Cycloanthranilylproline-Derived Constituents from a Myxomycete *Fuligo candida*

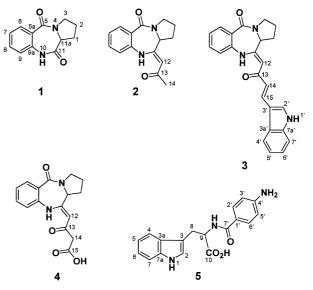
Satomi NAKATANI,^{*a*} Yukinori YAMAMOTO,^{*b*} Masahiko HAYASHI,^{*c*} Kanki KOMIYAMA,^{*c*} and Masami Ishibashi^{*,*a*}

^a Graduate School of Pharmaceutical Sciences, Chiba University; 1–33 Yayoi-cho, Inage-ku, Chiba 263–8522, Japan: ^b 1010–53 Ohtsu-ko, Kochi 781–5102, Japan: and ^c The Kitasato Institute; 5–9–1 Shirokane, Minato-ku, Tokyo 108–8642, Japan. Received November 20, 2003; accepted January 5, 2004; published online January 5, 2004

Cycloanthranilylproline (1) and its derivatives (2—4) were isolated from field-collected fruit-bodies of a myxomycete *Fuligo candida* and their structures were elucidated by spectral data. Compound 4, which was contained in the water-soluble fraction of the extract of this myxomycete, was unstable and quite susceptible to decarboxylation to yield compound 2, which was a major constituent of the EtOAc-soluble fraction of this extract.

Key words myxomycete; Fuligo candida; cycloanthranilylproline

During our studies on search for new secondary metabolites from the myxomycetes (true slime molds),¹⁾ we have isolated bioactive naphthoquinones^{2,3)} and bisindole-derivatives⁴⁾ from field-collected fruit bodies of several myxomycetes. We recently investigated the extract of fruit bodies of *Fuligo candida*, and here we describe isolation and structure elucidation of cycloanthranilylproline (1) and its derivatives (2–4).


The fruit bodies of *Fuligo candida*, collected in Kochi Prefecture, Japan, were extracted with 90% MeOH and 90% acetone. The combined extracts were partitioned between EtOAc and water, and the EtOAc-soluble fraction was then subjected to chromatographies on silica gel, ODS, and Sephadex LH-20 to give cycloanthranilylproline (1) and its derivatives (2, 3). From the water-soluble fraction, separation by ODS and silica gel flash chromatographies along with reversed-phase HPLC (Develosil C30-UG-5) afforded an unstable polar cycloanthranilylproline-derivative (4), together with 4-aminobenzoyltryptophan (5). Compound 1 (=cycloanthranilylproline)⁵ was previously known, and was shown to contain L-proline from the comparison of the sign of optical rotation of 1 in the literature, which was previously obtained from a Cruciferous plant *Isatis indigotica*.⁵

Compound 2, which was the major constituent of the EtOAc-soluble fraction and was positive on the Ehlrichreagent test on TLC, was obtained as colorless plates, and shown to have the molecular formula $C_{15}H_{16}O_2N_2$ by the high resolution (HR)-FAB-MS data (m/z 257.1289, $[M+H]^+$, Δ -0.1 mmu). The ¹³C-NMR spectrum of **2** (Table 1) showed signals for two carbonyls ($\delta_{\rm C}$ 198.2, 165.5), eight sp² olefinic or aromatic carbons, one nitrogen-bearing sp^3 methine ($\delta_{\rm C}$ 55.2), and three sp^3 methylenes ($\delta_{\rm C}$ 47.0, 23.3, 26.9), one of which was suggested to be attached to a nitrogen atom from its chemical shift (δ_{c} 47.0). The ¹H-NMR spectrum of 2 showed signals due to four aromatic protons ($\delta_{\rm H}$ 7.02— 7.96), and sp^3 methine and methylene protons ($\delta_{\rm H}$ 2.1–3.8). These NMR spectral data were similar to those of cycloanthranilylproline (1), and the ¹H-¹H COSY (H-6/H-7, H-7/H-8, and H-8/H-9; H-11a/H₂-1 and H₂-2/H₂-3) and heteronuclear multiple bond connectivity (HMBC) (H-6/C-5, H-6/C-9a, H-6/C-8, H-7/C-5a, H-7/C-9, H-8/C-6, H-8/C9a, H-9/5a, H-9/C-7, NH-10/C-9a, NH-10/C-5a, and NH-10/C-9; H-11a/C-1, H-11a/C-2, H-11a/C-3, H₂-1/C-11a, H₂-1/C-2, H₂-

