New a**-Tetralonyl Glucosides from the Fruit of** *Juglans mandshurica*

Lijuan L $\mathrm{LU}^{a,b}_\circ$ Wei Lī,^a Kazuo K OKRE^a_\circ Shujie Z<code>HANG</code>, b and Tamotsu N<code>ikAIDO*</code>, a

^a Faculty of Pharmaceutical Science, Toho University; 2–2–1 Miyama, Funabashi, Chiba 274–8510, Japan: and ^b Department of Chinese Traditional Medicine, Heilongjiang Provincial Institute for Drug Control; 150001, Harbin, China. Received December 6, 2003; accepted February 9, 2004; published online February 13, 2004

Five new a**-tetralonyl glucosides, juglanosides A—E (1—5) were isolated from the fresh rejuvenated fruit of** *Juglans mandshurica***. Their structures were elucidated as (4***S***)-4-hydroxy-**a**-tetralone 4-***O***-**b**-D-glucopyranoside** (1), $(4S)$ -4,5-dihydroxy- α -tetralone 4 - O - β - ρ -glucopyranoside (2), $(4S)$ -4,6-dihydroxy- α -tetralone 4 - O - β - ρ -glu**copyranoside (3), (4***S***)-4,5,8-trihydroxy-**a**-tetralone 4-***O***-**b**-D-glucopyranoside (4), and (4***S***)-4,5,8-trihydroxy-**atetralone 5 - O - β - D -glucopyranoside (5) on the basis of spectroscopic analysis and chemical evidence.

Key words *Juglans mandshurica*; Juglandaceae; a-tetralonyl glucoside; juglanoside

Juglans mandshurica MAXIM. (Juglandaceae) is widely distributed throughout urban and rural areas in northeast of China. Its fresh rejuvenated fruit, commonly called "Qing Long Yi", has been used as a folk medicine for treatment of cancer and dermatosis and as an anodyne to relieve aches in China. Although phytochemical analyses were extensively carried out on not only the root^{1—5)} but also the stem bark⁶⁾ of *J. mandshurica*, little chemical work appears to have been done on the chemical composition of its fresh rejuvenated fruit. To our best knowledge, only two naphthalene glucosides, 4-hydroxynaphthalenyl β -D-glucopyranoside and 4,8dihydroxy-1-naphthalenyl β -D-glucopyranoside have been isolated from the fruit of *J. mandshurica*. 7) The medicinal uses of "Qing Long Yi" prompted us to investigate its chemical constituents, resulting in the isolation of five new α tetralonyl glucosides (**1**—**5**). This paper deals with the isolation and structural elucidation of the new compounds on the basis of spectroscopic analysis, including two-dimensional NMR spectroscopic data, and the results of hydrolysis.

Results and Discussion

The fresh rejuvenated fruit of *J. mandshurica*, which was collected in a mountain area of Heilongjiang Province, China, was decocted twice with water and extracted with hexane, EtOAc and *n*-BuOH, successively. The *n*-BuOH extract was chromatographed on a Diaion HP-20 column to give water and 40% methanol eluate fraction. The 40% methanol eluate fraction was chromatographed on an ODS column, and subjected to a combination of silica gel, Lobar $RP-C_{18}$ column chromatography, and HPLC. Then, five new compounds, named juglanosides A—E (**1**—**5**) were isolated, and their structures were characterized as follows.

Juglanoside A (**1**) was isolated as an amorphous powder. Its molecular formula was determined to be $C_{16}H_{20}O_7$ by high-resolution (HR)-FAB-MS. On acid hydrolysis, **1** afforded D-glucose as a component sugar, which was identified by GLC analysis of its trimethylsilyl thiazolidine derivative. The ¹ H-NMR spectrum of **1** showed a set of proton signals due to two methylenes at δ 3.04 (1H, ddd, *J*=17.8, 9.5, 4.8 Hz) and 2.60 (1H, ddd, $J=17.8$, 6.7, 4.8 Hz), and 2.44 (1H, dddd, *J*-13.3, 9.5, 4.8, 3.4 Hz) and 2.36 (1H, dddd, $J=13.3, 6.7, 6.2, 4.8$ Hz), and an oxymethylene at δ 5.10 $(1H, dd, J=6.2, 3.4 Hz)$. Moreover, the ¹³C-NMR spectrum, in combination with distortionless enhancement by polarization transfer (DEPT) and ¹H-detected multiple quantum co-

