Catalytic Activity for Decomposition of Hydrogen Peroxide by Metal Complexes of Water-Soluble Thiacalix[4]arenetetrasulfonate on the Modified Anion-Exchangers

Junichi ODO,* Hanae YAMAGUCHI, Hirotaka OHSAKI, and Noriyoshi OHMURA

Faculty of Science, Okayama University of Science; 1–1 Ridai-cho, Okayama 700–0005, Japan. Received September 8, 2003; accepted December 1, 2003

> **The catalytic activity for the decomposition of hydrogen peroxide by anion-exchangers modified with metal** complexes of thiacalix[4]arenetetrasulfonate (Meⁿ⁺-TCAS[4], Meⁿ⁺=Mn³⁺, Mn²⁺, Fe³⁺, Co³⁺, Co²⁺, Cu²⁺, Zn²⁺ **and Ni2**¹**) was investigated. As a reference, calix[4]arenetetrasulfonate, calix[6]arenehexasulfonate and calix[8] areneoctasulfonate were also examined. Mn3**¹**- and Fe3**¹**-TCAS[4] on the modified anion-exchangers showed high catalytic activity in alkaline buffer solutions among metal complexes tested. Mn3**¹**- and Fe³**¹**-TCAS[4] on the modified anion-exchangers exhibited high and constant levels of catalytic activity even after having been used 5 times, and showed catalytic activity in the presence of an excess of** H_2O_2 **over** Mn^{3+} **- and** Fe^{3+} **-TCAS[4] on the** modified anion-exchangers. Only Mn³⁺-TCAS[4] on the modified anion-exchangers exhibited high catalytic ac**tivity at around a neutral pH.**

Key words thiacalix[n]arene; hydrogen peroxide; catalase; catalytic activity; calix[n]arene; metal complex

Catalases are a class of enzymes essential for the decomposition of hydrogen peroxide which is produced by various oxidases and superoxide dismutases and causes cell damage in living systems.1) In clinical analyses, catalase is used as an analytical reagent for the determination of various vital compounds in body fluid.²⁾ Many attempts have been made to develop metal complexes which exhibit high catalase-like catalytic activity.³⁾ Catalase mimics can be applied to the study of the molecular mechanisms of H_2O_2 dismutation, and may be usable in place of catalase in clinical analyses and as therapeutics.⁴⁾ Accordingly, much effort has been focused on developing efficient catalase mimics which exhibit high catalytic activity.

Thiacalix[n]arenes, recently developed by Kumagai *et al.*, 5) have a specific structure in that the methylene units of the parent calix[n]arenes are replaced by –S– atom linkages as shown in Fig. 1. They possess several interesting features, the most remarkable being an ability to form very stable metal complexes without a modification to their upperand/or lower-rims.^{6—9)} With conventional calix[n]arenes, it is necessary to modify the upper- and/or lower-rims with suitable functional groups to prepare stable metal complexes.^{10—13)} Because of these features, some thiacalix[n]arene derivatives have been used as an analytical reagent for the separation of various metal ions.^{6,8)} Moreover, we have recently demonstrated that some metal complexes of thiacalix[4]arenetetrasulfonate on modified anion-exchangers exhibit high peroxidase-like catalytic activity, and are useful not only for the determination of H_2O_2 but also for the deter-

Fig. 1. Structures of Thiacalix[n]arenes, Calix[n]arenes and TCAS[4]

∗ To whom correspondence should be addressed. e-mail: odo@dbc.ous.ac.jp © 2004 Pharmaceutical Society of Japan

mination of glucose in control serum as a mimesis of peroxidase in clinical analyses. $14,15$)

Accordingly, in this study, the catalase-like catalytic activity of metal complexes of thiacalix[4]arenetetrasulfonate on modified anion-exchangers was investigated. To the best of our knowledge, no report has been published on the catalaselike catalytic activity of metal complexes of thiacalix[*n*] arenes and calix[n]arenes. Any metal complex of thiacalix[4]arenes with high catalase-like catalytic activity would be useful not only as a catalase mimic but also as an analytical reagent in clinical analyses.