* To whom correspondence should be addressed. e-mail: mish@p.chiba-u.ac.jp

1/C-3, H₂-2/C-1, H₂-3/C-1, and H₂-3/C-2) spectra of **2** also suggested the presence of anthranilic acid and proline residues. Difference in spectral data of **2** from **1** was the observation of signals due to a conjugated methyl ketone [$\delta_{\rm H}$ 2.19 (3H, s) and 5.29 (1H, s); $\delta_{\rm C}$ 30.0, 198.2, 91.0, and 158.7], which was deduced to be attached to the C-11 position from the HMBC correlations (H₃-14/C-13, H₃-14/C-12, H-12/C-13, H-12/C-11, H-12/C-11a; H-11a/C-11, H-11a/C-12; NH-10/C-12, and NH-10/C-11a). Nuclear Overhauser effect (NOE) correlation was observed between H-12 and one of H₂-1, implying the 11*Z*-configuration. Thus, structure of compound **2** corresponded to that derived from condensation of acetone with compound **1** at C-11 position.

Compound **3** was a yellow pigment, having an absorption maxium at λ_{max} 415 nm, and compound **3** also contained the cycloanthranilylproline moiety, which was revealed from its ¹H- and ¹³C-NMR data (Table 1). In place of the methyl ketone group which was embraced by compound **2**, compound **3** was shown to have an indole moiety as well as cross-conjugated ketone group [δ_{C} 160.4 (C-11), 93.4 (C-12), 190.2 (C-13), 123.8 (C-14), and 134.9 (C-15); δ_{H} 5.81 (1H, s; H-12), 7.02 (1H, d, J=15.2 Hz, H-14), and 7.92 (1H, d, J=15.2 Hz, H-15)] by its ¹H- and ¹³C-NMR data (Table 1) aided by the HMBC spectrum (indole moiety: H-2'/C-3', H-2'/C-3'a, H-

© 2004 Pharmaceutical Society of Japan

2'/C-7'a, H-5'/C-3'a, H-5'/C-7', H-6'/C-4', H-6'/C-7'a, H-2'/C-3', H-7'/C-5', and H-7'/C-3'a; cross-conjugated ketone group: H-12/C-13, H-14/C-13, and H-15/C-13). The HMBC spectrum also indicated that the cross-conjugated ketone group was attached to C-11 of the cycloanthranilylproline moiety and C-3' of the indole moiety (H-12/C-11, H-12/C-11a, and H-11a/C-11; H-15/C-2', and H-15/C-3a'). Therefore, compound **3** was considered to be derived from condensation of a cycloanthranilic acid, an acetone, and an indole-3-carbaldehyde.

Compound 4, which was positive on the Ehlrich- and Fast Red B-reagent tests on TLC, was isolated from the water-soluble fraction of the extract of this myxomycete. This compound was unstable and proved to be easily converted into compound 2. The water-soluble fraction of this extract did not initially contain compound 2. However, after ODS flash chromatography of the water-soluble fraction, compound 2 was obtained substantially. Isolation of compound 4 was carried out carefully by HPLC separation using Develosil C30-UG-5 eluted with 30% MeOH. In DMSO-d₆ solution, compound 4 was almost totally changed into compound 2 during the ¹H-NMR experiment. Since compound 4 was not dissolved in chloroform or acetone, NMR studies of compound 4 were carried out in CD₃OD solution, in which conversion from 4 to 2 was slow and not significantly observed. The ¹Hand ¹³C-NMR spectra of compound 4 (Table 1) were almost similar to those of compound 2, but no signal due to a methyl group was observed for 4. The electron impact-mass spectra (EI-MS) analysis of compound 4 showed an prominent ion peak at m/z 256, which correspond to the molecular ion of compound 2, thus implying that compound 4 was quite susceptible to fragmentation to yield compound 2 during the EI-MS measurement. In the ¹³C-NMR spectrum of 4, a signal of low-field resonance ($\delta_{\rm C}$ 175.8) was observed, which was assignable to a carboxyl group (C-15). The presence of a carboxyl group may be consistent with the fact that compound 4 was polar and contained in the water-soluble fraction. The HMBC spectrum of compound 4 in CD₃OD showed connectivities from $\delta_{\rm H}$ 3.30 to $\delta_{\rm C}$ 92.6 (C-12), 198.1 (C-13), and 175.8 (C-15), suggesting that the signal at $\delta_{\rm H}$ 3.30 was assignable to the hydrogens on C-14 methylene group and compound 4 possesses an acetic acid moiety (CH₂COOH) in place of the methyl group of compound 2. It was therefore reasonably accounted for that compound 4 possessing a β keto carboxylic acid moiety may be easily subject to decarboxylation to afford compound 2 possessing a methyl group. This explanation was further corroborated by the liquid chromatography-mass spectrometry (LC-MS) study. A crude fraction mainly containing compound 4 was subjected to LC-MS analysis (Develosil C30-UG-5, 30% MeOH, 1.8 ml/min; $t_{\rm R}$ 6.8 min; Waters ZQ 2000), which clearly showed intense quasi-molecular ions for 4 at m/z 301 (M+H)⁺ and 323 $(M+Na)^{+}$.