∗ To whom correspondence should be addressed. e-mail: nikaido@phar.toho-u.ac.jp © 2004 Pharmaceutical Society of Japan

herence (HMQC) experiments, showed signals for a carbonyl carbon at δ 200.3, two methylene carbons at δ 31.4 and 35.4, and a carbinylic carbon at δ 75.1. All above data indicated that 1 is an α -tetralone derivative.⁶⁾ In the ¹H-NMR spectrum, proton signals due to an *ortho*-disubstituted aromatic ring at d 7.71 (1H, dd, *J*-7.8, 1.4 Hz), 7.63 (1H, td, *J*-7.8, 1.4 Hz), 7.47 (1H, td, *J*-7.8, 1.4 Hz) and 7.97 (1H, dd, $J=7.8$, 1.4 Hz), suggested the 4-hydroxy- α -tetralone moiety in **1**. The carbinylic proton (δ 5.10) at C-4 could be deduced to be equatorial from its coupling constant value of 3.4 Hz with H_{ax} -3 (δ 2.44). The ¹H- and ¹³C-NMR spectra also showed the presence of a glucopyranose moiety. The β anomeric configuration for glucopyranose was determined from its large ${}^{3}J_{H1,H2}$ coupling constant value (7.8 Hz). The position of the sugar unit was indicated to be C-4 by heteronuclear multiple-bond correlations (HMBC) between the signals at δ_H 4.38 (Glc-H-1') and δ_C 75.1 (C-4), and δ_H 5.10 (H-4) and δ_c 103.2 (Glc-C-1'). To determine the absolute configuration of the chiral center at C-4, **1** was hydrolyzed with naringinase to give the aglycon **1a**, which was identified to be $(4S)$ -4-hydroxy- α -tetralone (1a) by comparing its MS, NMR and $\lceil \alpha \rceil_D$ data with those of the reference.⁸⁾ Based on the above evidence, the structure of juglanoside A (**1**) was established as $(4S)$ -4-hydroxy- α -tetralone 4-O- β -D-glucopyranoside.

Juglanoside B (**2**) was isolated as an amorphous powder. Its molecular formula was determined to be $C_{16}H_{20}O_8$ by HR-FAB-MS. On acid hydrolysis, **2** afforded D-glucose as a component sugar. Besides the signals due to a β -glucopyranose moiety, the ¹H- and ¹³C-NMR spectra also showed the

Table 1. ¹H-NMR Spectral Data for $1 - 5$ (500 MHz, CD₃OD)

		$\mathbf{2}$	3	$\overline{\mathbf{4}}$	5
$H_{\rm av}$ -2	3.04 , ddd $(17.8, 9.5, 4.8)$	3.12 , ddd $(17.4, 14.0, 5.1)$	2.96, ddd $(17.7, 9.7, 5.1)$	$3.20,$ ddd $(18.1, 13.8, 4.8)$	3.06 , ddd $(17.4, 13.1, 5.5)$
H_{eq} -2	2.60, ddd $(17.8, 6.7, 4.8)$	2.48, dt $(17.4, 3.2)$	2.50, ddd $(17.7, 6.4, 4.8)$	2.51 , dt $(18.1, 3.8)$	2.53, dt $(17.4, 3.4)$
$H_{\rm av}$ -3	2.44, dddd (13.3, 9.5, 4.8, 3.4)	2.19 , tt $(14.0, 3.2)$	2.38, dddd (13.5, 9.6, 4.8, 3.5)	2.16, tdd (13.8, 3.8, 3.2)	2.20 , tt $(13.9, 3.4)$
H_{eq} -3	2.36, dddd (13.3, 6.7, 6.2, 4.8)	2.56, ddt $(14.0, 5.1, 3.2)$	2.31, dddd (13.5, 6.4, 6.2, 5.1)	2.48, m	2.24, ddt (13.9, 5.5, 3.4)
H-4	5.10, d d (6.2, 3.4)	5.41, t(3.2)	$5.00, \mathrm{dd} (6.2, 3.5)$	5.41, t(3.2)	5.35, t(3.4)
$H-5$	$7.71, \mathrm{dd} (7.8, 1.4)$		7.02, $d(2.3)$		
$H-6$	7.63, td $(7.8, 1.4)$	7.10, d(d(7.9, 1.1))		7.09, $d(9.0)$	7.51, d(9.1)
$H-7$	7.47, td $(7.8, 1.4)$	7.28, t(7.9)	6.83 , dd $(8.4, 2.3)$	6.79, d(9.0)	6.86, d(9.1)
H-8	7.97, dd (7.8, 1.4)	7.48, dd $(7.9, 1.1)$	7.87, d(8.4)		
Glc					
$H-1'$	4.38, $d(7.8)$	4.60, d (7.8)	4.38, $d(7.8)$	4.53, $d(7.8)$	4.78, d(7.8)
$H-2'$	3.24 , dd $(8.5, 7.8)$	3.18 , dd $(8.7, 7.8)$	3.25, dd(8.7, 7.8)	3.16 , dd $(8.9, 7.8)$	3.52 , dd $(8.9, 7.8)$
$H-3'$	3.32^{a}	3.35^{a}	3.33, t(8.7)	3.30^{a}	3.47, t(8.9)
$H-4'$	3.31^{a}	3.36^{a}	3.31^{a}	3.31^{a}	3.40^{a}
$H-5'$	3.32^{a}	3.35^{a}	3.30^{a}	3.32^{a}	3.39, m
$H-6'$	3.71, d d (11.8, 5.3)	3.74 , dd $(12.2, 4.8)$	3.71, d d (11.8, 5.7)	3.72 , dd $(11.9, 4.8)$	3.72 , dd $(12.2, 4.8)$
	3.94 , dd $(11.8, 1.0)$	3.91 , dd $(12.2, 1.8)$	3.94, dd (11.8, 1.5)	3.90, dd (11.9, 1.8)	3.90, dd(12.2, 1.4)

