# Three New C<sub>19</sub>-Diterpenoid Alkaloids from *Delphinium giraldii*

Xian-Li ZHOU,<sup>a</sup> Qiao-Hong CHEN,<sup>b</sup> and Feng-Peng WANG<sup>\*,b</sup>

<sup>a</sup> Department of Bioengineering, Southwest Jiaotong University; Chengdu 610031, P. R. China: and <sup>b</sup> Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University; No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, P. R. China. Received October 28, 2003; accepted December 24, 2003

# Further investigation of the roots of *Delphinium giraldii* DIELS led to the isolation of three new $C_{19}$ -diterpenoid alkaloids, giraldines G (1), H (2), and I (3). The structures of 1—3 were established based on spectroscopic evidence.

Key words Delphinium giraldii; Ranunculacene; C<sub>19</sub>-diterpenoid alkaloid; giraldine G; giraldine H; giraldine I

The isolation and structure elucidation of six new  $C_{19}$ diterpenoid alkaloids as well as three known  $C_{19}$ -diterpenoid alkaloids from the roots of *Delphinium giraldii* (Ranunculaceae) have been reported in our previous papers.<sup>1,2)</sup> Our continuing investigations of the alkaloids of this plant resulted in the isolation of three new  $C_{19}$ -diterpenoid alkaloids, giraldines G (1), H (2), and I (3). This paper describes the isolation and structure determination of these new alkaloids.

## **Results and Discussion**

Giraldine G (1),  $C_{40}H_{57}N_3O_{11}$  (HR-EI-MS), exhibited characteristic NMR features of a lycoctonine-type C19-diterpenoid alkaloid,<sup>3,4)</sup> bearing an N-ethyl ( $\delta_{\rm H}$  1.05, 3H, t, J=7.2 Hz;  $\delta_{\rm C}$  50.9 t, 14.0 q), three methoxyl ( $\delta_{\rm H}$  3.25, 3.28, 3.36, each 3H, s;  $\delta_{\rm C}$  55.7 q, 55.9 q, 58.0 q), a substituted anthranoyl ( $\delta_{\rm H}$  11.16, 1H, s, <u>NH</u>, 7.07–8.71, 4H, m, 5.36, 5.80, each 1H, s, <u>NH</u><sub>2</sub>; 1.35, 3H, d, J=7.0 Hz;  $\delta_{C}$  see Table 1), and an isobutyryl ( $\delta_{\rm H}$  1.16, 6H, d, J=7.0 Hz;  $\delta_{\rm C}$  see Table 1) groups. It's NMR spectrum indicated the presence of a C-18 ester moiety as delsemine A (4),<sup>5)</sup> and a C-14 ester residue as occidentalidine (5).<sup>6)</sup> The <sup>13</sup>C-NMR spectrum compares well with those of  $4^{5)}$  (Table 1) except for the replacement of C<sub>(14)</sub>-OMe in 4 with an isobutyryl group. These results led to the assignment of the structure of giraldine G as 1. In addition, the stereochemistry of the methylsuccinimide moiety in methyllycaconitine has been assigned to be "S" by Blagbrough and his coworkers.<sup>7)</sup> Therefore the stereochemistry of C-2" in 1 could be deduced to be "S" based on comparisons of the <sup>13</sup>C-NMR data with those of 4.

