
The mixture of pyridoxine hydrochloride and thiamine hy-
drochloride as an antinevritic is widely used in vitamin com-
binations. The resolution of the mixtures systems containing
two or more compounds without any separation procedure in
the presence of excipients existing in samples is one of the
main issues of the simultaneous quantitative determination.
The quantitative determination of the vitamins in combina-
tions containing pyridoxine hydrochloride or thiamine hy-
drochloride with other active compounds using various meth-
ods including spectrophotometry,1—3) HPLC,4) fluorescence,5)

capillary electrophoresis,6) and potentiometric,7) have been
described for several mixtures and vitamin combinations.

Modern spectroscopic instruments are so fast that they can
produce hundreds of spectra in a few minutes for a given
sample that contain multiple components. Unfortunately, uni-
variate calibration methods are not suitable for this type of
data, as they require an interference free system. Multivariate
calibration deals with data containing instrument responses
measured on multiple wavelengths for a sample that usually
contains more than one component. In recent years, advances
in chemometrics and computers have lead to the develop-
ment of several multivariate calibration methods8—11) for the
analysis of complex chemical mixtures.

Genetic regression (GR) is a calibration technique that op-
timizes linear regression models using a genetic algorithm
(GA) and has been applied to a number of multi-instrument
calibration and wavelength selection problems.12—16) GA’s are
non-local search and optimization methods that are based
upon the principles of natural selection.17—20) For a given full
spectrum data, GR selects an optimum linear combination of
wavelengths and simple mathematical operators to build a
linear calibration model using simple least squares method.

Classical Least Squares (CLS) extends the classical Beer’s
Law model in which the absorbance at each wavelength is di-
rectly proportional to the component concentrations. Inverse

Least Squares (ILS) is based on the inverse Beer’s Law
where concentrations of an analyte are modelled as a func-
tion of absorbance measurements. Genetic Classical Least
Squares (GCLS) and Genetic Inverse Least Squares (GILS)
are modified versions of original CLS and ILS methods in
which a small set of wavelengths are selected from a full
spectral data matrix and evolved to an optimum solution
using a genetic algorithm.

In this work, CLS and three different genetic algorithm
based calibration methods GCLS, GILS and GR were tested
with the aim of establishing calibration models that have a
high predictive capacity for the simultaneous determination
of thiamine HCl and pyridoxine HCl in their binary mixtures
and in a commercial vitamin preparation using the UV–visi-
ble spectrophotometry.

Genetic Regression Genetic algorithms (GA) are global
search and optimization methods based upon the principles
of natural evolution and selection as developed by Darwin.
Computationally, the implementation of a typical GA is quite
simple and consists of five basic steps including initialization
of a gene population, evaluation of the population, selection
of the parent genes for breeding and mating, crossover and
mutation, and replacing parents with their offspring. These
steps have taken their names from the biological foundation
of the algorithm.

Genetic regression (GR) is an implementation of a GA for
selecting wavelengths and mathematical operators to build
linear calibration models. GR is a hybrid calibration between
univariate and multivariate calibration techniques in which it
optimizes simple linear regression models through an evolv-
ing selection of wavelengths and simple mathematical opera-
tors (�, �, *, /). GR follows the same basic initialize/breed/
mutate/evaluate algorithm as other GA’s but differs in the
way it encodes genes. A gene is a potential solution to a
given problem and the exact form may vary from application
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to application. Here, the term gene is used to describe the
collection of instrument response pairs combined with the
above mentioned operators. These pairs, called ‘base pairs’,
are then combined with an addition operator to produce a
score, which relates the instrument response to component
concentration. The term ‘population’ is used to describe the
collection of individual genes in the current generation.

In the initialization step, first generation of genes is cre-
ated randomly with a fixed population size. Although random
initialization helps to minimize bias and maximize the num-
ber of possible recombinations, GR is designed to select ini-
tial genes in a somewhat biased random fashion in order to
start with genes better suited to the problem than those that
would be randomly selected. Biasing is done with a correla-
tion coefficient by plotting the scores of initial genes against
the component concentrations. The size of the gene pool is a
user defined even number in order to allow breeding of each
gene in the population. It is important to note that the larger
the population size, the longer the computation time. The
number of base pairs in a gene is determined randomly be-
tween a fixed low limit and high limit. The lower limit was
set to 2 in order to allow single point crossover whereas the
higher limit was set to eliminate overfitting problems and re-
duce the computation time. Once the initial gene population
is created, the next step is to evaluate and rank the genes
using a fitness function, which is the inverse of the standard
error of calibration (SEC).

