
Both classification problems and quantitative structure–ac-
tivitity relationship (QSAR) analyses of drugs have been bet-
ter studied by the multi-layer feedforward neural networks
with back-propagation learning algorithm (BPNN), than the
classical methods in pattern recognition such as linear multi-
ple regression (LMR) or adaptive least square method (ALS),
since those problems often involve nonlinear relationships
between descriptors and the class (/activity).1,2) BPNN is
surely powerful and interesting approach, however, it has 
the defects such as the problem of local minimum, overfitting
etc.3,4) Recently Bayesian regularized neural networks
(BRNN),5,6) has been successfully applied for QSAR stud-
ies7,8) even for massive sample data,9) but this excellent
framework is rather complicated and needs much computa-
tion time in general.

Kohonen developed the unsupervised learning algorithm
that simplified the mapping mechanism of the relatively ho-
mogeneous structures found in mammalian brains associated
with the processing of sensory data,10) and showed it possible
to generate self-organizing map (SOM) of data. It is an es-
sential characteristic of Kohonen’s SOM that has the ability
to project high-dimensional data onto two-dimensional visu-
alized map which is suitable for easy analysis while preserv-
ing the most significant information. Therefore, SOM is ap-
plied to extensive problems that characteristics of compli-
cated data structure in high-dimensional space can be
grasped visually from two-dimensional maps, and plays an
important role to analyze inherent data structure.

The advantage of the SOM, compared with some other
projection methods is that the algorithm is very simple,
straightforward to implement, and fast to compute. In the
field of pharmaceutical sciences, the SOM was applied for
searching useful drugs. Anzali at al. generated SOMs as a
two-dimensional representation of molecules to analyze the
shape and surface properties of those three-dimensional mol-
ecules responsible for biological activity. After visual com-
parison of SOMs, they discovered the benzothiadiazole
group as a surrogate for methylendioxyphenyl.11,12) Tetko et
al. used SOMs to compress the so many input CoMFA data

in their three-dimensional QSAR studies.13) In the former
study, we obtained the SOM of norbornann derivatives and of
carbonyl compounds, and showed that the classification of
them into some groups was successfully achieved according
to the clustering appeared in the gray map.14)

In this paper we use the SOM as a method to predict miss-
ing activity in the QSAR studies of carboquinone and benzo-
diazepine, somewhat different usage of SOM rather than the
standard compression or visualization tool of data. Results of
the calculation indicate that SOM is considered to be one of
useful methods in QSAR study.

The Generation of SOM and the Prediction of an Activity Kohonen’s
neural network consists of two layers, the first layer is the input layer of n-di-
mension and the second is the competitive layer where every neuron has n-
components corresponding to input layer and is arrayed to two dimensions
to grasp output visually. The process that generates SOM consists of two
steps, that is, the determination of winner neuron according to the competi-
tive learning and self-organization of neurons.

Competitive Learning It is assumed that the neuron i on the competi-
tive layer has the synaptic weight wi(t)�(wi1, wi2 ,…, win) in time t. When
input signal x(t) entered from the outside, the neuron which has the mini-
mum Euclidian distance [x(t)�wc(t)] is called “winner neuron c”. Synaptic
weight wc(t) of the winner neuron seems to get closer to an input signal in
the next time t�1, and, therefore, is updated by the next formula

wc(t�1)�wc(t)�a(t)[x(t)�wc(t)] . (0�a(t)�1) (1)

Here a(t) is the learning coefficient which decreases monotonically during
learning.

Self-Organization In addition to the winner neuron c, the neuron k lo-
cated around it on the competitive layer is required to cooperate with one an-
other, and then updates synaptic weight wk in the following formula

wk(t�1)�wk(t)�a(t)g(d)[x(t)�wk(t)] (0�a(t)�1, 0�g(d)�1) (2)

Here g(d) is called the neighborhood function, and its value decreases mo-
notonically with increasing spatial distance between the neuron k and c, and
also decreases monotonically with time t, and becomes narrower.

During these two processes neurons on the competitive layer are self-or-
ganized and the two-dimensional SOM is generated. In this work we used
the SOM_PAK package developed by Kohonen’s group which is available
from their web site15) for non-commercial use.

