Two New 5-Deoxyflavonoids from Calliandra inermis

Muchchintala Maheswara,^{*a*} Yerra Koteswara Rao,^{*a*} Vidavalur Siddaiah,^{*a*} Chunduri Venkata Rao,^{*,*a*} Kasi Viswanatham Somayajulu,^{*b*} and Fu Tyan Lin^{*b*}

^a Natural Products Division, Department of Chemistry, Sri Venkateswara University; Tirupati–517 502, India: and ^b Department of Chemistry, University of Pittsburgh; Pittsburgh, Pennsylvania–15260, U.S.A. Received January 7, 2004; accepted February 25, 2004

Two new 5-deoxyflavonoids, 7,2',3',4'-tetramethoxyflavone (1) and 7,2',3',4'-tetramethoxyflavanone (2) together with a known flavone 7,4'-dimethoxy-3'-hydroxyflavone (3) were isolated from the whole plant of *Calliandra inermis*. The structures of these new compounds were elucidated by high resolution electron impact mass spectrometry (HR-EI-MS) and 1D and 2D-NMR spectral studies including ¹H–¹H correlation spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond connectivity (HMBC) and nuclear Overhauser enhancement spectroscopy (NOESY).

Key words Calliandra inermis; Leguminosae; 5-deoxyflavonoid

Calliandra inermis (Leguminosae) is an herbaceous plant distributed in the Rayalaseema region of Andhra Pradesh, South India.¹⁾ In continuation of our search for new flavonoids,²⁾ we have examined the whole plant of *C. inermis*, and report here the isolation and structure elucidation of two new 5-deoxyflavonoids, 7,2',3',4'-tetramethoxyflavanone (1) and 7,2',3',4'-tetramethoxyflavanone (2) in addition to a known flavone, 7,4'-dimethoxy-3'-hydroxy-flavone (3).

Results and Discussion

Compound 1, was isolated as an amorphous powder. The high resolution electron impact mass spectrum (HR-EI-MS) of 1 showed the $[M]^+$ peak at m/z 342.1061 in agreement with the molecular formula $C_{19}H_{18}O_6$ (Calcd 342.1058). This was corroborated by the decoupled ¹³C-NMR spectrum which showed signals for all the nineteen carbons of the molecule. The UV absorption in MeOH (254, 330 nm) suggested compound 1 to be a flavone.³⁾ The IR absorption bands at 1650, 1625 and 1596 cm⁻¹ and negative ferric chloride test indicated compound 1 to be a non-phenolic flavone.

The ¹H-NMR spectrum of 1 showed four methoxyl singlets at δ 3.95, 3.93, 3.92 and 3.89 and a sharp one-proton singlet at δ 6.92 ascribed to H-3. The eletron impact mass spectrometry (EI-MS) of 1 showed two retro-Diels Alder fragments⁴⁾ at m/z 151 $[A_1+H]^+$ and m/z 192 $[B_1]^+$ indicating the presence of one methoxyl group in ring-A and three methoxyl groups in ring-B, respectively. The ¹H-NMR sepectrum of 1 further showed a ABX spin coupled system at δ 8.11 (1H, d, J=8.8 Hz), 6.94 (1H, dd, J=8.8, 2.3 Hz) and 6.88 (1H, d, J=2.3 Hz) was assigned to H-5, H-6 and H-8, respectively, as the H-6 and H-8 protons showed nuclear Overhauser enhancement spectroscopy (NOESY) correlation with the methoxyl group at C-7 position. Two ortho coupled protons at δ 7.50 and 6.77 were assigned to H-6' and H-5' respectively. The three methoxyl groups in ring-B at δ 3.93, 3.92 and 3.89 were assigned to C-2', C-3' and C-4' positions as these three methoxyl protons and H-5' and H-6' protons showed heteronuclear multiple bond connectivity (HMBC) correlations with these carbons at 152.7 (C-2'), 142.5 (C-3') and 156.0 (C-4') ppm,5) respectively (Fig. 1). Thus from the foregoing spectral studies the structure of compound 1 was characterised as 7,2',3',4'-tetramethoxyflavone.

Compound **2**, was isolated as an amorphous powder. Comparison of the ¹H-NMR data of **2** with those of **1**, revealed that compound **2** was the 2,3-dihydro derivative of **1**, based on the appearance of new signals at δ 5.65 (dd, J_{2ax} $_{3ax}$ = 12.5

Fig. 1. Structures of Compounds 1 and 3

Fig. 2. Structure of Compound 2

Fig. 3. Significant HMBC (\triangleleft) and NOESY (\triangleleft -- \rightarrow) Correlations for 1 and 2