The third step is where the basic principle of natural evolu-
tion is put to work for GR. This step involves the selection of
the parent genes from the current population for breeding
using a roulette wheel selection method according to their fit-
ness values. The goal is to give a higher chance to those
genes with high fitness so that only the best performing
members of the population will survive in the long run and
will be able to pass their information to the next generations.
Because of the random nature of the roulette wheel selection
method, however, genes with low fitness values will also have
some chance to be selected. Also, there will be genes that are
selected multiple times and some genes will not be selected
at all and will be thrown out of the gene pool. After the se-
lection procedure is completed, the selected genes are al-
lowed to mate top-down without ranking whereby the first
gene mates with the second gene and the third one with the
fourth one and so on as illustrated in the following example:

Parents

S1�(A347*A251)
#�(A379�A218) (1)

S2�(A225*A478)
#�(A343/A250)�(A451�A358)�(A231�A458) (2)

The points where the genes are cut for mating are indi-
cated by #.

Offspring

S3�(A347*A251)�(A343/A250)�(A451�A358)�(A231�A458) (3)

S4�(A225*A478)�(A379�A218) (4)

Here the first part of the S1 is combined with the second
part of the S2 to give the S3, likewise the second part of the
S1 combined with the first part of the S2 to give S4. This
process is called the singe point crossover and is the one used
in GR. The single point crossover will not provide different
offspring if both parent genes are identical, which may hap-

pen in the roulette wheel selection, and broken at the same
point. Also note that mating can increase or decrease the
number of base pairs in the offspring genes. After crossover,
the parent genes are replaced by their offspring and the off-
spring are evaluated. The ranking process is based on their
fitness values following the evaluation step. Then the selec-
tion for breeding/mating starts all over again. This is re-
peated until a predefined number of iterations are reached.

Mutation which introduces random deviations into the
population was also introduced into the GR during the mat-
ing step at a rate of 1% as is typical in GA’s. This is usually
done by replacing one of the base pairs in an existing gene
with a randomly generated new base pair. Mutation allows
the GR to explore the search space and incorporate new ma-
terial into the genetic population. It helps keep the search
moving and can eject GR from a local minimum on the re-
sponse surface. However, it is important not to set the muta-
tion rate too high since it may keep the GA from being able
to exploit the existing population.

In the end, the gene with the lowest SEC (highest fitness)
is selected for the model building which is done by simple
least squares. This model is used to predict the concentra-
tions of component being analyzed in the validation (test)
sets. The success of the model in the prediction of the valida-
tion sets are evaluated using standard error of prediction
(SEP). Because the random processes are heavily involved in
the GR as in all the GA’s, the program has been set to run
several times for each component in a given multi-compo-
nent mixture during the course of this study. The best run,
(i.e. the one generating the lowest SEC for the calibration set
and at the same time producing SEP’s for validation sets that
are in the same range with the SEC) was subsequently se-
lected for evaluation and further analysis. The termination of
the algorithm can be done in many ways. The easiest way is
to set a predefined iteration number for the number of breed-
ing/mating cycles.

GR has some major advantages over classical univariate
and multivariate calibration methods. It is a hybrid calibra-
tion method that uses the full spectral information and re-
duces it to a single score upon which simple calibration mod-
els are built. First of all, it is as simple as univariate calibra-
tion in terms of the mathematics involved in the model build-
ing and prediction steps, but at the same time it has the ad-
vantages of the multivariate calibration methods since it uses
the full spectrum to extract genetic scores. It automatically
corrects baseline fluctuations with the use of simple mathe-
matical operators while forming the base pairs. Note that no
data pretreatment is necessary before calibration, which
saves the extra time in the data processing.