Giraldine H (2), C<sub>41</sub>H<sub>59</sub>N<sub>3</sub>O<sub>11</sub> (HR-EI-MS), was also a lycoctonine-type C<sub>19</sub>-diterpenoid alkaloid.<sup>3,4</sup>) The NMR spectra displayed signals at  $\delta_{\rm H}$  1.06 (3H, t, J=7.2 Hz) and  $\delta_{\rm C}$  14.0 q, 51.0 t, for an *N*-ethyl group,  $\delta_{\rm H}$  3.25, 3.28, 3.36 (each 3H, s) and  $\delta_{\rm C}$  55.8 q, 55.9 q, 58.1 q for three methoxyl groups,  $\delta_{\rm H}$ 11.16 (1H, s), 7.08-8.71 (1H, m), 5.34, 5.79 (each 1H, s), 1.35 (3H, d, J=7.0 Hz) and  $\delta_{\rm C}$  (see Table 1) for a substituted anthranoyl founctional group. Its <sup>13</sup>C-NMR spectrum also showed signals characteristic of the 2-methylbutyryl group (Table 1) which compare well with those of in jiufengdine  $(6)^{8)}$  and glaucedine  $(7)^{.9}$  Comparison of the <sup>13</sup>C-NMR data with those of 1 (Table 1) indicated that they differed only in the nature of the C-14 ester chain. This was also suggested by the difference of 14 mass units between the two compounds in their mass spectra. All available evidence strongly suggests the structure of giraldine H as depicted for 2. Meanwhile, the stereochemistry of C-2' in 2 could be deduced to be "S" based on comparisons of the <sup>13</sup>C-NMR data with

\* To whom correspondence should be addressed. e-mail: wfp@wcums.edu.cn

those of glaucedine (7), in which the absolute configuration of C-2' was firmly established by synthesis.<sup>9)</sup>

Giraldine I (3) was obtained as an amorphous powder. Its molecular formula C<sub>22</sub>H<sub>35</sub>NO<sub>3</sub> was inferred from its HR-ESI-MS and 2D-NMR. The NMR spectral data showed the presence of an *N*-ethyl [ $\delta_{\rm H}$  1.03 (3H, t, *J*=7.2 Hz);  $\delta_{\rm C}$  13.6 q, 49.4 t], a methoxyl ( $\delta_{\rm H}$  3.27, s;  $\delta_{\rm C}$  56.3 q), and a tertiary methyl [ $\delta_{\rm H}$  0.75 (3H, s);  $\delta_{\rm C}$  26.2 q] group. Along with the above-mentioned signals, the <sup>13</sup>C-NMR spectrum displayed three oxygenated carbon signals ( $\delta_{\rm C}$  74.7 d, 75.5 s, 86.5 d), suggesting the presence of two hydroxyl groups in addition to a methoxyl group. The spectral characteristics of 3 are indicative of an aconitine-type C<sub>19</sub>-diterpenoid alkaloid.<sup>3,4)</sup> A triplet signal at  $\delta_{\rm H}$  4.00 (J=4.8 Hz) was attributed to H- $14\beta$ <sup>3</sup>, implying the presence of a hydroxyl group at the C-14 position. The remaining hydroxyl group could be located at C-8 due to the <sup>1</sup>H-<sup>13</sup>C long-range correlations (HMBC) between C-8 ( $\delta_{\rm C}$  75.5 s) and H-14 ( $\delta_{\rm H}$  4.00), H-17 ( $\delta_{\rm H}$  3.42), and H-6 ( $\delta_{\rm H}$  1.40, 1.86). Similarly, the methoxyl group was assigned to C-1 mainly based on the presence of correlations