Compound **5** was another constituent isolated from watersoluble fraction. The molecular formula of compound **5** was revealed as $C_{18}H_{17}N_3O_3$ from the HR-FAB-MS data (*m/z* 324.1349, [M+H]⁺, Δ -2.4 mmu). In the ¹H- and ¹³C-NMR spectra of **5** signals due to a tryptophan residue and a *p*-substituted benzoic acid residue were observed. The ¹³C-NMR chemical shift of the C-4' position (δ_C 153.2) implied that an

4 (CD OD)

2 (CD COCD)

Table 1. ¹H- and ¹³C-NMR Data of Compounds 1-4

1(CDC1)

	$1 (CDCl_3)$		2 (CDCl ₃)		$3 (CD_3COCD_3)$		4 (CD ₃ OD)	
	$\delta_{ ext{H}}/ ext{Hz}$	$\delta_{ m C}$	$\delta_{ m H}/ m Hz$	$\delta_{ m C}$	$\delta_{ m H}/ m Hz$	$\delta_{ m c}$	$\delta_{ m H}/ m Hz$	$\delta_{ m C}$
1	2.00—2.03 m	26.2	2.11—2.16 m	26.9	2.23—2.35 m	29.0	2.06—2.22 m	27.9
	2.75—2.78 m		2.38—2.41 m		2.55—2.63 m	24.1	2.49—2.51 m	
2 3	$2.00-2.03^{a}$ m	23.5	$2.10-2.60^{a}$ m	23.3	2.05—2.15 m	47.4	2.06—2.22 m	24.3
3	3.57—3.62 m	47.3	3.61—3.68 m	47.0	3.65—3.73 m	47.4	3.54—3.61 m	48.1
	3.78—3.82 m		3.78—3.84 m		3.55—3.62 m		3.72—3.77 m	
5		165.4		165.5		165.8		167.8
5a		127.1		127.0		128.2		128.1
6	7.99 dd 7.7, 1.4	131.1	7.96 dd 7.8, 1.4	131.1	7.89 dd 7.8, 1.7	131.4	7.85 dd 7.8, 1.5	131.7
7	7.26 td 7.7, 1.0	125.1	7.20 dt 7.8, 1.4	124.2	7.19—7.23 m	124.3	7.16 dt 7.8, 0.9	125.4
8	7.46 td 7.7, 1.4	132.4	7.44 dt 7.8, 1.4	132.3	7.49—7.54 m	133.1	7.44 ddd 7.8, 7.6, 1.5	134.0
9	7.02 d 7.7	121.0	7.02 dd 7.8, 1.4	121.9	7.12 dd 8.1, 1.2	122.6	7.03 d 7.6	123.2
9a		135.2		136.9		138.6		138.7
10	8.68 br s		12.6 br s		10.8 ^{c)} br s			
11		171.2		158.7		160.4		160.9
11a	4.07 d 6.1	56.7	4.29 dd 7.8, 2.2	55.2	4.45 dd 8.0, 1.6	56.1	4.39 d 7.6	57.2
12			5.29 s	91.0	5.81 s	93.4	5.65 s	92.6
13				198.2		190.2		198.1
14			2.19^{b} s	30.0	7.02 d 15.2	123.8	3.30	54.0^{d}
15					7.92 d 15.2	134.9		175.8
1'					13.4 ^{c)} br s			
2'					7.83 d 2.7	131.5		
3'						114.4		
3a′						126.4		
4'					8.03 d 6.9	121.2		
5'					7.19—7.23 m	121.6		
6'					7.19—7.23 m	123.4		
7'					7.49—7.54 m	113.0		
7a′						138.6		