Genetic Classical Least Squares The classical least
squares (CLS) method extends the classical Beer’s Law
model in which the absorbance at each wavelength is directly
proportional to the component concentrations. Model errors
are assumed to be in the measurement of the instrument re-
sponses as it was in the classical univariate method. In matrix
notation, the CLS model for m calibration samples contain-
ing l chemical components whose spectra contain n wave-
lengths is described as:

A�CK�EA (5)

Where A is the m�n matrix of the calibration spectra, C is
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the m�l matrix of the component concentrations, K is the
l�n matrix of absorptivity-pathlength constants and EA is the
m�n matrix of the spectral errors or residuals not fit by the
model. Here the K matrix represents the first order estimates
of the pure component spectra at unit concentration and unit
pathlength. The method of least-squares can be used to esti-
mate the K matrix. The least-squares estimate of the K is de-
fined as:

K̂�(C�C)�1C�A (6)

Once the estimated K̂ matrix obtained, the concentrations
of an unknown sample can be predicted from its spectrum
by:

ĉ�(K̂ K̂�)�1K̂ a (7)

Where a is the spectrum of the unknown sample and ĉ is
the vector of the predicted component concentrations. Ge-
netic Classical Least Squares (GCLS) is a modified version
of the original CLS method in which a small set of wave-
lengths are selected from a full spectral data using a genetic
algorithm. The algorithm used to select the optimum number
of wavelengths in GCLS is quite similar to the GR algorithm,
but differs in the way it encodes the gene. In GCLS, the term
‘gene’ describes a vector whose elements are randomly se-
lected wavelengths. The size of the vector is also determined
in a random fashion with an upper limit to reduce computa-
tion time.

In the initialization step, an even number of genes are
formed from full a spectral data matrix and each gene is used
to form a CLS model. These models are then evaluated and
ranked using the fitness function described in GR. The
roulette wheel method is then used to select the gene popula-
tion for breeding. After the selection procedure is completed,
the selected genes are allowed to mate top-down without
ranking whereby the first gene mates with second gene and
third one with fourth one and so on as described in above
with one difference. Since the genes used in GCLS are only
vector of wavelengths and contains no base pairs as de-
scribed in GR, for each gene a random number is generated
between 1 and the length of the gene and the single point
crossover process is performed using this number. After
crossover, the parent genes are replaced by their offspring
and the offspring are evaluated. The ranking process is based
on their fitness values and follows the evaluation step. Then
the selection for breeding/mating starts all over again. This is
repeated until a predefined number of iterations are reached.
In each iteration, the best gene with the lowest SEC is stored
in order to compare it with the best gene of the next genera-
tion. If the next generation produces a better gene then it is
replaced with the older one; otherwise the old one kept for
further iterations. At the end, the gene with the lowest SEC is
selected for model building. This model is used to predict the
concentrations of component being analyzed in the validation
(test) sets as described in GR.

Genetic Inverse Least Squares The major drawback of
the CLS is that all of the interfering species must be known
and their concentrations included in the model. This need
can be eliminated by using the inverse least squares (ILS)
method which uses the inverse of Beer’s Law. In the ILS
method, concentrations of an analyte are modelled as a func-
tion of absorbance measurements. Because modern spectro-

scopic instruments are very stable and provide excellent sig-
nal-to-noise (S/N) ratios, it is believed that the majority of er-
rors lie in the reference values of the calibration sample, not
in the measurement of their spectra. The ILS model for m
calibration samples with n wavelengths for each spectrum is
described by:

C�AP�EC (8)

Where C and A are the same as in CLS, P is the n�l ma-
trix of the unknown calibration coefficients relating l compo-
nent concentrations to the spectral intensities and EC is the
m�l matrix of errors in the concentrations not fit by the
model. In the calibration step, ILS minimizes the squared
sum of the residuals in the concentrations. The biggest ad-
vantage of ILS is that equation 8 can be reduced for the
analysis of single component at a time since analysis is based
on an ILS model is invariant with respect to the number of
chemical components included in the analysis. The reduced
model is given as:

c�Ap�ec (9)

Where c is the m�1 vector of concentrations for the ana-
lyte that is being analyzed, p is n�1 vector of calibration co-
efficients and ec is the m�1 vector of concentration residuals
not fit by the model. During the calibration step, the least-
squares estimate of p is:

p̂�(A�A)�1A� ·c (10)

Where p̂ is the estimated calibration coefficients. Once p̂ is
calculated, the concentration of the analyte of interest can be
predicted with the equation below.