a) Overlapped signals.

Chart 2

signals for two methylenes ($\delta_{\rm H}$ 3.12, 2.48 and $\delta_{\rm C}$ 34.1; $\delta_{\rm H}$ 2.19, 2.56 and $\delta_{\rm C}$ 30.1), an oxymethylene ($\delta_{\rm H}$ 5.41, $\delta_{\rm C}$ 69.9), and a carbonyl (δ_c 201.1), which were characteristic of those of 4-hydroxy- α -tetralone. The ¹H-NMR spectrum further showed the ABC-type aromatic proton signals at δ 7.10 (1H, dd, *J*-7.9, 1.1 Hz), 7.28 (1H, t, *J*-7.9 Hz) and 7.48 (1H, dd, *J*-7.9, 1.1 Hz), indicating the presence of a hydroxyl group on the aromatic ring. This was supported by the difference of 16 mass units between quasi-molecular ion peaks of **2** and **1** in the positive electrospray ionization (ESI)-MS spectrum. The position of the hydroxyl group on the aromatic ring was assigned to be C-5 by observation of the HMBC correlations between $\delta_{\rm H}$ 5.41 (H-4) and $\delta_{\rm C}$ 156.9 (C-5). The position of the sugar could be deduced to be C-4 by HMBC correlations between $\delta_{\rm H}$ 4.60 (Glc-H-1') and $\delta_{\rm C}$ 69.9 (C-4), and $\delta_{\rm H}$ 5.41 (H-4) and δ_c 69.9 (Glc-C-1'). Furthermore, 2 was enzymatic hydrolyzed to give 4,5-dihydroxy- α -tetralone (2a), which afforded its dibenzoate **2b** on the following benzoylation. The absolute configuration of **2** was determined as 4*S* from the circular dichroism (CD) spectrum of **2a**, where a negative Cotton effect at 234 nm was observed. Thus, the structure of juglanoside B (**2**) was determined to be (4*S*)-4,5-dihydroxy- α -tetralone 4-*O*- β -D-glucopyranoside.

Juglanoside C (**3**) was isolated as an amorphous powder. Its molecular formula was determined to be $C_{16}H_{20}O_8$ by HR-FAB-MS. Similarly to **1** and **2**, the ¹ H- and 13C-NMR spectra suggested **3** is also a 4-hydroxy- α -tetralone β -glucopyranoside. However, in the ¹ H-NMR spectrum of **3**, the ABX-type aromatic proton signals at δ 7.02 (1H, d, *J*-2.3 Hz), 6.83 (1H, dd, *J*-8.4, 2.3 Hz) and 7.87 (1H, d, *J*-8.4 Hz) indicated a different substituted position of the hydroxyl group on the aromatic ring, comparing with that of

Table 2. ¹³C-NMR Data for $1 - 5$ (125 MHz, CD₃OD)

Carbon	1	$\mathbf{2}$	3	4	5
1	200.3	201.1	199.4	207.1	206.5
2	35.4	34.1	35.1	34.1	33.6
3	31.4	30.1	31.6	29.8	30.3
4	75.1	69.9	75.0	69.3	61.4
5	130.3	156.9	116.0	148.5	148.9
6	134.9	122.1	164.3	126.9	128.5
7	129.9	130.6	117.1	119.5	119.0
8	128.0	119.0	131.0	157.2	159.1
9	133.0	134.5	125.3	116.9	116.2
10	143.9	129.7	146.5	127.5	134.8
Glc					
1'	103.2	104.0	103.0	103.4	104.6
2'	75.3	75.4	75.3	75.4	75.4
3'	78.2	78.1	78.2	78.2	78.0
4'	71.8	71.6	71.9	71.7	71.3
5'	78.1	78.1	78.0	78.1	78.4
6^{\prime}	63.0	62.8	63.0	62.8	62.6

