New Acetylenic Glucosides from *Bidens bipinnata* LINNE

Shuai LI,^a Hai-Xue KUANG,^b Yoshihito OKADA,^c and Toru OKUYAMA^{*,c}

^a Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College; Beijing 100050, China: ^b Heilongjiang University of Traditional Chinese Medicine; Harbin 150040, China: and ^c Department of Natural Medicine & Phytochemistry, Meiji Pharmaceutical University; 2–522–1 Noshio, Kiyose, Tokyo 204–8588, Japan. Received September 12, 2003; accepted December 15, 2003

Two new acetylenic glucosides, 8Z-decaene-4,6-diyn-1-O- β -D-glucopyranoside named bidenoside C, and 8E-decaene-4,6-diyn-3,10-dihydroxy-1-O- β -D-glucopyranoside named bidenoside D, have been isolated from the aerial parts of *Bidens bipinnata* LINNE (Asterceae). These structures have been elucidated on the basis of spectroscopic methods.

Key words Bidens bipinnata; acetylenic compound; Asterceae; bidenoside C; bidenoside D

Bidens bipinnata LINNE, a weed of the Asterceae family, is widely distributed in China. It has been used as a folk medicine against various diseases such as inflammation, rheumatism, sore throat, hypertension and diabetes.¹⁾ We reported the isolation and structural elucidation of seven flavonoids in the EtOH extract of *B. bipinnata*.²⁾ In order to continue our studies on this herb, we now report the isolation and structural elucidation of structural elucidation of seven flavonoids, bidenoside C (1) and D (2).

Bidenoside C (1), a colorless syrup, with the molecular formula C₁₆H₂₂O₆, was established by HR (high-resolution)-FAB-MS (m/z 311.1529, $[M+H]^+$). The IR spectrum of 1 exhibited the presence of a hydroxyl at 3380 cm^{-1} (OH), and 2218 and 2162 cm^{-1} (-C=C-), 1630 cm^{-1} (-C=C-). The ¹H- and ¹³C-NMR spectra showed the presence of a glucopyranosyl unit [$\delta_{\rm H}$ 4.25 (anomeric proton), $\delta_{\rm C}$ 104.5, 78.1, 78.0, 75.1, 71.7, 62.8]. The anomeric proton at 4.25 ppm (d, J=7.6 Hz) for H-1' in the ¹H-NMR spectrum indicated β -Dglucose. The ¹³C-NMR spectrum showed four quaternary carbon signals at $\delta_{\rm C}$ 66.1, 72.5, 77.9 and 85.1 ppm, suggesting the presence of two pairs of triple bonds, and six other signals ($\delta_{\rm C}$ 16.3, 16.9, 29.8, 69.2, 110.0, 143.0). Each carbon signal was respectively connected to methyl at $\delta_{\rm H}$ 1.86 (3H, dd, J=6.9, 1.7 Hz), methylene at $\delta_{\rm H}$ 2.48 (2H, t, J=7.0 Hz) and at $\delta_{\rm H}$ 1.84 (2H, t, J=7.0 Hz), oxymethylene at $\delta_{\rm H}$ 3.64 (1H, dt, J=10.1, 6.2 Hz) and 3.96 (1H, dt, J=10.1, 6.2 Hz), and the olefinic protons at $\delta_{\rm H}$ 5.50 (1H, m) and 6.13 (1H, dq, J=10.9, 6.9 Hz) in the heteronuclear multiple quantum coherence (HMQC) spectrum. The connections of the carbons were determined by analyses of the ¹H-¹H correlated spectroscopy (COSY) spectrum and by means of a proton decoupling experiment. The coupling constant (J=10.9 Hz) of the olefinic protons showed that the configuration of the double bond is Z. The locations of two triple bonds were determined as follows: there is no correlation between $\delta_{\rm H}$ 2.48 and 5.50, and the anomeric carbon at $\delta_{
m C}$ 104.5 and methylene carbon at $\delta_{\rm C}$ 69.2 both bear an oxygen atom. Furthermore, by the comparison of chemical shifts with similar compounds,³⁾ bidenoside C was established to be 8Z-decaene-4,6-diyn-1- $O-\beta$ -D-glucopyranoside.

Bidenoside D (2) was obtained as a colorless syrup. The HR-FAB-MS established that the molecular formula was $C_{16}H_{22}O_8$ (*m*/*z* 343.1440). By the comparison of ¹H- and ¹³C-NMR spectral data with those of 1, it was suggested that 2

also has two acetylenic bonds in its molecule. The connectivity of the carbons in aglycone was determined by analysis of the ¹H–¹H COSY spectrum and by means of a proton decoupling experiment. From the coupling constant (J=15.9 Hz) of the olefinic protons, the configuration of the double bond is *E*. The locations of triple bonds were determined in the same manner. Thus, bidenoside D can be formulated as 8*E*-decaene-4,6-diyn-3,10-dihydroxy-1-*O*- β -D-glucopyranoside.

Experimental

General Procedure The optical rotations were measured with a Perkin-Elmer 241 Polarimeter. ¹H- and ¹³C-NMR spectra were taken with a JEOL JNM-LA 500 spectrometer in CD₃OD. Chemical shifts are given in δ values (ppm), with TMS as an internal standard. FAB-MS spectra were recorded with a Micross Mass Autospec-UltimaE TOF mass spectrometer. IR spectra were measured with a NICOLET Impact 400 spectrophotometer. Preparative HPLC was performed on a Hitachi (L-6000 pump) instrument with a Waters 5 C₁₈-AR-II column (10×250 mm) and Waters 5 SL (10×250 mm). Detector: RI ERC-7520.