© 2004 Pharmaceutical Society of Japan

|--|

Table 1. <sup>13</sup>C-NMR Data of Compounds 1—7

| No.                 | 1       | 2       | 4                                          | 5                                      | 6       | 7                                                    |
|---------------------|---------|---------|--------------------------------------------|----------------------------------------|---------|------------------------------------------------------|
| 1                   | 83.7 d  | 83.8 d  | 83.9 d                                     | 84.2                                   | 83.9 d  | 84.3                                                 |
| 2                   | 25.9 t  | 26.0 t  | 26.1 t                                     | 26.2                                   | 26.0 t  | 26.2                                                 |
| 3                   | 32.1 t  | 32.2 t  | 32.2 t                                     | 32.4                                   | 32.2 t  | 32.4                                                 |
| 4                   | 37.5 s  | 37.7 s  | 37.6 s                                     | 38.0                                   | 37.7 s  | 37.1                                                 |
| 5                   | 50.0 d  | 50.2 d  | $50.5 d^{a}/43.3^{b}$                      | 49.5 <sup>a)</sup> /43.0 <sup>b)</sup> | 51.5 d  | 51.1 <sup><i>a</i></sup> /43.2 <sup><i>b</i></sup> ) |
| 6                   | 90.6 d  | 90.8 d  | 91.0 d                                     | 90.4                                   | 90.7 d  | 90.5                                                 |
| 7                   | 88.4 s  | 88.4 s  | 88.6 s                                     | 88.3                                   | 88.4 s  | 88.4                                                 |
| 8                   | 77.3 s  | 77.3 s  | 77.5 s                                     | 77.4                                   | 77.0 s  | 77.4                                                 |
| 9                   | 42.8 d  | 43.1 d  | $43.3^{a)}/50.5 d^{b)}$                    | 4.30 <sup>a)</sup> /49.5 <sup>b)</sup> | 43.1 d  | 43.2 <sup><i>a</i></sup> /51.1 <sup><i>b</i></sup> ) |
| 10                  | 45.8 d  | 45.7 d  | 46.1 d <sup>a)</sup> /38.2 d <sup>b)</sup> | 45.6                                   | 45.7 d  | 45.7 <sup>a</sup> /38.1 <sup>b</sup>                 |
| 11                  | 48.9 s  | 49.0 s  | 49.1 s                                     | 48.8                                   | 49.0s   | 49.6                                                 |
| 12                  | 28.0 t  | 28.2 t  | 28.7 t                                     | 28.1                                   | 28.2 t  | 28.3                                                 |
| 13                  | 37.7 d  | 37.6 d  | 38.2 d <sup>a)</sup> /46.1 d <sup>b)</sup> | 37.7                                   | 37.6 d  | 38.1 <sup>a)</sup> /45.7 <sup>b)</sup>               |
| 14                  | 75.5 d  | 75.4 d  | 83.9 d                                     | 75.6                                   | 75.3 d  | 75.6                                                 |
| 15                  | 33.6 t  | 33.7 t  | 33.7 t                                     | 33.7                                   | 33.7 t  | 33.8                                                 |
| 16                  | 82.1 d  | 82.2 d  | 82.6 d                                     | 82.2                                   | 82.2 d  | 82.3                                                 |
| 17                  | 64.3 d  | 64.4 d  | 64.5 d                                     | 64.7                                   | 64.4 d  | 64.8                                                 |
| 18                  | 69.6 t  | 69.7 t  | 69.8 t                                     | 78.4                                   | 68.5 t  | 78.1                                                 |
| 19                  | 52.2 t  | 52.3 t  | 52.4 t                                     | 52.6                                   | 52.4 t  | 52.8                                                 |
| 21                  | 50.9 t  | 51.0 t  | 50.9 t                                     | 51.1                                   | 51.0 t  | 48.9                                                 |
| 22                  | 14.0 g  | 14.0 g  | 14.0 g                                     | 14.1                                   | 14.0 g  | 14.2                                                 |
| 1-OCH <sub>3</sub>  | 55.9 q  | 55.9 q  | 55.7 q                                     | 55.7                                   | 55.7 q  | 55.8                                                 |
| 6-OCH <sub>3</sub>  | 58.0 g  | 58.1 g  | 57.8 g                                     | 57.2                                   | 58.0 g  | 57.4                                                 |
| 14-OCH <sub>3</sub> |         | 1       | 58.1 g                                     | _                                      | _ `     | _                                                    |
| 16-OCH <sub>3</sub> | 55.7 q  | 55.8 q  | 56.3 q                                     | 55.8                                   | 55.8 q  | 55.8                                                 |
| 18-OCH <sub>3</sub> | _       | _       | _                                          | 58.9                                   | _       | 59.0                                                 |
| 1'                  | 177.3 s | 176.9 s | _                                          | 177.2                                  | 176.8 s | 176.9                                                |
| 2'                  | 34.1 d  | 41.2 d  | _                                          | 34.2                                   | 41.2 d  | 41.3                                                 |
| 3'                  | 18.7 q  | 26.2 t  | _                                          | 18.8                                   | 26.2 t  | 26.2                                                 |
| 4'                  | 18.8 q  | 11.4 q  | _                                          | 18.8                                   | 11.5 q  | 11.6                                                 |
| 5'                  | _       | 16.1 q  | —                                          | _                                      | 16.1 q  | 16.2                                                 |
| 1″                  | 167.9 s | 167.9 s | 168.1 s                                    | _                                      | 167.7 s | _                                                    |
| 2″                  | 114.8 s | 114.9 s | 114.7 s                                    | _                                      | 110.3 s | —                                                    |
| 3″                  | 141.7 s | 141.7 s | 141.9 s                                    | _                                      | 150.7 s | —                                                    |
| 4″                  | 120.5 d | 120.7 d | 120.7 d                                    | _                                      | 116.7 d | _                                                    |
| 5″                  | 134.8 d | 134.9 d | 134.9 d                                    | _                                      | 134.3 d | —                                                    |
| 6″                  | 122.6 d | 122.7 d | 122.5 d                                    | —                                      | 116.3 d | _                                                    |
| 7″                  | 130.2 d | 130.3 d | 130.3 d                                    | _                                      | 130.6 d | —                                                    |
| 1‴                  | 174.6 s | 174.6 s | 174.1 s                                    | —                                      | —       | —                                                    |
| 2‴                  | 39.3 d  | 39.4 d  | 39.3 d                                     | —                                      |         | _                                                    |
| 3‴                  | 39.0 t  | 39.2 t  | 39.0 t                                     | —                                      | —       | —                                                    |
| 4‴                  | 173.3 s | 173.3 s | 172.4 s                                    | —                                      | —       | —                                                    |
| 5‴                  | 18.1 q  | 18.2 q  | 18.0 q                                     | —                                      | _       | —                                                    |