2. The downfield shifted proton signal at δ 7.87 could be assigned to be H-8, which was also supported by the HMBC correlation between $\delta_{\rm H}$ 7.87 and $\delta_{\rm C}$ 199.4 (C-1). Furthermore, in the 13C-NMR spectrum of **3**, the C-6 signal was shifted downfield by 29.4 ppm, C-5 and C-7 signals were shifted upfield by 14.3 and 12.8 ppm than those of **1**. All these results confirmed the presence of a hydroxyl group at C-6. On acid hydrolysis, **3** afforded the D-glucose as a component sugar. The connectivity of the sugar was the same as that of **2** by the HMBC experiment. The absolute configuration of the chiral center at C-4 was determined to be *S* by CD spectral analysis of its aglycon, $(4S)$ -4,6-dihydroxy- α tetralone (**3a**), which was obtained from enzymatic hydrolysis. Thus, the structure of juglanoside C (**3**) was elucidated to be $(4S)$ -4,6-dihydroxy- α -tetralone 4 -*O*- β - β -glucopyranoside.

Juglanoside D (**4**) was isolated as an amorphous powder. The molecular formula was determined to be $C_{16}H_{20}O_9$ by HR-FAB-MS. Its 1 H- and 13 C-NMR spectra, coupled with the result from acid hydrolysis, suggested 4 is a 4-hydroxy- α tetralone $4-O$ - β - D -glucopyranoside. In the ¹H-NMR spectrum, comparing to those of **3**, the proton signals due to an aromatic ring was changed from ABX type to AB type at δ

Fig. 1. Key HMBC Correlations of **1**—**4**

7.09 (1H, d, *J*-9.0 Hz) and 6.79 (1H, d, *J*-9.0 Hz). Further analysis of the HMBC correlations as shown in Fig. 1 suggested the aglycon of 4 is $(4S)$ -4,5,8-trihydroxy- α -tetralone (**4a**), which was confirmed by enzymatic hydrolysis and comparison of the NMR and CD spectral data and the $[\alpha]_D$ value with those of the reference. 6 Thus, the structure of juglanoside D (**4**) was determined to be (4*S*)-4,5,8-trihy d roxy- α -tetralone 4-*O*- β -D-glucopyranoside.

Juglanoside E (**5**) was isolated as an amorphous powder. Its molecular formula, $C_{16}H_{20}O_9$, which is the same as that of **4**, was determined by HR-FAB-MS. Enzymatic hydrolysis of **5** gave the same aglycon **4a** as that of **4**, and acid hydrolysis gave D-glucose as a component sugar. Comparison of the ¹Hand 13C-NMR spectra of **5** with those of **4** suggested a different position of glycosylation between **5** and **4**. Namely, the chemical shift of H-6 of 5 at δ 7.51 was shifted downfield by 0.42 ppm, and C-4 at δ 61.4 was shifted upfield by 7.9 ppm than those of 4, respectively, suggesting the β -D-glucopyranose is located at C-5. Thus, the structure of juglanoside E (5) was determined to be $(4S)$ -4,5,8-trihydroxy- α -tetralone 5 - O - β - D -glucopyranoside.

Experimental

General Experimental Procedures The UV spectra were obtained with a Shimadzu UV-160 spectrophotometer, whereas the IR spectra were measured with a JASCO FT/IR-300E (by a KBr disk method) spectrometer. Optical rotations were measured with a JASCO DIP-370 digital polarimeter in a 0.5-dm cell, while the CD spectra were recorded on a JASCO J-720W spectropolarimeter. The ESIMSs were taken on an LCQ mass analyzer. The HR-FAB-MS was taken on a JEOL Mstation spectrometer. The ¹H- and ¹³C-NMR spectra were measured with a JEOL ECP-500 spectrometer with TMS as the internal reference, and chemical shifts are expressed in δ (ppm). For HPLC, a JASCO PU-2080 HPLC system, equipped with a Shodex RI-101 Differential Refractometer detector, was used. Reversed-phase column chromatography (CC) was accomplished with $RP-C_{18}$ silica gel (Chromatotex DM1020T ODS, Fuji silysia Chemical LTD.). Silica gel CC was carried out using Kieselgel 60 (E. Merck). TLC was conducted in Kieselgel 60 F_{254} plates (E. Merck). GLC was carried out on a PerkinElmer Clarus 500 GC-MS instrument.

Plant Material The fresh rejuvenated fruit of *J. mandshurica* MAXIM. was collected in August 2002 at a mountain area of Wuchang, Heilongjiang Province, China. A voucher specimen (QLY 2002008) is preserved at the department of Chinese Traditional Medicine, Heilongjiang Provincial Institute for Drug Control.