Table 1. ¹³C-NMR Data (125 MHz, CDCl₃) of 1, 2 and 3^{a}

Carbon	1	2	3
2	161.0	75.0	162.5
3	110.9	43.5	105.3
4	178.1	191.0	176.3
4a	117.6	114.8	117.1
5	126.9	128.6	126.2
6	114.1	109.0	114.5
7	164.0	165.9	163.8
8	100.3	100.8	100.8
8a	158.1	163.7	157.4
1'	119.0	124.7	123.5
2'	152.7	151.2	112.9
3'	142.5	142.0	146.8
4'	156.0	154.0	150.8
5'	107.3	107.4	112.1
6'	124.0	121.3	118.4
7-OMe	55.8	55.5	56.0
2'-OMe	60.9	60.7	_
3'-OMe	61.1	61.2	_
4'-OMe	56.1	56.0	55.7

a) DMSO- d_6

Hz, $J_{2ax, 3eq} = 3.1$ Hz), 3.01 (dd, $J_{3ax, 3eq} = 17.1$ Hz, $J_{3ax, 2ax} = 12.5$ Hz) and 2.75 (dd, $J_{3eq, 3ax} = 17.1$ Hz, $J_{3eq, 2ax} = 3.1$ Hz) for the protons of H-2, H-3_{ax} and H-3_{eq} respectively,^{6,7)} and the loss of the resonance of the olefinic H-3. The other resonances in the ¹H-NMR spectrum were comparable with those of 1. The ¹³C-NMR data (Table 1) of 2 supported this finding through the appearance of C-2 and C-3 signals at upfield 75.06, 43.50 ppm respectively, and the absence of olefinic resonance of C-3, and C-4 signal also appeared as downfield 191.0 ppm. The remaining ¹³C resonances were comparble with those of compound 1. The comparison of the EI-MS of 1 and 2 further evidences the dihydro derivative nature with compound 2, as compound 2 M^+ (344) is more by two atomic mass units than compound 1 M⁺ (342). The laevorotatory nature of 2 indicated the normal flavone stereochemistry, S at C-2. A final proof of the proposed structure for 2 was obtained by dehydrogenation⁸⁾ of 2 which resulted compound 1. Thus the structure of compound 2 was characterised as (2S)-7,2',3',4'-tetramethoxyflavanone.

The structure of the known compound as 7,4'-dimethoxy-3'-hydroxyflavone (3) was established by comparison of its spectral data with literature values.⁹⁾

Experimental

General Procedures Melting points were determined on a Kofler hotstage apparatus and are uncorrected. IR spectra were recorded in KBr discs on a Bio-Rad win FT-IR spectrophotometer and UV spectra on a Shimadzu UV-240 spectrophotometer. ¹H- and ¹³C-NMR spectra were determined on a Varian VRX 500 Spectrometer operating at 500 MHz and 125 MHz, respectively using TMS as an internal standard. ¹H–¹H correlation spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), HMBC and the phase-sensitive NOESY (with 150 ms mixing time) spectra were recorded using the standard pulse sequences. Liquid chromatography (LC)-MS was recorded on a AGILENT-1100 periods LC/MSD (VL). HR-EI-MS were recorded at 70 eV (direct probe) on a Nermag R 10-10 mass spectrometer. Column chromatography (CC) was perfomred on acme silica gel finer than 200 mesh (0.08 nm).

Plant Material The whole plant of C. inermis was collected in Septem-

975

ber 2001 at Tirumala Hills, Tirupati, Andhra Pradesh, India.

Extraction and Isolation The air-dried and powdered whole plant (2.5 kg) of *C. inermis* was successively extracted with *n*-hexane, Me₂CO and MeOH. The *n*-hexane extract was purified over a silica gel column using *n*-hexane and EtOAc, and their step gradient mixture as eluents. The *n*-hexane and EtOAc (3:7, 2:8) eluents yielded **1** (15 mg) and **2** (20 mg) respectively. The acetone extract on similar purification using hexane and EtOAc, 6:4 yielded **3** (23 mg).

7,2',3',4'-Tetramethoxyflavone (1): Amorphous powder, mp 192—194 °C (MeOH). UV λ_{max} (MeOH) nm (log ε): 254 (4.23), 330 (4.14). IR (KBr) ν_{max} cm⁻¹: 1648 (>C=O), 1620, 1596, 1490. ¹H-NMR (CDCl₃) δ : 8.11 (1H, d, J=8.8Hz, H-5), 7.50 (1H, d, J=8.8Hz, H-6), 6.94 (1H, dd, J=8.8, 2.3 Hz, H-6), 6.88 (1H, d, J=2.3 Hz, H-8), 6.77 (1H, d, J=8.8Hz, H-5'), 6.92 (1H, s, H-3), 3.95 (3H, s, OMe-7), 3.93 (3H, s, OMe-2'), 3.92 (3H, s, OMe-3'), 3.89 (3H, s, OMe-4'); ¹³C-NMR (CDCl₃): see Table 1. EI-MS m/z (%): 342 [M]⁺ (65), 192 (42), 177 (26), 151 (100), 134 (26), 119 (18), 79 (20). HR-EI-MS m/z 342.1061 [M]⁺ (Calcd for C₁₉H₁₈O₆: 342.1058), LC-MS m/z 343 [M+H]⁺ and 365 [M+Na]⁺.