Experimental

Materials Sodium thiacalix[4]arenetetrasulfonate (Fig.1, TCAS[4]), prepared as described in the literature,⁵⁾ was kindly provided by Cosmo Oil Co. Sodium calix[4]arenetetrasulfonate, sodium calix[6]arenehexasulfonate and sodium calix[8]areneoctasulfonate (Fig. 1, CAS[n]; n=4, 6 and 8, respectively) were purchased from Sugai Kagaku Kogyo Co. DEAE cellulofine A-500 (an anion-exchanger of cellulose-type with diethylaminoethyl groups) purchased from Seikagaku Kogyo Co. was washed with water several times and dried over P_2O_5 under reduced pressure. Peroxidase (POD, from horseradish) was purchased from Wako Pure Chemical Industries Co. All other reagents were of analytical or reagent grade and used without further purification.

Preparation of Anion-Exchangers Modified with Meⁿ⁺-TCAS[4] The anion-exchangers modified with Me^{n+} -TCAS[4] (Meⁿ⁺-TCAS[4]_{A-500}; $Me^{n+}=Mn^{3+}$, Mn^{2+} , Fe^{3+} , Co^{3+} , Co^{2+} , Cu^{2+} , Zn^{2+} and Ni^{2+}) were mainly prepared according to method A described in the literature,¹⁴⁾ as shown in Fig. 2. For all the modified anion-exchangers prepared, 100 μ mol of Meⁿ⁺-TCAS[4] was loaded per gram of dry anion-exchanger. No elution of Me^{n+} -TCAS[4] from the modified anion-exchangers was observed under the reaction conditions used in this study.

Evaluation of the Activity of Meⁿ⁺-TCAS[4]_{A-500} The enzyme catalase catalyzes the dismutation reaction of H_2O_2 to produce O_2 and H_2O in biological systems, as shown in reaction (1). Accordingly, the catalase-like activity of Meⁿ⁺-TCAS[4]_{A-500} was evaluated by measuring the undecomposed H_2O_2 in the reaction solution through reaction (1) using $Me^{n+}-TCAS[4]_{A-500}$ instead of catalase. The amount of undecomposed H_2O_2 in the reaction solution was determined by measuring the absorbance at 505 nm of the quinoid dye produced through reaction (2) catalyzed by peroxidase.

$$
2H_2O_2 \xrightarrow{\text{Me}^{\text{n+}}-\text{TCAS}[4]_{A-500}} O_2 + 2H_2O \tag{1}
$$

Me-TCAS[4] A -500

Fig. 2. Preparation of the Anion-Exchangers Modified with Me^{n+} -TCAS[4]

Meⁿ⁺-TCAS[4]_{A-500} (100 μ mol/g, 20 mg) was added to a mixture of sample solution (2 ml, 70 μ g of H₂O₂) and various buffer solutions (3 ml), and incubated at 50 °C for 30 min. Under these reaction conditions, the molar ratio of Meⁿ⁺-TCAS[4] (2.0 μ mol) on the modified anion-exchanger to H₂O₂ $(2.06 \mu \text{mol})$ is almost 1 : 1 in the solution. The quantity of undecomposed H_2O_2 in this reaction solution was determined as follows: After Meⁿ⁺-TCAS[4]_{A-500} was filtered off, the reagent solution (3.5 ml) was added to the supernatant (2 ml) of the reaction solution. This mixture was incubated at room temperature for 15 min, and its absorbance at 505 nm was measured against a reagent blank solution. The reagent solution used consisted of a 1 : 1 : 4 : 1 (v/v) mixture of 4-aminoantipyrine (4-AAP) solution (2 mg/ml), phenol solution (10 mg/ml) and buffer solution of pH 7 and POD solution (25 units/ml).