2(CDC1)

amino group was attached to this position. The ${}^{1}H{-}^{1}H$ COSY and other spectral data were also suggested the structure of compound 5 to be 4-aminobenzoyltryptophan, which was first isolated as a natural product and its full characterization was first described here, although it was previously reported as a reaction product.⁶

Cycloanthranilylproline derivatives (2—4) may be considered to contain L-proline since compound 1, which was coisolated from the same organism here, had L-proline residue. We could not exclude the possibility that compound 2 was an artificial product. Although we used acetone for extraction, it may be likely that compound 2 was not produced through condensation of acetone with compound 1 but it was produced through decarboxylation from compound 4. Treatment of compound 1 with acetone did not afford compound 2. Compounds 1 and 2 were cytotoxic against murine leukemia P388 cells *in vitro* with IC₅₀ values of 2.9 μ g/ml and 13.0 μ g/ml, respectively, while compounds 4 and 5 were inactive (IC₅₀ >25 μ g/ml).⁷⁾

Experimental

General Procedures UV spectra were obtained on a Hitachi U-3400 spectrometer. NMR spectra were recorded on JEOL JNM ecp600 spectrometers. HR-FAB-MS were acquired on a JMS HX-110 mass spectrometer.

Organism The fruit bodies of *Fuligo candida* were collected at Motoyama-machi in Kochi Prefecture, Japan, in August 2001 and 2002. Voucher specimens (#23060, 23446, and 23522) are maintained by Y. Y. (Ohtsu-ko, Kochi).

Extraction and Isolation The air-dried fruit bodies of *Fuligo candida* collected in 2001 (22.8 g) were extracted with 90% MeOH (500 ml \times 2) and 90% acetone (500 ml \times 1). The fruit bodies of *F. candida* collected in 2002 (111.5 g) were extracted with 90% MeOH (500 ml \times 2) and 90% acetone (500 ml \times 1). The combined MeOH and acetone extract (11.75 g) was partitioned between EtOAc (200 ml \times 3) and 8% MeOH in water (216 ml).

The EtOAc-soluble fraction was evaporated under reduce pressure to give a residue (3.96 g), which was subjected to silica gel column chromatography (column A; 3.5×27 cm) eluted with 0—100% acetone in hexane. A fraction (780 mg) of column A eluted with 16—33% acetone/hexane was further separated on an ODS column (column B; 2.5×27 cm) eluted with 33—100% MeOH in water to give compound **2** (385 mg). The fraction (65 mg) of column A eluted with 50—100% acetone/hexane was separated by a Sephadex LH-20 column (column C; 15×53 cm) eluted with methanol to give compound **1** (12.1 mg). Another fraction of column C (6.4 mg) was further purified by HPLC (Develosil ODS-UG-5; 10×250 mm; 50—80% MeOH and 70% CH₃CN) to afford compound **3** (1.5 mg).

The water-soluble fraction (8.22 g) was subjected to separation by an ODS flash chromatography (column D; 4.0×13 cm) eluted with 13—100% MeOH in water. A fraction (553 mg) of column D eluted with 25% aqueous MeOH was further separated by silica gel column chromatography (column E; 2.5×25 cm) eluted with EtOAc/MeOH/H₂O (40:3:2 to 24:4:3) to give compound **5** (53.7 mg). Another fraction of column E (195 mg) was further

separated by Sephadex LH-20 $(1.5\times53 \text{ cm})$ followed by fractionation with ODS Sep Pak column to afford compound **2** (39.4 mg) in the fraction eluted with 20—50% aqueous MeOH. A fraction of column D (939 mg) eluted with 13% MeOH was partially (131 mg) purified with HPLC (Develosil C30-UG-5; 10×250 mm; 30% MeOH) to afford compound **4** (26.5 mg).

Compound 1 (Cycloanthranilylproline⁵): Pale yellow powder; $[\alpha]_{D^2}^{D^3}$ +416° (*c*=1.2, MeOH), lit.⁵) $[\alpha]_D^{20}$ +505° (*c*=0.1, MeOH); ¹H- and ¹³C-NMR (Table 1); EI-MS *m/z* 216 (M⁺).

Compound **2**: Colorless plates; mp 140—144 °C; $[\alpha]_{0}^{26}$ +657° (*c*=1.40, MeOH); UV λ_{max} (MeOH) 338 nm (ϵ 60000); CD (MeOH) 229 ($\Delta \epsilon$ -3.0), 259 (-9.2), 273 (-0.2), 303 (-11.8), and 340 nm (+21.5); ¹H- and ¹³C-NMR (Table 1); EI-MS *m/z* 256 (M⁺); HR-FAB-MS *m/z* 257.1289 [calcd for C₁₅H₁₇O₂N₂, (M+H) 257.1290].