QSAR Analysis by Missing Value SOM When QSAR studies are per-
formed by applying feed-forward neural networks such as BPNN or BRNN
which obeys the supervised learning, it is natural that n structural descriptors
are assigned to whole neurons in the input layer and biological activity is as-
signed to a neuron in the output layer. On the contrary, SOM obeys unsuper-
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vised learning and does not involve the use of target data, i.e., there is no
such a neuron in the output layer. Instead of a target data in the supervised
learning, we treat the observed activity as one of attributes as well as the
structural descriptors. It should be noted that an appreciable fraction of data
may be missing without making the similarity comparison impossible in
SOM if the number of attributes taken into account is appreciable. Consider-
ing both this fact and the leave-one-out (LOO) cross-validation procedure,
first we generate the SOM using N-1 data (N is the total number of com-
pounds). Next, we investigate to which neuron in the SOM this first elimi-
nated data is assigned. To predict a biological activity in QSAR studies
using SOM, we extend the input space to include a biological activity in ad-
dition to n structural descriptors, having n�1 dimensions. Procedures to ob-
tain the predicted activity is summalized as follows;

(1) remove only data of the compound which wants to pursue predicted
activity from data of whole compounds (LOO), and generates the SOM by
unsupervised learning of these data.

(2) assume the (n�1)-th dimension of the removed data as the missing
value, and give the data to the SOM already generated in step (1), then find a

winner neuron.
(3) Finally regard the (n�1)-th component of the winner neuron as the

predicted activity.
In this work a usual gaussian type formula is adopted for the neighbor-

hood function. In practical applications of SOM, data pre-processing is well
known to be important. Therefore, each attribute (descriptors and activity)
scale is normalized as such that its variance taken over all the compounds is
unity.

Results and Discussion
Carboquinone Derivatives Carboquinone derivatives

are a group of compounds having the configuration shown in
Chart 1. They were synthesized by Nakao et al.,16) and were
developed to an anticancer drug for the clinical treatment.

As six structural descriptors of data which are given on the
input layer, there are the molar refractivity (MR), hydropho-
bicity (p), substituent constant (F and R), as well as, MR1,2

and p1,2 to estimate the steric effects of R1 and R2 and the
total hydrophobicity. Using the molar concentration C which
is the minimum effective dose (MED) per 1 kg of mouse, the
biological activity data log(1/C) is represented by the column
labeled “A” in Table 1. Here MED is the dose giving a 40%
prolongation of life compared to the controls. Such refered
data in Table 1 is also obtained with the method that adminis-
ters a dosage in chronic injection by small quantity.17)
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Table 1. Physico-Chemical Parameters (MR1,2—R), Observed Biological Activities (A) and Normalized Observed Biological Activities (NA) for 37 Car-
boquinone Derivatives

No R1 R2 MR1,2 p1,2 p2 MR1 F R A NA

1 C6H5 C6H5 5.08 3.92 1.96 2.54 0.16 �0.16 4.33 0
2 CH3 (CH2)3C6H5 4.5 3.66 3.16 0.57 �0.08 �0.26 4.47 0.054
3 C5H11 C5H11 4.86 5 2.5 2.43 �0.08 �0.26 4.63 0.117
4 CH(CH3)2 CH(CH3)2 3 2.6 1.3 1.5 �0.08 �0.26 4.77 0.171
5 CH3 CH2C6H5 3.57 2.51 2.01 0.57 �0.12 �0.14 4.85 0.202
6 C3H7 C3H7 3 3 1.5 1.5 �0.08 �0.26 4.92 0.230
7 CH3 CH2OC6H5 3.79 2.16 1.66 0.57 �0.04 �0.13 5.15 0.319
8 R1�R2�CH2CH2OCON(CH3)2 6.14 0.72 0.36 3.07 �0.08 �0.26 5.16 0.323
9 C2H5 C2H5 2.06 2 1 1.03 �0.08 �0.26 5.46 0.440