The buffer solutions used were 0.1 M KH₂PO₄–0.05 M Na₂B₄O₇ for pH 6– 9 and 0.05 M $\text{Na}_2\text{B}_4\text{O}_7$ –0.05 M Na_2CO_3 for pH 10–11.

Apparatus The absorption spectra and absorbances were recorded on a Shimadzu UV-1600 PC double beam spectrophotometer with a 10 mm quartz cell.

Results and Discussion

The activity of $Me^{n+}-TCAS[4]_{A-500}$ for the decomposition of H₂O₂ was evaluated in buffer solutions of various pH. The absorbance at 505 nm of the quinoid dye produced through reactions (1) and (2) at each pH is shown in Figs. 3 and 4. Mn²⁺-, Co³⁺-, Co²⁺-, Cu²⁺-, Zn²⁺- and Ni²⁺-TCAS[4]_{A-500} showed very weak or almost no activity within the pH range tested. However, Mn^{3+} - and $Fe^{3+}-TCAS[4]_{A-500}$ exhibited high activity in alkaline buffer solutions; especially Mn^{3+} - $TCAS[4]_{A-500}$, which showed the highest level of activity within the pH range tested. In the neutral solutions, only Mn^{3+} -TCAS[4]_{A-500} exhibited high activity.

It is well known that H_2O_2 is catalytically decomposed by a variety of free and complexed transition metal ions. To date, several transition metal complexes with activity to decompose H_2O_2 have been developed.³⁾ However, these metal complexes may or may not decompose H_2O_2 through reaction (1) to produce O_2 , as pointed out by Paschke *et al.*¹⁶⁾ Accordingly, in order to confirm whether O_2 is produced through the catalytic action of Meⁿ⁺-TCAS[4]_{A-500} (Meⁿ⁺: Mn^{3+} and Fe³⁺) for H₂O₂, these Meⁿ⁺-TCAS[4]_{A-500} were added to sample solutions containing a large excess of H_2O_2 . The evolution of a large quantity of $O₂$ from the solutions was ascertained on adding the Meⁿ⁺-TCAS[4]_{A-500}, although

Fig. 3. Effects of pH on the Catalase-Like Activity of $Me^{n+}-TCAS[4]_{A-500}$ for 70 μ g of H₂O₂

 \bullet , Mn³⁺-TCAS[4]_{A-500}; \triangle , Mn²⁺-TCAS[4]_{A-500}; \bigcirc , Fe³⁺-TCAS[4]_{A-500}.

Fig. 4. Effects of pH on the Catalase-Like Activity of $Me^{n+}-TCAS[4]_{A-500}$ for 70 μ g of H₂O₂

•, Co³⁺-TCAS[4]_{A-500}; O, Co²⁺-TCAS[4]_{A-500}; •, Ni²⁺-TCAS[4]_{A-500}; \Box , Cu²⁺- $TCAS[4]_{A-500}$; \triangle , $Zn^{2+}-TCAS[4]_{A-500}$.

Fig. 5. Effects of Repeated Use on the Activity of Mn^{3+} - and Fe³⁺-TCAS[4]_{A-500} for 70 μ g of H₂O₂ in pH 10 Buffer Solution

 \bullet , Mn³⁺-TCAS[4]_{A-500}; \odot , Fe³⁺-TCAS[4]_{A-500}.

the amount of O_2 produced was not determined. It is indicated that these $Me^{n+}-TCAS[4]_{A-500}$ catalyze at least reaction (1) catalyzed by catalase. Accordingly, $Me^{n+}-TCAS[4]_{A-500}$ $(Me^{n+}$: Mn^{3+} and Fe³⁺) may be applied as a mimic of catalase. $Mn^{3+} - TCAS[4]_{A-500}$ may be the most useful mimic among these tested, because only it shows high catalytic activity even at a neutral pH as shown in Fig. 3.