a) Revised data, b) Original data. <sup>13</sup>C chemical shift assignments for C-5, C-9, C-10, and C-13 of compounds 4, 5, and 7 were revised based on the comparison with those of juifengdine (6),<sup>8</sup> in which the <sup>13</sup>C-NMR signals were assigned unambiguously base on 2D-NMR spectra.

between 1-OCH<sub>3</sub> ( $\delta_{\rm H}$  3.27) and C-1 ( $\delta_{\rm C}$  86.5) in the HMBC of **3**. A tertiary methyl could be located on C-4 due to the observation of long-range <sup>1</sup>H–<sup>13</sup>C correlations between H<sub>3</sub>-18 ( $\delta_{\rm H}$  0.75) with C-4 ( $\delta_{\rm C}$  34.6 s) in the HMBC of **3**. In addition, the NMR spectra of **3** lacked a hydroxyl group at C-16 when compared with genicunine A (**8**).<sup>10) 13</sup>C-NMR spectra of the two alkaloids are very close, especially in rings A and B, except for C-8, C-12, C-13, C-15, and C-16. Finally, comparisons of <sup>13</sup>C-NMR (Table 2) and MS data between **3** and **8**,<sup>10)</sup> especially in its 2D-NMR, led to determine the structure of **3**.

### Experimental

**General Experimental Procedures** Optical rotations were recorded on a Perkin-Elmer 341 polarimeter. IR spectra were obtained on a Nicolet FT-IR 200 SXV spectrophotometer. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra were measured on a Varian Unity INOVA 400/45 NMR spectrometer in CDCl<sub>3</sub> with TMS as the internal standard. EI-MS and HR-EI-MS were measured from a VG Auto Spec 3000 or Finnegan MAT 90 instrument. Silica gel GH<sub>254</sub> and H (Qindao Sea Chemical Factory, China) were used for TLC, and Chroma-

totron and column chromatography, respectively. Spots on TLC were detected under UV light (254 nm) and with modified Dragendorff's reagent. A polyvinyl sulfonic ion exchange resin (H-form, cross linking  $1 \times 1$ , Chemical Factory of Nankai University, China) was used for the extraction of total alkaloids.