10 CH3 CH2CH2OCH3 2.28 1.03 0.53 0.57 �0.08 �0.26 5.57 0.482
11 OCH3 OCH3 1.58 �0.04 �0.02 0.79 0.52 �1.02 5.59 0.490
12 CH3 CH(CH3)2 2.07 1.8 1.3 0.57 �0.08 �0.26 5.6 0.494
13 C3H7 CH(OCH3)CH2OCONH2 4.24 0.98 �0.52 1.5 �0.04 �0.13 5.63 0.506
14 CH3 CH3 1.14 1 0.5 0.57 �0.08 �0.26 5.66 0.518
15 H CH(CH3)2 1.6 1.3 1.3 0.1 �0.04 �0.13 5.68 0.525
16 CH3 CH(OCH3)C2H5 2.75 1.53 1.03 0.57 �0.04 �0.13 5.68 0.525
17 C3H7 CH2CH2OCONH2 3.56 1.45 �0.05 1.5 �0.08 �0.26 5.68 0.525
18 R1�R2�CH2CH2OCH3 3.42 1.03 0.53 1.71 �0.08 �0.26 5.69 0.529
19 C2H5 CH(OC2H5)CH2OCONH2 4.23 0.98 �0.02 1.03 �0.04 �0.13 5.76 0.556
20 CH3 CH2CH2OCOCH3 2.78 1.23 0.73 0.57 �0.08 �0.26 5.78 0.564
21 CH3 (CH2)3-dimer 1.96 2 1.5 0.57 �0.08 �0.26 5.82 0.580
22 CH3 C2H5 1.6 1.5 1 0.57 �0.08 �0.26 5.86 0.595
23 CH3 CH(OCH2CH2OCH3)

� 4.45 0.01 �0.49 0.57 �0.04 �0.13 6.03 0.661
24 CH3 CH2CH(CH3)OCONH2 3.09 0.75 0.25 0.57 �0.08 �0.26 6.14 0.704
25 C2H5 CH(OCH3)CH2OCONH2 3.77 0.48 �0.52 1.03 �0.04 �0.13 6.16 0.712
26 CH3 CH(C2H5)CH2OCONH2 3.55 1.25 0.75 0.57 �0.08 �0.26 6.18 0.720
27 CH3 CH(OC2H5)CH2OCONH2 3.77 0.48 �0.02 0.57 �0.04 �0.13 6.18 0.720
28 CH3 (CH2)3OCONH2 3.09 0.95 0.45 0.57 �0.08 �0.26 6.18 0.720
29 CH3 (CH2)2OCONH2 2.63 0.45 �0.05 0.57 �0.08 �0.26 6.21 0.732
30 C2H5 (CH2)2OCONH2 3.09 0.95 �0.05 1.03 �0.08 �0.26 6.25 0.747
31 CH3 CH2CH2OH 1.78 0.34 �0.16 0.57 �0.08 �0.26 6.39 0.802
32 CH3 CH(CH3)CH2OCONH2 3.09 0.75 0.25 0.57 �0.08 �0.26 6.41 0.809
33 CH3 CH(OCH3)CH2OCONH2 3.31 �0.02 �0.52 0.57 �0.04 �0.13 6.41 0.809
34 H N(CH2)2 1.66 0.18 0.18 0.1 0.1 �0.92 6.45 0.825
35 R1�R2�CH2CH2OH 2.42 �0.32 �0.16 1.21 �0.08 �0.26 6.54 0.860
36 CH3 N(CH2)2 2.13 0.68 0.18 0.57 0.06 �1.05 6.77 0.949
37 CH3 CH(OCH3)CH2OH 2.47 �0.13 �0.63 0.57 �0.04 �0.13 6.90 1

Chart 1



QSAR studies for carboquinone derivatives are performed
based on a missing value SOM method, and seven neurons
on the input layer, 20�12 neurons in the competitive layer
are placed, respectively. We set the total number of neurons
in the competitive layer to size of several times larger than
the number of data set in order to avoid overlapping assign-
ment of many derivatives to a neuron. It was checked that the
calculated results remain almost unchanged when the num-
ber of neurons in the competitive layer are changed to some
extent. Initial conditions are set as the learning coefficient
a�0.15, the radius of neighborhood function r�20, and
50000 times of learning cycles are processed.