Moreover, in order to elucidate whether Mn^{3+} - and Fe³⁺- $TCAS[4]$ _{A-500} can be used repeatedly and show catalytic activity for reaction (1), the effects of repeated use of Mn^{3+} and $Fe^{3+}-TCAS[4]_{A-500}$ on the activity were investigated. Mn^{3+} - and Fe³⁺-TCAS[4]_{A-500} were used repeatedly after being separated from the reaction mixture, washed with water and dried. As shown in Fig. 5, the activity levels of Mn^{3+} - and Fe³⁺-TCAS[4]_{A-500} were maintained even after five uses. Moreover, the catalase-like activity was investigated in the presence of an excess of H₂O₂ (70—560 μ g of H_2O_2) over Mn³⁺- and Fe³⁺-TCAS[4] (2 μ mol) on the modified anion-exchangers. Even in the presence of $560 \mu g$ (16.5 μ mol) of H₂O₂, all H₂O₂ was decomposed by Mn³⁺and Fe^{3+} -TCAS[4]_{A-500} after 30 min. Accordingly, it is clear that Mn^{3+} - and Fe³⁺-TCAS[4]_{A-500} showed high levels of catalytic activity for reaction (1) and can be used repeatedly. Previously, we have demonstrated that $Fe^{3+}-TCAS[4]_{A-500}$ exhibited high peroxidase-like catalytic activity for reaction (3) catalyzed by peroxidase. $14,15$

$$
H_2O_2 + BH_2 \xrightarrow{\text{peroxidase}} B + 2H_2O \tag{3}
$$

It is interesting that $Fe^{3+}-TCAS[4]_{A-500}$ exhibited high peroxidase-like catalytic activity in the presence of substrates such as 4-aminoantipyrine and phenol in the previous study, 14) while it exhibited high catalase-like catalytic activity in the absence of such substrates in this study.

As described for Fe^{3+} -TCAS[4]_{A-500} in the literature,^{14,15}) it is reasonable that $Fe³⁺$ ion is coordinated to the $-S-$ of the epithio groups and the phenolic oxygen atoms of TCAS[4], and is coordinated to TCAS[4] on the modified anion-exchanger with a molar ratio of $1:1$ as shown in Fig. 6. In fact, an elemental analysis of $Fe³⁺-TCAS[4]$ complex (actually $Fe³⁺-TCAS[4] (Cl⁻)·11H₂O)$ supported that the molar ratio of $Fe³⁺$ ion to TCAS[4] on the modified anion-exchanger was $1:1.^{17}$ Also, Mn^{3+} ion may be coordinated to TCAS[4] on the modified anion-exchanger, analogous with the case of $Fe³⁺-TCAS[4]_{A-500}$. Although some Meⁿ⁺ ions tested in this study may be coordinated to diethylaminoethyl $(-NH(C₂H₅)₂)$ groups of the anion-exchanger, no such coordination was actually observed. Accordingly, it can be concluded that the active species responsible for the catalase-like activity of $Meⁿ⁺$ - $TCAS[4]$ _{A-500} is the mononuclear Meⁿ⁺-TCAS[4] complex on the modified anion-exchanger, as shown in Fig. 6. Anionexchangers modified with Meⁿ⁺-CAS[n] (Meⁿ⁺-CAS[n]_{A-500}; $n=4, 6, 8$) were investigated as well. Although each CAS[n] $(n=4, 6, 8)$ was loaded on the anion-exchanger, Meⁿ⁺- $CAS[n]_{A-500}$ could not be prepared because the Meⁿ⁺ ions were not coordinated to each calix[n]arene moiety. This is the reason why calix[n]arenes such as CAS[n] $(n=4, 6, 8)$ are unable to form stable metal complexes without modifying their upper- or lower-rim; while TCAS[4] exhibits such an ability. So, the catalase-like activity of $Me^{n+} - CAS[n]_{A-500}$ $(n=4, 6, 8)$ could not evaluated at all.