**Plant Material** The *Delphinium giraldii* was collected on Taibai Mountain, Shanxi province, China, and authenticated by Professor W. T. Wang of the Beijing Institute of Botany, Chinese Academy of Sciences, where a voucher specimen (No. 98091501) has been deposited.

**Extraction and Isolation** According to method reported in the literature, <sup>11</sup> powdered roots (12.5 kg) of *Delphinium giraldii* DIELS were percolated with 0.05 mol/l HCl (250 l). Wet resin (dry weight 1.8 kg) was added to the percolate, followed by repeated washing on a suction filter with deionized H<sub>2</sub>O. The air-dried resin was then alkalized with 10% aqueous NH<sub>4</sub>OH (total amount 5.6 l) and extracted sequentially in a specially designed extractor<sup>11</sup> with ether (9 l), chloroform (400 ml), and 95% ethanol (21) under reflux until no alkaloid could be detected with Dragendorff's reagent to give the crude alkaloids I (ether extract: 36 g), II (CHCl<sub>3</sub> extract: 3.5 g) and 95% ethanol extract, respectively. The 95% ethanol extract was dissolved in 15% aqueous HCl solution and filtered. Then the filtrate was basified to pH 10 with concentrated NH<sub>4</sub>OH and extracted with chloroform to produce crude alkaloid III (8.5 g).

Table 2. NMR Data of Compounds 3 and 8

| No | 3                                                  |                 | 8               | Na                 | 3                                                           |                 | 8               |
|----|----------------------------------------------------|-----------------|-----------------|--------------------|-------------------------------------------------------------|-----------------|-----------------|
|    | $\delta_{\mathrm{H}}(J=\mathrm{Hz})$               | $\delta_{ m c}$ | $\delta_{ m C}$ | INO                | $\delta_{\rm H} \left( J {=} { m Hz}  ight)$                | $\delta_{ m C}$ | $\delta_{ m C}$ |
| 1  | 3.08 dd<br>(10.4, 6.4)                             | 86.5 d          | 86.3            | 12                 | $2.08 \text{ m} (\alpha)$<br>$2.14 \text{ t} (5.2) (\beta)$ | 29.8 t          | 27.8            |
| 2  | $1.81 \text{ m} (\alpha)$ $2.22 \text{ m} (\beta)$ | 26.2 t          | 26.2            | 13                 | 2.04 m                                                      | 35.2 d          | 45.9            |
| 3  | 1.28 m<br>1.63 m                                   | 37.9 t          | 37.5            | 14                 | 4.00 t (4.8)                                                | 74.7 d          | 75.5            |
| 4  |                                                    | 34.6 s          | 34.2            | 15                 | 1.57 m                                                      | 26.2 t          | 42.2            |
| 5  | 1.42 d (6.8)                                       | 51.3 d          | 50.6            | 16                 | 1.32 m<br>2.12 d (5.6)                                      | 22.6 t          | 72.3            |
| 6  | 1.40 dd (14.4, 6.8)<br>1.86 dd (14.4, 7.6)         | 25.1 t          | 24.9            | 17                 | 3.42 s                                                      | 62.8 d          | 62.5            |
| 7  | 2.08 m                                             | 46.8 d          | 45.6            | 18                 | 0.75 s                                                      | 26.2 q          | 26.0            |
| 8  | _                                                  | 75.5 s          | 73.5            | 19                 | 2.07 hidden<br>2.45 d (11.2)                                | 56.9 t          | 56.7            |
| 9  | 2.14 m                                             | 46.4 d          | 46.3            | 21                 | 2.48 m                                                      | 49.4 t          | 49.3            |
| 10 | 1.60 m                                             | 45.7 d          | 46.0            | 22                 | 1.03 t (7.2)                                                | 13.6 q          | 13.5            |
| 11 | —                                                  | 49.4 s          | 48.7            | 1-OCH <sub>3</sub> | 3.27 s                                                      | 56.3 q          | 56.2            |