Extraction and Isolation The fresh rejuvenated fruit of *J. mandshurica* (5 kg) was decocted twice with water (101) for 6 h. The aqueous layer was

concentrated and the resulting precipitates were filtered off. The filtrate was extracted with the same volume of hexane, EtOAc and *n*-BuOH, successively. The *n*-BuOH extract (50 g) was loaded on a Diaion HP-20 column $(60\times11$ cm) and the column was eluted with H₂O, 40% MeOH, 80% MeOH and MeOH. The 40% MeOH fraction was evaporated to dryness (4 g) and loaded on a reverse-phase column (36×2.5 cm, ODS) with 40% MeOH, 60% MeOH, 80% MeOH and MeOH. The 40% MeOH fraction was evaporated to dryness (3 g) and passed through a Lobar RP-C18 column $(32\times2 \text{ cm}, 30\% \text{ MeOH})$ to give four fractions A—D. The fraction B (246 mg) from Lobar RP-C18 column was loaded on a silica gel column $(34\times2 \text{ cm})$ and the column was eluted with CHCl₃–MeOH (84:16). The major fraction 6 (348 mg) from the column was further purified on preparative HPLC $(20\times150 \text{ mm}$, Senshupak pegasil ODS) with 25% MeOH, affording 3 (5 mg) and 4 (2 mg). Fraction C (530 mg) from Lobar RP-C₁₈ column was loaded on a silica gel column $(30\times2 \text{ cm})$ and the column was eluted with $CHCl₃–MeOH (88:12)$. The major fraction 6 (348 mg) from the column was chromatographed on preparative HPLC with 25% MeOH and the subfractions 5, 7 and 8 were further purified on preparative HPLC with 15% MeCN, affording **5** (52 mg), **2** (54 mg) and **1** (13 mg).

Juglanoside A (1): Amorphous powder, $[\alpha]_D^{25}$ –77° (*c*=0.9, MeOH). UV (MeOH) λ_{max} (log ε): 247.2 (4.1), 284.8 (3.3). IR (KBr) v_{max} : 3415, 1729, 1589, 1386, 1074, 649. CD ($c = 2.99 \times 10^{-5}$, MeOH, 25 °C): $[\theta]_{246}$ -7912.2, $[\theta]_{290}$ –6023.3. ¹H-NMR (CD₃OD, 500 MHz): see Table 1. ¹³C-NMR (CD₂OD, 125 MHz): see Table 2. ESI-MS (positive) m/z 347.1 $[M+Na]^+$; HR-FAB-MS (positive) m/z 347.1101 $[M+Na]^+$ (Calcd for C₁₆H₂₀O₇Na 347.1107).

Juglanoside B (2): Amorphous powder, $[\alpha]_D^{25} - 13^\circ$ (*c*=0.5, MeOH). UV (MeOH) λ_{max} (log ε): 220.6 (4.3), 256.4 (3.9), 316.8 (3.5). IR (KBr) V_{max} . 3415, 1730, 1595, 1382, 1284, 1076, 661. CD ($c=2.35\times10^{-5}$, MeOH, 25 °C): $[\theta]_{232}$ –6017.3. ¹H-NMR (CD₃OD, 500 MHz): see Table 1. ¹³C-NMR (CD3OD, 125 MHz): see Table 2. ESI-MS (positive) *m*/*z* 363.1 $[M+Na]^+$ HR-FAB-MS (positive) m/z 363.1050 $[M+Na]^+$ (Calcd for $C_{16}H_{20}O_8$ Na 363.1056).

Juglanoside C (3): Amorphous powder, $[\alpha]_D^{25} - 36^\circ$ (*c*=0.4, MeOH). UV (MeOH) λ_{max} (log ε): 224.4 (4.1), 281.4 (4.0). IR (KBr) v_{max} : 3421, 1730, 1589, 1468, 1380, 1279, 1078, 650. CD ($c=3.44\times10^{-5}$, MeOH, 25 °C): $[\theta]_{295}$ -1107.0. ¹H-NMR (CD₃OD, 500 MHz): see Table 1. ¹³C-NMR (CD₃OD, 125 MHz): see Table 2. ESI-MS (positive) m/z 363.1 [M+Na]⁺; HR-FAB-MS (positive) m/z 363.1050 [M+Na]⁺ (Calcd for C₁₆H₂₀O₈Na 363.1056).

Juglanoside D (4): Amorphous powder, $[\alpha]_D^{25} -45^\circ$ (*c*=0.2, MeOH). UV (MeOH) λ_{max} (log ε): 231.8 (4.1), 261.8 (3.8), 368.2 (3.6). IR (KBr) v_{max} . 3423, 1728, 1589, 1467, 1381, 1038, 613. CD ($c=3.34\times10^{-5}$, MeOH, 25 °C): $[\theta]_{264}$ -7745.5. ¹H-NMR (CD₃OD, 500 MHz): see Table 1. ¹³C-NMR (CD3OD, 125 MHz): see Table 2. ESI-MS (positive) *m*/*z* 379.1 $[M+Na]^+$; HR-FAB-MS (positive) m/z 379.0997 $[M+Na]^+$ (Calcd for $C_{16}H_{20}O_9$ Na 379.1005).