Fe³⁺-TCAS[4]_{A-500}

Fig. 6. Proposed Structure of Fe^{3+} -TCAS[4]_{A-500} on the Modified Anion-Exchanger

As described above, $Me^{n+}-CAS[n]_{A-500}$ (n=4, 6, 8) was not formed under the conditions in this study, although Meⁿ⁺-TCAS[4]_{A-500} (Meⁿ⁺: Mn³⁺, Fe³⁺) was very stable and exhibited high catalytic activity. Accordingly, the –S– of the epithio groups of TCAS[4] is very important for forming stable metal comlexes by its coordination to the metal ions, and also may play an important role in preventing the decomposition of its metal complex all through the catalytic reaction.

The effects of incubation temperature on the catalytic activity of Mn³⁺- and Fe³⁺-TCAS[4]_{A-500} for 70 µg of H₂O₂ were investigated in a borate buffer solution of pH 10. With increasing temperature, the absorbance at 505 nm after 30 min of incubation decreased, reaching almost zero at between 30 and 50 °C. The H_2O_2 in the sample solution was completely decomposed by Mn^{3+} and Fe^{3+} -TCAS[4]_{A-500} in this range of temperatures. Similarly, the effects of incubation time on the activity of Mn^{3+} - and Fe³⁺-TCAS[4]_{A-500} for 70 μ g of H₂O₂ were examined. As shown in Fig. 7, the H₂O₂ in the sample solution was immediately decomposed by each Mn^{3+} - and Fe³⁺-TCAS[4]_{A-500}. All H₂O₂ was decomposed after 5 and 10 min by $\overline{Mn^{3+}}$ and Fe³⁺-TCAS[4]_{A-500}, respectively. The interference from certain ions in the activity of $Fe³⁺-TCAS[4]_{A-500}$ is summarized in Table 1. All the substances tested except for reducing substances such as ascorbate showed almost no interference.

In conclusion, Mn^{3+} - and Fe³⁺-TCAS[4]_{A-500} showed high catalytic activity for the decomposition of hydrogen peroxide among the anion-exchangers modified with $Meⁿ⁺ -TCAS[4]$ tested. Mn³⁺-TCAS[4]_{A-500} showed the highest level of activity within the range of pH tested. $Mn^{3+}-TCAS[4]_{A-500}$ may be applied as a mimic of catalase and may be useful as an analytical reagent in place of catalase.

Fig. 7. Effects of Incubation Time on the Activity of Mn^{3+} - and Fe³⁺-TCAS[4]_{A-500} for 70 μ g of H₂O₂ in pH 10 Buffer Solution

 \bullet , Mn³⁺-TCAS[4]_{A-500}; O, Fe³⁺-TCAS[4]_{A-500}.

Table 1. Effect of Foreign Substances on the Catalase-Like Activity of $Fe^{3+}-TCAS[4]_{A-500}$

Substances	Added $(\mu$ g)	Error $\frac{6}{2}$	Substances	Added $(\mu$ g)	Error $\frac{6}{2}$
NaF	700	-0.5	Albumin (HSA)	$20 \,\mathrm{mg}$	-3.5
Glycine	700	-0.5	Citrate	700	-0.9
Ascorbate	700	-50.4	PO ₄ ^{3–}	700	-0.5
Ca^{2+}	700	$+1.0$	CO ₃ ^{2–}	700	$+0.2$
K^+	700	-1.1	NH_4^+	700	$+1.3$
			Br^-	700	-14

H₂O₂ added; 70μ g.

Acknowledgments The authors thank Cosmo Oil Co. for supplying sodium thiacalix[4]arenetetrasulfonate. They are especially indebted to Drs. H. Kumagai, S. Miyanari and H. Takeya of Cosmo Oil Co. for their constant support of this work. Gratitude is also expressed to Professor M. Kojima (Faculty of Science, Department of Chemistry, Okayama University) for performing the elemental analysis.