The crude alkaloid I (23 g) was chromatographed on a silica gel H column eluting with CHCl<sub>3</sub>-MeOH (99:1-3:1) to afford six parts, A (4.77 g), B (1.28 g), C (3.3 g), D (1.45 g), E (3.3 g), and F (5.1 g). Part A was subjected to silica gel H column chromatography eluting with cyclohexane-ethyl acetate-acetone-diethylamine (100:8:4:1-50:10:10:1) to provide three fractions, A-1 (33 mg), A-2 (550 mg), and A-3 (640 mg). Fraction A-3 was chromatographed on a silica gel H column eluting with petroleum ether-acetone-diethylamine (90:15:1) to furnish fractions A-3-1 (234 mg), A-3-2 (122 mg), A-3-3 (31 mg), and A-3-4 (23 mg). Further column chromatography of fraction A-3-2 eluting with chloroform-methanol-concentrated ammonia (300:2:3) followed by HPLC purification (RP-C18, 10  $\mu$ m,  $1.0 \times 20$  cm; mobile phase: CH<sub>3</sub>OH–H<sub>2</sub>O, 75:25; Waters 2410 refraction detector) provided giraldines G (1) (8 mg) and H (2) (7 mg). In addition, crude alkaloids II, III and part F of crude alkaloid I were combined and subjected to MPLC (CHCl<sub>3</sub>-CH<sub>3</sub>OH, 100:5-1:1) followed by column chromatography eluting with chloroform-acetone-diethylamine (80:20:1) to produce three fractions, A' (1.2 g), B' (500 mg), and C' (120 mg). Part A' was separated on a silica gel H column eluting with petroleum ether-acetone-diethylamine (50:50:1) to yield two fractions, A'-1 (240 mg) and A'-2 (700 mg). Fraction A'-1 was chromatographed on a Chromatotron (cyclohexane-ethyl acetate-acetone, 4:1:1) and a silica gel H column (cyclohexaneacetone-diethylamine, 60:40:1) to afford giraldine I (3) (26 mg).

Giraldine G (1): White amorphous powder, mp 108—110 °C;  $[\alpha]_D^{20} + 35.4^{\circ}$  (c=0.42, CHCl<sub>3</sub>). IR<sub>max</sub><sup>KBr</sup> cm<sup>-1</sup>: 3438, 3365, 1723, 1682, 1605, 1587, 1295, 1257; <sup>1</sup>H-NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.05 (3H, t, J=7.2 Hz, NCH<sub>2</sub>CH<sub>3</sub>), 1.16 (6H, d, J=7.0 Hz, COCH(CH<sub>3</sub>)<sub>2</sub>), 1.35 (3H, d, J=7.0 Hz, CHCH<sub>3</sub>), 3.25, 3.28, 3.36 (each 3H, s, 3×OCH<sub>3</sub>), 4.75 (1H, t, J=4.8 Hz, H-14 $\beta$ ), 5.36, 5.80 (each 1H, br s, NH<sub>2</sub>), 7.07—8.71 (4H, m, Ar-H), 11.16 (1H, s, NHCO); <sup>13</sup>C-NMR (50 MHz, CDCl<sub>3</sub>)  $\delta$ : see Table 1; EI-MS m/z (%): 755 (M<sup>+</sup>, 3), 724 (M-31, 43), 611 (30), 492 (33), 214 (24), 188 (73), 126 (24), 110 (67), 70 (66); HR-EI-MS m/z: 755.4012, Calcd for C<sub>40</sub>H<sub>57</sub>N<sub>3</sub>O<sub>11</sub>, 755.3993.

