments The authors thank Miss Y. Okamoto (TBU, Japan) for measurement of the mass spectra and Mr. K. Takase (Kansai Fungus Association) for collection of mushrooms.

References

- 1) Gaudemer A., Polonsky J., Gmelin R., Adam G. K., McCorkindale N. J., Bull. Soc. Chim. Fr., 5, 1844-1845 (1967).
- Frost A., Huff T., Anke T., Hansske F., DECHEMA Biotechnol. Conf., 2) 5, 743-746 (1992).
- Weber W., Semar M., Anke T., Bross M., Steglich W., Planta Med., 58, 3) 56-59 (1992).
- Quang D. N., Hashimoto T., Tanaka M., Takaoka S., Asakawa Y., J. 4) Nat. Prod., (2003), submitted.
- Li L. N., Hong X., Kangouri K., Ikeda A., Omura S., Planta Med., 55, 5) 294-297 (1989).
- 6) Keller A. C., Maillard M. P., Hostettmann K., Phytochemistry, 41, 1041—1046 (1996).