ĉ�a� · p̂ (11)

Where ĉ is the scalar estimated concentration and a is the
spectrum of the unknown sample. The ability to predict one
component at a time without knowing the concentrations of
interfering species has made ILS one of the most frequently
used calibration methods. However, the identity of interfering
species still need to be known to prepare a good calibration
sample set.

The major disadvantage of ILS can be seen in equation 10
where the matrix, which must be inverted, has dimensions
equal to the number of wavelengths in the spectrum and this
number can not exceed the number of calibration samples.
This is a big restriction since the number of wavelengths in a
spectrum will generally be more than the number of calibra-
tion samples and the selection of wavelengths that provide
the best fit for the model is not a trivial process. Several
wavelength selection strategies, such as stepwise wavelength
selection and all possible combination searches, are available
to build an ILS model that fits the data best. Here we used
the same genetic algorithm described in GCLS to build ge-
netic inverse least squares (GILS) models with one differ-
ence. This difference is in the way the mating and single
point crossover operations are carried out. Because the num-
ber of wavelengths is restricted in response matrix A in the
ILS, the size of the largest gene is restricted to one less than
the number of calibration samples in the concentration vec-
tor. However, if the single point crossover is set to take place
in any point of a gene, then the mating step could produce
new genes that have a larger number of wavelengths than the
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number of calibration samples even though all the genes in
the initial gene pool were set to have smaller number of
wavelengths than the size of the concentration vector. In
order to avoid this problem, the crossover operation is only
performed in the middle of each gene in GILS so that the
new generations will never have larger sizes than the number
of calibration samples. The rest of the algorithm is the same
as the one used in GCLS.

Experimental
Materials In this work, a vitamin tablet (Benexol® film-coated tablet,

Roche Pharm. Ind., Turkey, Batch no. 10169) consisting of 250 mg pyridox-
ine HCl and 250 mg thiamine HCl per tablet was investigated. Roche Pharm.
Ind., Turkey kindly donated the active vitamin compounds. Stock solutions
of 100 mg/100 ml of thiamine HCl and pyridoxine HCl were prepared by
using 0.1 M HCl. The standard solutions in 25-ml volumetric flasks contain-
ing 8—40 mg/ml for both vitamins were obtained from their stock solutions
by appropriate dilution. The concentration profiles of calibration and valida-
tion samples were designed in a way that minimizes colinearity problem
since a binary system has been studied. For the commercial vitamin, ten
tablets were accurately weighed and powdered in a mortar. An amount
equivalent to one tablet was dissolved in 0.1 M HCl in a 100 ml calibrated
flask by sonication. The solution was filtered into a 100 ml calibrated flask
through Whatman no. 42 filter paper and diluted to an appropriate volume
with the same solvent.

Methods Sample spectra were measured on a Shimadzu UV-1600 dou-
ble beam UV–visible spectrophotometer from 215 to 330 nm with 0.1 nm in-
tervals. Quartz cells with 1 cm pathlengths were used. The CLS and the
three new genetic algorithms based multivariate calibration methods (GCLS,
GILS and GR) were written in MATLAB programming language using Mat-
lab 5.3 (MathWorks Inc, Natick, MA, U.S.A.). The text files for calibration,
validation and prediction sets were generated with the use of Microsoft
Excel (MS office 97, Microsoft Corporation, CA, U.S.A.).

Results and Discussion
Two separate experiments were carried out. In the first

case, a total of 20 samples were selected to be included in the
calibration set and 10 samples were used to construct the val-
idation set. In addition, 10 samples of commercial tablets
having 24 mg/ml of each constituent were used to build pre-
diction set. In a second design, two of the commercial tablet
spectra were added to the calibration set in order to better
represent actual samples in the calibration step.

UV spectra of pure thiamine (24 mg/ml), pyridoxine
(24 mg/ml) in 0.1 M HCl along with the binary mixture of the
two components between 220 and 330 nm wavelength range

are shown in Fig. 1. As seen from the figure, thiamine shows
a maximum absorbance around 245 nm and pyridoxine has a
maximum absorbance around 290 nm. Their mixture spec-
trum, however, indicates strong overlap over the entire region
which indicates that the use of multivariate methods would
be needed to resolve these components. Throughout the ge-
netic multivariate calibration process, it is expected that these
overlaps will be resolved and reveal the information neces-
sary to build successful calibration models otherwise almost
impossible with univariate calibration methods.