Results of the calculation indicate that it can predict bio-
logical activity with an average of 4.2% errors, and the cross-
validation correlation coefficient between them is 0.87. We
also checked the fitting ability of the present SOM method
by calculating the predicted activity for every carboquinone
derivative after neural network training for whole data set,
and obtained the high correlation coefficient value 0.96.

Practical execution of the procedure (1) and (2), based on
the missing data SOM presented in the preceding section,
generated SOMs shown in Figs. 1 and 2, respectively, as an
example, for the case to predict the No. 6 carboquinone de-
rivative in the Table 1. Figure 1 shows the gray map of SOM
for 36 carboquinone derivatives with leave-No. 6-out of all
37 ones. Each winner neuron is labeled by the normalized bi-
ological activity as the term “NA” in Table 1. Next, the pro-
cedure (2) generates the SOM for the No. 6 carboquinone de-

rivative which has a missing activity term is shown in Fig. 2,
where a winner neuron is settled. Finally, we obtain the pre-
dicted activity for the No. 6 derivative from the seventh com-
ponent of the codebook vector of the allocated neuron la-
beled by normalized value 0.230. A black circles pictured as
scatter diagram in Fig. 3 are the predicted activity values,
where measured value agrees with predicted one along the
straight line from (4, 4) to (7.5, 7.5). The cross-validation
correlation coefficient between the predicted activity and the
observed one provided by this calculation is the value 0.874,
and is nearly equal to the calculated results using BPNN2) or
Bayesian regularized neural networks.7) Such calculated re-
sults suggest that Kohonen’s self-organizing neural network
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Fig. 1. Self-Organizing Map of Kohonen for 36 Carboquinones with Leave-No. 6-Out of all 37 Carboquinones

Normalized observed biological activities are labeled for every winner neuron.

Fig. 2. Self-Organizing Map of Kohonen for the No. 6 Carboquinone Whose Activity Is Missing, and the Winner Neuron Is Settled

Predicted biological activity for the No. 6 is obtained from the value of the 7-th dimensional component of its codebook vector.

Fig. 3. Scatter Plot of Predicted Activities from Leave-One-Out Cross-
Validation versus Observed Ones for Carboquinones



can be applicable to handle QSAR problem with generaliza-
tion ability. If the No. 11 derivative with massive error of
17.73% is excluded in Fig. 3, the correlation coefficient
would improve to give the value 0.916. The No. 11 derivative
has a maximal error even in the calculation by the BPNN and
by the Bayesian regularized neural networks, and the predic-
tion error is almost the same with our SOM calculation. Such
large discrepancy seems to be mainly come from the out-
standing large F-value of No. 11 derivative. Figure 4 shows a
Sammon map of the SOM whose gray map was already
given in Fig. 1, and indicates that carboquinone derivatives
which have high similarity ratio locate in the neighboring
distance, much clearer than in gray map. It is seen that the
No. 11 data of normalized observed biological activity value
0.49 is isolated on the Sammon map in Fig. 4.

Benzodiazepine Derivatives The 57 1,4-benzodiazepin-
2-ones used in the study of Maddalena and Johnston18) are
examined in the present work. Such benzodiazepine deriva-
tives are a group of compounds having the configuration
shown in Chart 2.

Benzodiazepine has been broadly used as antianxiety
agent. It is known that the action of benzodiazepine depends
on augmentation of GABA operation in a brain-related com-
munication, that is, GABA and binding affinity between the
receptors rise when benzodiazepine connects it to the recep-
tor. Benzodiazepine is the compound whose QSAR analysis
has been broadly performed by various methods, and some
QSAR studies by BPNN has been done.18,19) The set of 57
benzodiazepine derivatives used in this study arranged vari-
ous functional groups at the position of six substituents R1,
R2�, R3, R6�, R7, R8. As the physicochemical parameter char-
acterizing each substituent, seven substituent constants:
molar refractivity (MR), lipophilicity (p), polar constant (F),
resonance constant (R), aromatic group dipole (m), Hammet
meta constant (sm), Hammet para constant (sp) are well
used. We performed QSAR analysis using a missing data

SOM method about sample data already stated. When we
adopt full 42 physicochemical parameters as structural de-
scriptors, only the LOO cross-validated correlation coeffi-
cient of about 0.5 was given by the calculation, and then the
QSAR analysis by the SOM seemed to be difficult. It is well
known that optimum choice of variables is significant to
achieve generalization performance of BPNN, and the infor-
mation that is not so valuable is eliminated by removing the
redundant variables.