Plant Materials The aerial parts of *Bidens bipinnata* LINNE were collected from a wild field in Heilongjiang Province on September 1998, in China. The plant was identified by Prof. Gui-jun Zhang, and the voucher specimen has been deposited at the Chinese Medicine Museum of Heilongjiang University of Traditional Chinese Medicine, Harbin, China.

Extraction and Isolation The air-dried aerial part (4 kg) of *B. bipinnata* LINNE was extracted twice with hot 95% EtOH (101) for 2 h, and the combined solution was concentrated *in vacuo* to a syrup (323 g), followed by suspension in water. The suspension was extracted with *n*-hexane, ethyl acetate and then *n*-butanol. The *n*-butanol extract (50 g) was chromatographed on silica gel and eluted successively with an EtOAc–MeOH gradient elute to give 10 fractions (Fr. 1—10). Fraction No. 2 (4.2 g) was subjected to reversed-phase (ODS) column chromatography and eluted with 30% aqueous

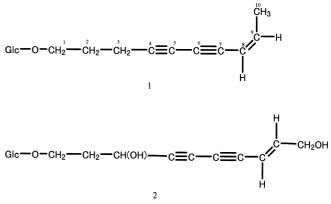


Fig. 1. Structures of 1 and 2

Table 1. ¹H-NMR Spectral Data for Compounds 1 and 2^{a}

	1	2
1	3.64 (1H, dt, J=10.1, 6.2)	3.73 (1H, dt, <i>J</i> =10.2, 6.4)
	3.96 (1H, dt, <i>J</i> =10.1, 6.2)	3.99 (1H, dt, <i>J</i> =10.2, 5.8)
2	1.84 (2H, t, <i>J</i> =7.0)	1.97 (2H, ddd, J=6.7, 6.4, 5.8)
3	2.48 (2H, t, J=7.0)	4.64 (1H, t, <i>J</i> =6.7)
8	5.50 (1H, m)	5.80 (1H, dtd, J=15.9, 0.9, 2.1)
9	6.13 (1H, dq, J=10.9, 6.9)	6.39 (1H,dt, <i>J</i> =15.9, 4.8)
10	1.86 (3H, dd, <i>J</i> =6.9, 1.7)	4.13 (2H, dd, <i>J</i> =4.8, 2.1)
1'	4.25 (1H, d, <i>J</i> =7.6)	4.26 (1H, d, <i>J</i> =7.9)

a) ppm from TMS, J=Hz, in CD₃OD, 500 MHz, room temperature.

MeOH to give 5 fractions (I—V). Fraction IV was purified by preparative HPLC-ODS (50% aqueous MeOH) to afford **1** (6.2 mg). Fraction No. 3 (5.6 g) was subjected to reversed-phase (ODS) column chromatography eluted with 20% aqueous MeOH to give 6 fractions (I—V). Fraction IV was purified by Sephadex LH-20, and eluted with MeOH, followed by preparative HPLC-ODS with 25% aqueous MeOH to afford **2** (11 mg).

Bidenoside C (8*Z*-Decaene-4,6-diyn-1-*O*-β-D-glucopyranoside) (1): A colorless syrup, $[\alpha]_{25}^{25} - 18^{\circ}$ (*c*=0.10, MeOH), HR-FAB-MS *m/z*: obs. 311.1529 [M+H]⁺ (Calcd for C₁₆H₂₃O₆: 311.1494). IR (KBr) cm⁻¹: 3380 (OH), 2218 (-C=C-), 2162 (-C=C-), 1630 (-C=C-), 1375, 1226, 1028. ¹H- and ¹³C-NMR spectra are shown in Tables 1 and 2.

Bidenoside D (8*E*-Decaene-4,6-diyn-3,10-dihydroxy-1-*O*-D-glucopyranoside) (**2**): A colorless syrup, $[\alpha]_D^{25} - 27^\circ$ (*c*=0.10, MeOH), HR-FAB-MS *m/z*: 343.1440 [M+H]⁺ (Calcd for C₁₆H₂₃O₈. 343.1392). IR (KBr) cm⁻¹: 3320 (OH), 2216 ($-C\equiv C-$), 2164 ($-C\equiv C-$), 1628 (-C= -), 1375, 1225, 1036. ¹H- and ¹³C-NMR spectra are shown in Tables 1 and 2.

Acknowlegement This work was supported in part by a grant for the

Table 2.	¹³ C-NMR	Spectral	Data for	Compounds	1 and 2 ^{a)}
----------	---------------------	----------	----------	-----------	-----------------------

	1	2
1	69.2 t	67.0 t
2	29.8 t	39.1 t
3	16.9 t	60.4 d
4	66.1 s	69.7 s
5	72.5 s	74.3 s
6	77.9 s	77.8 s
7	85.1 s	84.5 s
8	110.0 d	108.8 d
9	143.0 d	148.2 d
10	16.3 q	62.8 t
1'	104.5 d	104.8 d
2'	75.1 d	75.3 d
3'	78.1 d	78.3 d
4'	71.7 d	71.8 d
5'	78.0 d	78.1 d
6'	62.8 t	63.0 t

a) ppm from TMS, in CD₃OD, 125 MHz, room temperature.

Association of International Education, Japan, Short-term Student Exchange Program Scholarship.

References

- Jiangsu New Medical College, "Dictionary of Chinese Materia Medica," Shanghai Science and Technology Publisher, Shanghai, 1985, pp. 1694—1695.
- Li S., Kuang X-H., Okada Y., Okuyama T., *Heterocycles*, 61, 557– 561 (2003).
- 3) Wang C. Z., Yu D. Q., Phytochemistry, 48, 711-717 (1998).