Juglanoside E (5): Amorphous powder, $[\alpha]_D^{25}$ –65° (*c*=1.1, MeOH). UV (MeOH) λ_{max} (log ε): 224.8 (4.4), 259.2 (4.1), 349.6 (3.8). IR (KBr) v_{max} : 3413, 1728, 1597, 1468, 1385, 1264, 1074, 648. CD ($c = 1.85 \times 10^{-5}$, MeOH, 25 °C): $[\theta]_{260}$ -5492.2. ¹H-NMR (CD₃OD, 500 MHz): see Table 1. ¹³C-NMR (CD3OD, 125 MHz): see Table 2. ESI-MS (positive) *m*/*z* 379.1 $[M+Na]^+$; HR-FAB-MS (positive) m/z 379.1002 $[M+Na]^+$ (Calcd for $C_{16}H_{20}O_9$ Na 379.1005).

Acid Hydrolysis and Determination of the Absolute Configuration of Sugars in 1—5 Each solution of **1**—**5** (each 1 mg), in 1 ^M HCl (dioxane–H₂O, 1 : 1, 200 μ I) was heated at 100 °C for 1 h under an Ar atmosphere. After dioxane was removed, the solution was extracted with EtOAc $(1 \text{ ml} \times 3)$ to remove the aglycon. The aqueous layer was neutralized by passing through an ion-exchange resin (Amberlite MB-3, Organo, Tokyo, Japan) column, concentrated under reduced pressure to dryness, to give a residue of the sugar fraction. The residue was dissolved in pyridine (1 ml), to which 0.1 M L-cysteine methyl ester hydrochloride in pyridine (2 ml) was added. The mixture was kept at 60° C for 1.5 h. After the reaction mixture was dried *in vacuo*, the residue was trimethylsilylated with 1-trimethylsilylimidazole (0.2 ml) for 2 h. The mixture was partitioned between hexane and H₂O (0.3 ml each) and the hexane extract was analyzed by gas-liquid chromatography (GLC) under following conditions: capillary column, $EQUITY^{TM}-1$ $(30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \mu \text{m}$, Supelco), column temperature, 230 °C; injection temperature, 250 °C; carrier N_2 gas. In the acid hydrolysate of 1–5, D-glucose was confirmed by comparison of the retention times of their derivatives with those of p-glucose and L-glucose derivatives prepared in a similar way, which showed retention times of 11.79 and 11.33 min, respectively.

Enzymatic Hydrolysis of $1-5$ A solution of $1-5$ ($2-5$ mg) in 0.1 M

acetate buffer (pH 4.0, 1.0 ml) was treated with naringinase (Sigma Chemical Co., 3 mg) and then the reaction mixture was stirred at 40° C for 12 h. The reaction mixture was passed through a Sep-Pak C_{18} cartridge using H_2O and MeOH. The MeOH elute was further purified by preparative TLC [CHCl₃–MeOH (88 : 12)] to give the aglycones **1a—4a** in 50—60% yields.

(4*S*)-4-Hydroxy- α -tetralone (1a): Yellow amorphous powder, $[\alpha]_D^2$ $+21^\circ$ $(c=0.3, \text{CHCl}_3)$. CD $(c=1.70\times10^{-4}, \text{MeOH}, 25 \degree \text{C})$: $[\theta]_{290}$ -2291.7, $[\theta]_{244}$ $-2686.9.$ ¹H-NMR (CDCl₃, 500 MHz) δ : 2.13 (1H, m, H-3), 2.35 (1H, m, H-3), 2.55 (1H, ddd, *J*-17.8, 9.6, 4.8 Hz, H-2), 2.88 (1H, ddd, *J*-17.8, 7.5, 4.6 Hz, H-2), 4.93 (1H, dd, *J*-8.1, 3.9 Hz, H-4), 7.35 (1H, m, H-7), 7.54 (2H, m, H-5 and H-6), 7.97 (1H, brd, J=7.8 Hz, H-8). ESI-MS (positive) m/z 185.1 $[M+Na]$ ⁺.