As for benzodiazepine, important input parameters were
investigated in many works. Using selective pruning method
an optimum set of 10 input parameters were obtained by
Maddalena and Johnston. Then much better optimum set of
various six input parameters (T6-2, C6-2 set), such as p7,
s7m, MR1, s2�m, s2�p, s6�p, were found by So and Karplus
using genetic algorithm as preprocessing in their study using
BPNN.19)

Results of a missing value SOM under the conditions of
learning coefficient a�0.15, 20�15 neurons in the competi-
tive layer, initial neighborhood radius r�20 and 50000 learn-
ing cycles, show that T6-2 and C6-2 parameter sets success-
fully provides cross-validation correlation coefficient of
Rcv�0.8, and especially C6-2#4 parameter set gives
Rcv�0.86, though it is less than the case of the best perfor-
mance Rcv�0.93 obtained by So and Karplus. We also
checked the fitting ability of the present SOM method by cal-
culating the predicted activity for every benzodiazepine de-
rivative after neural network training for whole data set, and
obtained the high correlation coefficient value 0.94.

Calculated Rcv for C6-2#4 parameter set are plotted as
scatter diagram in Fig. 5, where the observed activity agrees
with the predicted one along the straight line from (0,0) to (3,
3).
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Chart 2

Fig. 4. Sammon Map of the SOM That Is Shown in Fig. 1

Fig. 5. Scatter Plot of Predicted Biological Activities versus Observed
Ones for Benzodiazepine



Our calculation showed that changes of the conditions
above to some extent produce only minor change of the re-
sult.

QSAR study by a missing value SOM is more sensitive to
the selection of descriptor set compared with BPNN, and
only Rcv ca. 0.7 is provided if MJ6-1 parameter set (BPNN
result Rcv�0.78) or with T10-3 parameter set (BPNN result
Rcv�0.94) are adopted.

These results indicate that QSAR study using a missing
value SOM depends greatly on the selection of important de-
scriptors, and optimal set of descriptors have to be selected to
raise generalization performance of the neural networks also
in the application of SOM. It is interesting that a missing ac-
tivity SOM may be helpful in evaluating whether a set of de-
scriptors are good or not.

In Fig. 6 we show the change of cross-validation correla-
tion coefficient as the seventh attribute (�activity) of input
data is scaled down or up by the factor on a x-axis, while six
selected C6-2#4 structural descriptors are kept unchanged. It
should be noted that a correlation function itself is indepen-
dent of the absolute value of biological activity. Calculated
results show that the cross-validation correlation coefficient
takes the maximum value at the scale-factor 1 and it changes
very slowly, which supports the stability of a missing activity
SOM method.

The fact that the selection of structural descriptors as pre-
processing is essential to generate the excellent SOM found
in the present research may be applicable for other SOM 
applications such as data-compression, data-visualization.
Since self-organizing neural network itself does not have a
pruning function, it would be better to use the optimal para-
meter set which are selected by other methods as preprocess-
ing like Backward stepwise selection, Bayesian neural net-

works which comprises automatic variable choice function
called “Automatic Relevance Determination”.5,6)

Conclusion
We applied the self-organizing map (SOM) to QSAR stud-

ies in a similar way as the supervised neural networks. Re-
sults of our calculation based on a missing value SOM could
predict the observed activities for carboquinone and benzodi-
azepine well. Considering the excellent properties of SOM
like simplicity of the algorithm, straightforward implementa-
tion and fast computation, a missing value SOM should be
one of the valuable methods for QSAR study, though its pre-
diction ability seems to be somewhat less than BPNN in gen-
eral. Another finding that the prediction ability of a missing
value SOM depends more severely on the set of selected
input descriptors than BPNN, may suggest that it is helpful to
know whether some pruning methods to select an optimum
descriptors is good or not.
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Fig. 6. Results of a Missing Activity SOM Calculation When the Activity
Component of the Input Data Is Scaled While All the Descriptors Are Kept
Unchanged