7,2',3',4'-Tetramethoxyflavanone (2): Amorphous powder, mp 180— 182 °C (MeOH), $[\alpha]_D^{28}$ –16.3° (c=0.12, MeOH). UV λ_{max} (MeOH) nm (log ε): 261 (4.32), 339 (4.03). IR (KBr) v_{max} cm⁻¹: 1670 (>C=O), 1600, 1509, 1440, 1376. ¹H-NMR (CDCl₃) δ : 7.84 (1H, d, J=8.8 Hz, H-5), 6.58 (1H, dd, J=8.6, 2.3 Hz, H-6), 6.40 (1H, d, J=2.3 Hz, H-8), 5.65 (1H, dd, $J_{2ax,3ax}$ =12.5 Hz, $J_{2ax,3eq}$ =3.1 Hz, H-2_{ax}), 3.01 (1H, dd, $J_{3ax,3eq}$ =17.1 Hz, $J_{3ax,2ax}$ =12.5 Hz), 2.75 (1H, dd, $J_{3eq,3ax}$ =17.1 Hz, $J_{3eq,2ax}$ =3.1 Hz), 3.98 (3H, s, OMe-7), 3.90 (3H, s, OMe-2'), 3.83 (3H, s, OMe-3'), 3.74 (3H, s, OMe-4'). ¹³C-NMR (CDCl₃): see Table 1. EI-MS m/z (%): 344 [M]⁺ (25), 313 (100), 194 (33), 179 (41), 151 (55), 121 (19). HR-EI-MS m/z 344.1251 [M]⁺ (Calcd for C₁₉H₂₀O₆: 344.1255), LC-MS m/z 345 [M+H]⁺ and 367 [M+Na]⁺.

Dehydrogenation of **2**: A mix of 12 mg of 2, 0.15 g of KOAc and 25 mg of I_2 in glacial HOAc (2 ml) was heated under reflux for 2 h on oil bath the reaction mix. was cooled and poured into crushed ice and extracted with EtOAc. The solvent was removed *in vacuo* and a satd soln of NaHSO₃ was added to the residue to destroy excess of I_2 . It was filtered and the residue obtained was purified from MeOH to yield colourless compound which is identical in all respects with compound **1**.

7,4'-Dimethoxy-3'-hydroxyflavone (3): Colourless needles, mp 190– 192 °C (MeOH). UV λ_{max} (MeOH) nm (log ε): 235 (4.41), 314 sh, 338 (4.20). IR (KBr) v_{max} cm⁻¹: 3278 (OH), 2972, 2840, 1643 (>C=O), 1602, 1511, 1440, 1379. ¹H-NMR (DMSO- d_6) δ : 9.44 (1H, s, OH-3'), 7.89 (1H, d, J=8.9 Hz, H-5), 7.51 (1H, dd, J=8.9, 1.5 Hz, H-6'), 7.43 (1H, d, J=1.5 Hz, H-2'), 7.21 (1H, d, J=1.5 Hz, H-8), 7.03 (2H, m, H-5', 6), 6.70 (1H, s, H-3), 3.88 (3H, s, OMe-7), 3.84 (3H, s, OMe-4'). ¹³C-NMR (DMSO- d_6) δ : see Table 1. EI-MS *m*/*z* (%): 298 [M]⁺ (100), 283 (5), 270 (4), 255 (11), 165 (10), 151 (32).

References and Notes

- Thammanna, Narayana Rao K., Madhava Chetty K., "Angiospermic Wealth of Tirumala," T.T.D. Publication, Tirupati, India, 1994, p. 57.
- Koteswara Rao Y., Vijaya Bhaskar Reddy M., Venkata Rao C., Gunasekar D., Blond A., Caux C., Bodo B., *Chem. Pharm. Bull.*, 50, 1271–1272, (2002).
- Mabry T. J., Markham K. R., Thomas M. B., "The Systematic Identification of Flavonoids," Springer Verlag, New York, 1970, p. 44.
- Harborne J. B., Mabry T. J., Mabry H., "The Flavonoids," Academic Press, New York, 1975, pp. 82–87.
- Agrawal P. K., Raghunathan S. T., Bansal M. C., "Carbon-13 NMR of Flavonoids," ed. by Agarwal P. K., Elsevier, Amsterdam, 1989, pp. 127–132.
- Youssef Diaa T. A., Ramadan M. A., Khalifa A. A., *Phytochemistry*, 49, 2579–2583 (1998).
- Marby T. J., Markham K. R., Thomas M. B., "The Systematic Identification of Flavonoids," Springer Verlag, New York, 1970, p. 49.
- Goel R. N., Mahesh V. B., Seshadri T. R., Proc. Ind. Acad. Sci., 47, 184—190 (1958).
- Kato M. J., Yoshida M., Gottlieb O. R., *Phytochemistry*, **31**, 283–287, (1992).