Giraldine H (2): White amorphous powder, mp 122–124 °C;  $[\alpha]_D^{20} + 34.6^{\circ}$  (*c*=0.35, CHCl<sub>3</sub>). IR<sub>mar</sub><sup>KBr</sup> cm<sup>-1</sup>: 3465, 3427, 1721, 1685, 1628, 1606, 1588, 1526, 1297, 1256; <sup>1</sup>H-NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$ : 0.89 (3H, t, *J*=7.2 Hz, COCH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub>), 1.06 (3H, t, *J*=7.2 Hz, <u>NCH<sub>2</sub>CH<sub>3</sub>), 1.14</u> (3H, d, *J*=6.8 Hz, COCH(<u>CH<sub>3</sub></u>)CH<sub>2</sub>CH<sub>3</sub>), 1.35 (3H, d, *J*=7.0 Hz, CH<u>CH<sub>3</sub></u>), 3.25, 3.28, 3.36 (each 3H, s, 3×OCH<sub>3</sub>), 4.78 (1H, t, *J*=4.6 Hz, H-14 $\beta$ ), 5.34, 5.79 (each 1H, br s,  $\underline{NH}_2$ ), 7.08—8.71 (4H, m, Ar-H), 11.16 (1H, s,  $\underline{NHCO}$ ); <sup>13</sup>C-NMR (50 MHz, CDCl<sub>3</sub>): see Table 1; EI-MS *m/z* (%): 769 (M<sup>+</sup>, 1), 738 (M-31, 1), 625 (100), 577 (5), 522 (6), 506 (27), 476 (13). 188 (28), 137 (17), 120 (41); HR-EI-MS *m/z*: 769.4132, Calcd for C<sub>41</sub>H<sub>59</sub>N<sub>3</sub>O<sub>11</sub>, 769.4149.

Giraldine F (3): White amorphous powder, mp 78—80 °C;  $[\alpha]_D^{20} - 15.6^{\circ}$  (c=1.0, CHCl<sub>3</sub>). IR<sup>KBr</sup><sub>max</sub> cm<sup>-1</sup>: 3466, 2924, 2875, 2815; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) and <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): see Table 2; FAB-MS *m/z* (%): 362 (M<sup>+</sup>+1, 100), 344 (3), 58 (9); HR-ESI-MS *m/z*: 362.2696 (M<sup>+</sup>+H), Calcd for C<sub>22</sub>H<sub>36</sub>NO<sub>3</sub> (M<sup>+</sup>+H), 362.2695.

Acknowledgement This work was supported by the Doctoral Foundation of the Ministry of Education, P. R. China (2002–2004).

### References

- Zhou X. L., Chen Q. H., Chen D. L., Wang F. P., Chin. J. Chem., 21, 871–874 (2003).
- Zhou X. L., Chen Q. H., Wang F. P., *Heterocycles*, 63, 123–128 (2004).
- Pelletier S. W., Mody N. V., Joshi B. S., Schramm L. C., "Alkaloids: Chemical and Perspectives," Vol. 2, ed. by Pelletier S. W., Wiley, New York, 1984, pp. 206—264.
- Pelletier S. W., Joshi B. S., "Alkaloids: Chemical and Perspectives," Vol. 7, ed. by Pelletier S. W., Wiley, New York, 1991, pp. 297—564.
- Pelletier S. W., Harraz F. M., Badawi M. M., *Heterocycles*, 24, 1853– 1865 (1986).
- Kulanthaivel P., Pelletier S. W., Olsen J. D., *Heterocycles*, 27, 339– 342 (1988).
- Coates P. A., Blagbrough I. S., Hardick D. J., Rowan M. G., Wonnacott S., Potter B. V. L., *Tetrahedron Lett.*, 35, 8701–8704 (1994).
- Shen X. L., Zhou X. L., Chen Q. H., Chen D. L., Wang F. P., Chem. Pharm. Bull., 50, 1265—1267 (2002).
- Pelletier S. W., Dailey O. D., Jr., Mody N. V., J. Org. Chem., 46, 3284–3293 (1981).
- Wang F. P., Li Z. B., Wang J. Z., Acta Chim. Sin., 58, 576–579 (2000).
- 11) Fang Q. C., Hou Z. M., Acta Pharm. Sinica, 13, 577-588 (1966).