Several calibration models were generated with the four
methods and Table 1 shows the results of binary mixtures in
the first experiment for calibration and validation sets. Here,
the CLS method was applied to whole spectrum data set and
in the case of genetic algorithm based methods (GCLS,
GILS and GR) the algorithms were set to rum 10 times with
20 gene and 100 iterations in each run. The results given in
table for GCLS, GILS and GR are from the runs that gener-
ate the lowest SEC and SEP combination. Then these models
were used later to predict the actual tablet samples and com-
pared with each other based on their success of predicting ac-
tual samples as shown in Table 2.

A close examination of the results given in Table 1 indi-
cates that CLS, GCLS and GR generates approximately the
same results whereas GILS produces almost twice better re-
sults than other three. However, this could be very mislead-
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Fig. 1. UV Spectra of Pure Thiamine (24 mg/ml) and Pyridoxine
(24 mg/ml) in 0.1 M HCl along with a Binary Mixture of the Two Compo-
nents between 220 and 330 nm Wavelength Range

Table 1. Results of Mixtures in Calibration and Validation Sets Containing Thiamine and Pyridoxine Obtained with Four Multivariate Calibration Methods
(CLS, GCLS, GILS and GR) When the Calibration Models Were Built Only with Sythetic Samples

Component Data sets Parameters
Methods

CLS GCLS GILS GR

Thiamine HCL Calibration SEC (mg/ml) 0.19 0.19 0.13 0.20
Average recovery (%) 100.22 100.25 100.00 100.13
RSD 1.48 1.40 0.69 1.57

Validation SEP (mg/ml) 0.22 0.22 0.13 0.23
Average recovery (%) 100.47 100.49 100.01 100.58
RSD 1.71 1.62 0.81 1.80

Pyridoxine HCl Calibration SEC (mg/ml) 0.38 0.37 0.17 0.36
Average recovery (%) 100.97 100.90 100.23 100.45
RSD 2.13 2.00 0.86 1.65

Validation SEP (mg/ml) 0.34 0.32 0.16 0.28
Average recovery (%) 100.69 100.65 100.23 100.95
RSD 2.08 1.92 0.70 1.52

SEC: standard error of calibration, SEP: standard error of prediction, RSD: relative standard deviation.



ing conclusion if one considers the results given in Table 2
where it generates the lowest means and highest SEP’s for
both components. It is evident that the hard modelling
method CLS is unable to predict the composition of actual
tablets as good as the genetically modified multivariate meth-
ods. In addition, the GILS method produced the largest rela-
tive standard deviation (RSD) for the tablets even though it
generated the lowest RSD values for the synthetic mixtures
which might be the indication of slight overfit for the model.
In terms of the overall performance of the four methods it
can be said that the genetically modified methods performs
better than CLS for actual tablet samples.

In order to see whether the calibration models generated
with only synthetic data are suitable or not, a second experi-

ment was carried out in which the two of the tablet spectra
are added to the calibration set. The expectation was that the
added tablet spectra in calibration set will generate better and
more robust calibration models. The results of this experi-
ment are shown in Table 3 and 4 for synthetic and actual
tablets, respectively. Upon the comparison of the result given
in Table 2 and 4, it is evident that predictions of actual tablets
were improved for all the methods except GILS investigated
in this study. Particularly the prediction of thiamine in tablets
with GCLS and GILS were significantly better than those ob-
tained in the first experiment.

Figures 2 and 3 show the plot of actual vs. predicted thi-
amine and pyridoxine concentrations, respectively for the
calibration and validation sets obtained with the four meth-
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Table 2. Results of 10 Commercial Vitamin Tablets Containing Thiamine (250 mg) and Pyridoxine (250 mg) Obtained with Four Multivariate Calibration
Methods (CLS, GCLS, GILS and GR) When the Calibration Models Were Built Only with Synthetic Samples

Actual
Predicted (mg/tablet)

(250 mg/ Thiamine HCl Pyridoxine HCl
tablet)

CLS GCLS GILS GR CLS GCLS GILS GR

Mean 238.88 244.96 249.11 245.99 243.84 248.80 251.76 245.77
SD 3.19 3.17 8.16 2.90 3.19 3.02 5.87 3.16
RSD 1.34 1.29 3.28 1.18 1.31 1.22 2.33 1.28
SEP 11.52 5.87 7.79 4.86 6.86 3.11 5.84 5.18

SD: standard deviation, RSD: relative standard deviation, SEP: standard error of prediction.