Compound 3: Yellow pigment; $[\alpha]_D^{26} + 149^\circ$ (*c*=0.6, MeOH); UV λ_{max} (MeOH) 415 nm (ε 8700); CD (MeOH) 232 ($\Delta \varepsilon$ -0.1), 238 (+0.6), 252 (-0.6), 268 (+0.5), 316 (-2.3), and 413 nm (+1.8); IR (KBr) 3420, 1590, and 1560 cm⁻¹; ¹H- and ¹³C-NMR (Table 1); electrospray ionization mass spectroscopy (ESI-MS) *m/z* 384 (M+H)⁺ and 406 (M+Na)⁺.

Compound 4: Colorless amorphous solid; $[\alpha]_D^{26} + 466^{\circ}$ (*c*=0.99, MeOH); UV λ_{max} (MeOH) 340 nm (ε 19000); CD (MeOH) 230 ($\Delta \varepsilon$ =2.0), 248 (-1.0), 260 (-5.6), 273 (-0.1), 304 (-8.6), and 343 nm (+16.2); IR (KBr) 3460, 1620, and 1560 cm⁻¹; ¹H- and ¹³C-NMR (Table 1); ESI-MS *m/z* 301 (M+H)⁺, 323 (M+Na)⁺, and 623 (2M+Na)⁺; HR-FAB-MS *m/z* 301.1187 [calcd for C₁₆H₁₇O₄N₂, (M+H) 301.1188].

Compound **5**: $[\alpha]_{25}^{25} - 6.8^{\circ} (c=0.76, MeOH); UV <math>\lambda_{max}$ (MeOH) 282 nm (ε 12000); IR (KBr) 3340, 1605, and 1510 cm⁻¹; ¹H-NMR (CD₃OD) $\delta_{\rm H}$ 7.11 (1H, s, H-2), 7.57 (1H, d, J=8.0 Hz, H-4), 6.99 (1H, t, J=8.0 Hz, H-5), 7.06 (1H, t, J=8.0 Hz, H-6), 7.30 (1H, t, J=8.0 Hz, H-7), 3.44 (1H, dd, J=14.6, 5.1 Hz, H-8), 3.30 (1H, m, H'-8), 4.86—4.92 (1H, m, H-9), 7.48 (2H, d, J=8.5 Hz, H-2', H-3'), and 6.59 (2H, d, J=8.5 Hz, H-3', H-5'); ¹³C-NMR (CD₃OD) $\delta_{\rm C}$ 124.4 (C-2), 111.2 (C-3), 128.9 (C-3a), 119.3 (C-4), 119.8 (C-5), 122.4 (C-6), 112.3 (C-7), 138.0 (C-7a), 28.4 (C-8), 55.2 (C-9), 175.8 (C-10), 122.7 (C-1'), 130.0 (C-2', C-6'), 114.7 (C-3', C-5'), 153.2 (C-4'), and 170.1 (C-7'); FAB-MS *m*/z 324 (M+H)⁺; HR-FAB-MS *m*/z 324.1349 [calcd for C₁₈H₁₇N₃O₃, (M+H) 324.1373].

Acknowledgment This work was partly supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- 1) Ishibashi M., J. Synth. Org. Chem. Jpn., 61, 152-163 (2003).
- Naoe A., Ishibashi M., Yamamoto Y., *Tetrahedron*, 59, 3433–3435 (2003).
- Iwata D., Ishibashi M., Yamamoto Y., J. Nat. Prod., 66, 1611–1612 (2003).
- Nakatani S., Naoe A., Yamamoto Y., Yamauchi T., Yamaguchi N., Ishibshi M., *Bioorg. Med. Chem. Lett.*, 13, 2879–2881 (2003).
- Wu X., Liu Y., Sheng W., Sun J., Qin G., *Planta Medica*, 63, 55–57 (1997).
- Brown T. B., Stevens M. F. G., J. Chem. Soc., Perkin Trans. 1, 1975, 2357–2360 (1975).
- Rho M.-C., Hayashi M., Fukami A., Obata R., Sunazuka T., Tomoda H., Komiyama K., Ōmura S., *J. Antibiot.*, **53**, 1201–1206 (2000).