(4*S*)-4,5-Dihydroxy- α -tetralone (2a): Yellow amorphous powder, $[\alpha]_D^{25}$ $+35^{\circ}$ (*c*=0.2, CHCl₃). CD (*c*=1.32×10⁻⁴, MeOH, 25 °C): [θ]₂₃₄ -1440.6.
¹H NMP (CDCL 500 MHz) δ : 2.21 (1H m H 3) 2.52 (1H m H 3) 2.58 ¹H-NMR (CDCl₃, 500 MHz) δ : 2.21 (1H, m, H-3), 2.52 (1H, m, H-3), 2.58 (1H, ddd, *J*-17.5, 13.6, 4.6 Hz, H-2), 2.83 (1H, dt, *J*-17.5, 4.6 Hz, H-2), 5.35 (1H, dd, *J*-10.0, 4.8 Hz, H-4), 7.11 (1H, br d, *J*-7.9 Hz, H-6), 7.31 (1H, t, *J*-7.9 Hz, H-7), 7.60 (1H, br d, *J*-7.9 Hz, H-8). ESI-MS (positive) m/z 201.1 [M+Na]⁺.

(4*S*)-4,6-Dihydroxy- α -tetralone (3a): Yellow amorphous powder, $[\alpha]_D^{25}$ +19° (*c*=0.1, CHCl₃). CD (*c*=6.01×10⁻⁵, MeOH, 25 °C): [θ]₂₉₄ -6143.3.
¹H NMP (CDCL 500 MHz) δ : 2.06 (1H m H 3) 2.30 (1H m H 3) 2.40 ¹H-NMR (CDCl₃, 500 MHz) δ : 2.06 (1H, m, H-3), 2.30 (1H, m, H-3), 2.49 (1H, ddd, *J*-17.3, 10.5, 4.8 Hz, H-2), 2.78 (1H, ddd, *J*-17.3, 6.4, 4.4 Hz, H-2), 4.82 (1H, dd, *J*-8.7, 4.1 Hz, H-4), 6.93 (1H, d, *J*-2.6 Hz, H-5), 6.76 (1H, dd, *J*-8.5, 2.6 Hz, H-7), 7.88 (1H, d, *J*-8.5 Hz, H-8). 13C-NMR (CDCl3, 125 MHz) d: 31.4 (C-3), 34.2 (C-2), 67.1 (C-4), 111.6 (C-5), 114.7 (C-7), 123.4 (C-9), 129.1 (C-8), 147.3 (C-10), 160.6 (C-6), 195.1 (C-1). ESI-MS (positive) m/z 201.1 [M+Na]⁺.

(4*S*)-4,5,8-Trihydroxy- α -tetralone (4**a**): Yellow amorphous powder, $[\alpha]_D^{25}$ +12° (*c*=0.3, EtOH). CD (*c*=7.68×10⁻⁵, MeOH, 25 °C): [θ]₂₆₆ -2418.8.
¹H NMP (CDCL, 500 MHz) δ ; 2.24 (2H m H 3) 2.58 (1H dt *I*-17.0) H-NMR (CDCl₃, 500 MHz) δ : 2.24 (2H, m, H₂-3), 2.58 (1H, dt, *J*=17.0, 5.0 Hz, H-2), 3.01 (1H, ddd, *J*-17.0, 9.1, 6.0 Hz, H-2), 5.27 (1H, t, *J*-4.4 Hz, H-6), 6.77 (1H, d, *J*-9.0 Hz, H-7), 7.07 (1H, d, *J*-9.0 Hz, H-6). ESI-MS (positive) m/z 217.1 [M+Na]⁺.

Benzoylation of 1a—4a Benzoyl chloride $(100 \,\mu$ l) was added to a solution of $1a$ —4a (1 mg) in pyridine (100 μ l) and the reaction mixture was kept overnight at room temperature. The mixture was evaporated to give a residue, which was purified by preparative TLC on silica gel with hexane–acetone $(3:1)$ to give **2b** (0.63 mg) and **3b** (0.71 mg) , **1b** and **4b** fraction was then further purified by HPLC, eluated with 50% MeCN and 80% MeOH, respectively, to give **1b** (0.49 mg) and **4b** (0.63 mg).

(4*S*)-4-Benzoyloxy- α -tetralone (1**b**): Amorphous powder, $[\alpha]_D^{25}$ -38° $(c=0.05, \text{ CHCl}_3)$. CD $(c=1.84\times10^{-5}, \text{ MeOH}, 25^{\circ}\text{C})$: $[\theta]_{290}$ -8872.81, $[\theta]_{244}$ -30435.3. ¹H-NMR (CDCl₃, 500 MHz) δ : 2.47 (1H, m, H-3), 2.54