Table 3. Results of Mixtures in Calibration and Prediction Sets Containing Thiamine and Pyridoxine Obtained with Four Multivariate Calibration Methods
(CLS, GCLS, GILS and GR) When the Calibration Models Were Built with Synthetic Samples and Spectra of Two Tablets

Component Data sets Parameters
Methods

CLS GCLS GILS GR

Thiamine HCl Calibration SEC (mg/ml) 0.39 0.18 0.07 0.23
Average recovery (%) 100.19 100.19 100.02 100.11
RSD 2.35 1.42 0.32 1.68

Validation SEP (mg/ml) 0.29 0.22 0.07 0.24
Average recovery (%) 101.14 100.54 99.95 100.73
RSD 1.77 1.60 0.30 1.65

Pyridoxine HCl Calibration SEC (mg/ml) 0.43 0.36 �0.01 0.34
Average recovery (%) 100.85 100.79 100.00 100.45
RSD 2.41 2.00 �0.01 1.50

Validation SEP (mg/ml) 0.36 0.33 �0.01 0.29
Average recovery (%) 101.09 100.08 100.00 100.76
RSD 2.04 1.86 �0.01 1.47

SEC: standard error of calibration, SEP: standard error of prediction, RSD: relative standard deviation.

Table 4. Results of Commercial Vitamin Tablets Containing Thiamine (250 mg) and Pyridoxine (250 mg) Obtained with Four Multivariate Calibration
Methods (CLS, GCLS, GILS and GR) When the Calibration Models Were Built with Synthetic Samples and Spectra of Two Tablets

Actual
Predicted (mg/tablet)

(250 mg/ Thiamine HCl Pyridoxine HCl
tablet)

CLS GCLS GILS GR CLS GCLS GILS GR

Mean 240.66 250.93 247.93 251.47 245.13 249.75 249.25 251.68
SD 3.44 3.10 5.23 3.16 3.29 3.10 5.82 3.22
RSD 1.43 1.23 2.11 1.26 1.34 1.24 2.34 1.28
SEP 9.88 3.04 5.31 3.30 5.76 2.91 5.50 3.45

SD: standard deviation, RSD: relative standard deviation, SEP: standard error of prediction.
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Fig. 3. Plots of Actual vs. Predicted Pyridoxine Concentrations for the Calibration and the Prediction Sets Obtained with the Four Multivariate Calibration
Methods

a.) CLS, b.) GCLS, c.) GILS and d.) GR method.

Fig. 2. Plots of Actual vs. Predicted Thiamine Concentrations for the Calibration and the Prediction Sets Obtained with the Four Multivariate Calibration
Methods

a.) CLS, b.) GCLS, c.) GILS and d.) GR method.



ods in the second experiment. The R square (R2) values of
regression were ranged between 0.9990 and 1.0000 indicat-
ing very good fit between actual and predicted concentra-
tions.

In order to determine whether the genetic algorithm se-
lected wavelengths corresponds the particular component ab-
sorbance region, the GR method was also set to run 50 times
with 20 genes and 100 iterations in the second experiment.
The overall distribution of the selected wavelengths for each
component along with a mixture spectrum are shown in Fig.
4 for thiamine and pyridoxine, respectively. As can be seen
from the figure, the genetic regression method select the
wavelengths that correspond the each component absorption
range even though the algorithm starts with the whole spec-
trum information at the beginning of each run and each
wavelength has equal chance of being selected. The explana-
tion of this is in the evolutionary nature of genetic algorithm
where the wavelengths that are suited for the particular com-
ponent survives in the long run of iterations and other do not.
This gives an advantage to the genetic algorithm based meth-
ods where only the information related to the particular com-
ponent are used to construct the model thereby reducing the
noise in the overall information.

Conclusion
This study illustrates the application of the hard modelling

technique CLS and three genetic algorithm based multivari-
ate calibration methods to simultaneous determination of
pharmaceuticals in synthetic and actual tablet formulations.

It can be said that all four method generate acceptable results
in the given concentration range of the components. These
methods coupled with spectrophotometry could be an alter-
native to other methods such as chromatography, which is
more expensive and time consuming.
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