References and Notes

- 1) Zamocky M., Koller F., *Prog. Biophys. Mol. Biol.*, **72**, 19—66 (1999).
- 2) Kanai M., Okabe H., Sekiguchi M., Nomoto S., Kameko M., Isobe M., Tozuka M., Hidaka H., Oguchi M., Kawa S., "Rinsyo-Kensaho-Teiyo," ed. by Kanai I., Kanai M., Kinbara Press, Tokyo, 1988, pp. 465—669 (in Japanese).
- 3) Salem I. A., El-Maazam M., Zaki A. B., *Int. J. Chem. Kinet.*, **32**, 643—666 (2000).
- 4) Doctrow S. R., Huffman K., Marcus C. B., Musleh W., Bruce A., Baudry M., Malfroy B., "Antioxidants in Disease: Mechanisms and Therapy," ed. by Sies H., Academic Press, San Diego, 1997, pp. 247— 269.
- 5) Kumagai H., Hasegawa M., Miyanari S., Sugawa Y., Sato Y., Hori T., Ueda S., Kamiyama H., Miyano S., *Tetrahedron Lett.*, **38**, 3971—3972 (1997).
- 6) Iki N., Morohashi N., Narumi F., Miyano S., *Bull. Chem. Soc. Jpn.*, **71**, 1597—1603 (1998).
- 7) Iki N., Morohashi N., Kabuto C., Miyano S., *Chem. Lett.*, **1999**, 219— 220 (1999).
- 8) Iki N., Narumi F., Fujimoto T., Morohashi N., Miyano S., *J. Chem. Soc., Perkin Trans. 2*, **1998**, 2745—2750 (1998).
- 9) Iki N., Kumagai H., Morohashi N., Ejima K., Hasegawa M., Miyanari S., Miyano S., *Tetrahedron Lett.*, **39**, 7559—7562 (1998).
- 10) Gutsche C. D., *Acc. Chem. Res.*, **16**, 161—170 (1983).
- 11) Böhmer V., *Angew. Chem. Int. Ed. Engl.*, **34**, 713—745 (1995).
- 12) Casnati A., Ungaro R., "Calixarenes in Action," ed. by Mandolini L., Ungaro R., Imperial College Press, London, 2000, pp. 62—84.
- 13) Gutsche C. D., "Calixarenes Revisited: Monographs in Supra-molecular Chemistry," The Royal Society of Chemistry, Cambridge, 1998, pp. 185—208.
- 14) Odo J., Kawahara N., Inomata Y., Inoue A., Takeya H., Miyanari S., Kumagai H., *Anal. Sci.*, **16**, 963—966 (2000).
- 15) Odo J., Inomata Y., Takeya H., Miyanari S., Kumagai H., *Anal. Sci.*, **17**, 1425—1429 (2001).
- 16) Paschke J., Kirsch M., Korth H.-G., Groot H., Sustmann R., *J. Am. Chem. Soc.*, **123**, 11099—11100 (2001).
- 17) Fe^{3+} -TCAS[4](Cl⁻) · 11H₂O was prepared as follows: FeCl₃ solution (0.13 mol/l, 1 ml) was added to TCAS[4] solution (0.11 mol/l, 1 ml) adjusted to pH 7 with a 0.1 mol/l NaOH solution while stirring, and this mixture was stirred for an additional 2 h. A saturated NaCl solution (1 ml) was added to the mixture, and the mixture was stirred for an additional 1 h. EtOH (4 ml) was then added and the mixture was allowed to stand in a refrigerator overnight. The precipitate $(Fe³⁺ -$ TCAS[4](Cl⁻) · 11H₂O) was washed with a mixture of EtOH and H₂O several times, and dried over P₂O₅ under reduced pressure. *Anal.* Calcd for $C_{24}H_{32}O_{27}Na_4S_8Fe$: C, 24.18; H, 2.71; N, 0.00. Found: C, 24.33; H, 2.83; N, 0.02. This result indicates that the molar ratio of $Fe³⁺$ ion to TCAS[4] is 1 : 1 in Fe³⁺-TCAS[4](Cl⁻) · 11H₂O.