(4*S*)-4,5-Dibenzoyloxy- α -tetralone (2**b**): Amorphous powder, $[\alpha]_D^{25}$ +50° $(c=0.06, \text{ CHCl}_3)$. CD $(c=1.65\times10^{-5}, \text{ MeOH}, 25^{\circ}\text{C})$: $[\theta]_{282}$ -6208.85, $[\theta]_{240}$ 46515. ¹H-NMR (CDCl₃, 500 MHz) δ : 2.47 (1H, m, H-3), 2.55 (1H, m, H-3), 2.71 (1H, dt, *J*-17.4, 4.0 Hz, H-2), 3.00 (1H, ddd, *J*-17.4, 13.3, 4.9 Hz, H-2), 6.60 (1H, t, *J*-3.3 Hz, H-4), 7.34—7.40 (4H, m), 7.50—7.58 (3H, m), 7.61 (1H, t, *J*-7.9 Hz, H-7), 7.84 (2H, dd, *J*-8.4, 1.2 Hz), 7.98 (2H, dd, *J*-8.4, 1.2 Hz), 8.08 (1H, dd, *J*-7.9, 1.4 Hz, H-8).

(4*S*)-4,6-Dibenzoyloxy- α -tetralone (3**b**): Amorphous powder, $[\alpha]_D^{25}$ +58° $(c=0.07, \text{ CHCl}_3)$. CD $(c=1.86\times10^{-5}, \text{ MeOH}, 25^{\circ}\text{C})$: $[\theta]_{290}$ -6990.67, $[\theta]_{238}$ 22194.1. ¹H-NMR (CDCl₃, 500 MHz) δ : 2.46 (1H, m, H-3), 2.58 (1H, m, H-3), 2.79 (1H, ddd, *J*-17.6, 7.9, 4.8 Hz, H-2), 3.04 (1H, ddd, *J*-17.4, 9.0, 4.8 Hz, H-2), 6.40 (1H, dd, *J*-7.0, 3.8 Hz, H-4), 7.36 (1H, dd, *J*-8.6, 2.4 Hz, H-7), 7.43 (1H, d, *J*-2.4 Hz, H-5), 7.45 (2H, tt, *J*-7.7, 1.6 Hz), 7.51 (2H, tt, *J*-7.7, 1.6 Hz), 7.58 (1H, tt, *J*-7.7, 1.6 Hz), 7.65 (1H, tt, *J*-7.7, 1.6 Hz), 8.07 (2H, dd, *J*-7.7, 1.6 Hz), 8.19 (2H, dd, *J*-7.7, 1.6 Hz).

(4*S*)-4,5,8-Tribenzoyloxy- α -tetralone (4**b**): Amorphous powder, $[\alpha]_D^{25}$ -25° (*c*=0.1, CHCl₃). CD (*c*=1.25×10⁻⁵, MeOH, 25 °C): [θ]₂₈₃ -14801.0, $[\theta]_{254}$ -10175.6. ¹H-NMR (CDCl₃, 500 MHz) δ : 2.49 (2H, m, H₂-3), 2.61 (1H, dt, *J*-17.0, 3.3 Hz, H-2), 2.98 (1H, ddd, *J*-17.0, 13.4, 5.7 Hz, H-2), 6.61 (1H, t, *J*-3.3 Hz, H-4), 7.34—7.41 (5H, m), 7.51—7.61 (5H, m), 7.66 (1H, tt, *J*-7.5, 1.3 Hz), 7.85 (2H, dd, *J*-8.2, 1.3 Hz), 7.99 (2H, dd, *J*-8.2, 1.3 Hz), 8.25 (2H, dd, *J*-8.2, 1.1 Hz).

Acknowledgements This study was supported in part by the Japan– China Sasakawa Medical Fellowship.

References

- 1) Lee K. S., Li G., Kim S. H., Lee C. S., Woo M. H., Lee S. H., Jhang Y. D., Son J. K., *J. Nat. Prod.*, **65**, 1707—1708 (2002).
- 2) Li G., Xu M. L., Choi H. G., Lee S. H., Jahng Y. D., Lee C. S., Moon D. C., Woo M. H., Son J. K., *Chem. Pharm. Bull.*, **51**, 262—264 (2003).
- 3) Kim S. H., Lee K. S., Son J. K., Je G. H., Lee J. S., Lee C. H., Cheong C. J., *J. Nat. Prod.*, **61**, 643—645 (1998).
- 4) Lee S. W., Lee K. S., Son J. K., *Planta Med.*, **66**, 184—186 (2000).
- 5) Joe Y. K., Son J. K., Park S. H., Lee I. J., Moon D. C., *J. Nat. Prod.*, **59**, 159—160 (1996).
- 6) Min B. S., Nakamura N., Miyashiro H., Kim Y. H., Hattori M., *Chem. Pharm. Bull.*, **48**, 194—200 (2000).
- 7) Muller W. U., Leistner E., *Phytochemistry*, **17**, 1739—1742 (1978).
- 8) Joly S., Nair M. S., *Tetrahedron: Asymmetry*, **12**, 2283—2287 (2001).