Structures of New Aromatics Glycosides from a Japanese Folk Medicine, the Roots of *Angelica furcijuga*

Toshio MORIKAWA, Hisashi MATSUDA, Norihisa NISHIDA, Teruki OHGUSHI, and Masayuki YOSHIKAWA*

Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8412, Japan. Received July 14, 2004; accepted August 25, 2004

Three new aromatics glycosides, hyuganosides II, IIIa, and IIIb, were isolated from a Japanese folk medicine, the roots of *Angelica furcijuga* **KITAGAWA. The structures of the new glycosides were determined on the basis of chemical and physicochemical evidence.**

Key words *Angelica furcijuga*; hyuganoside; hyuganol; Japanese folk medicine; phenylpropanoid; neolignan

The Umbelliferae plant *Angelica furcijuga* KITAGAWA is indigenous to Japan (Japanese name, hyugatouki) and the roots have been used for the treatment of hepatopathy, allergosis, inflammation, diabetes, and hypertension as a Japanese folk medicine. During the course of our characterization studies on Japanese folk medicines, $1-6$) we have reported the structure elucidation of four acylated khellactone-type coumarins called hyuganins A—D and the vasorelaxant activities of the principal constituents from the roots of *A. furcijuga*. 1) Furthermore, we communicated that the methanolic extract and principal constituents including hyuganosides II and III from this folk medicine showed nitric oxide (NO) production inhibitory and hepatprotective activities.²⁾ In this paper, we describe a full account of the isolation and structure elucidation of hyuganosides II (**1**), IIIa (**2**), and IIIb (**3**).

The methanolic extract from the fresh roots of *A. furcijuga* cultivated in Miyazaki prefecture, Japan, was subjected to Diaion HP-20 column chromatography to give H_2O -, MeOH-, and acetone-eluted fractions as described.^{1,2)} The MeOHeluted fraction was additionally purified by ordinary- and reversed-phase silica gel column chromatographies and finally HPLC to give three glycosides, hyuganosides II (**1**, 0.0030% from the fresh roots), IIIa (**2**, 0.0008%), and IIIb (**3**, 0.0010%) together with $4-\beta$ -D-apiofuranosyl- $(1\rightarrow6)$ - β -Dglucopyranosyloxy]-3-methoxypropiophenone7) (**4**, 0.0009%), hymexelsin¹⁾ (**5**, 0.0006%), and (*R*)-peucedanol 7-*O*- β -D-glucopyranoside¹⁾ (6, 0.004%).

Structure of Hyuganoside II (1) Hyuganoside II (**1**) was isolated as a white powder with positive optical rotation $([\alpha]_D^{25} + 8.7^\circ$, MeOH). The IR spectrum of 1 showed absorption bands at 3410, 1719, 1708, 1613, 1560, 1509, 1075, and

 812 cm^{-1} ascribable to glycosidic and carbonyl functions and aromatic ring, while its UV spectrum showed absorption maxima at 230 (sh, $log \varepsilon$ 3.82), 285 (3.43), and 323 (3.24) nm. The positive-ion FAB-MS of **1** showed quasimolecular ion peaks at m/z 857 (2M+H)⁺ and 451 (M+Na)⁺, while quasimolecular ion peaks were observed at *m*/*z* 855 $(2M-H)^{-}$ and 427 $(M-H)^{-}$ in the negative-ion FAB-MS. The molecular formula $C_{20}H_{28}O_{10}$ of 1 was characterized from the positive- and negative-ion FAB-MS and by highresolution MS measurement. Acid hydrolysis of **1** with 1.0 ^M hydrochloric acid (HCl) liberated D-glucose, which was identified by HPLC analysis using an optical rotation detector.^{8,9)} The aglycon of **1**, hyuganol II (**1a**) with positive optical rotation ($[\alpha]_D^{25} + 47.3^\circ$, MeOH), was obtained by enzymatic hydrolysis of 1 with naringinase. The 1 H-NMR (CD₃OD) and 13 C-NMR (Table 1) spectra¹⁰⁾ of 1 and 1a indicated the presence of two methyls $[1: \delta 1.22, 1.24$ (3H each, both s, 3'*gem*-CH₃); **1a**: δ 1.21, 1.23 (3H each, both s, 3'-*gem*-CH₃)], three methylenes $\{1: \delta$ [2.55 (1H, br dd, $J = ca$. 7, 16 Hz), 2.60 (1H, br dd, $J=ca$. 8, 16 Hz), 8-H₂, [2.89 (1H, ddd, *J*=7.6, 7.9, 14.4 Hz), 2.97 (1H, ddd, *J*=7.0, 7.3, 14.4 Hz), 7-H₂], [3.29 (1H, dd, J=8.8, 16.2 Hz), 3.35 (1H, dd, J=9.5, 16.2 Hz), $1'$ -H₂]; **1a**: δ 2.51 (2H, t, J=7.2 Hz, 8-H₂), 2.78 $(2H, t, J=7.2 \text{ Hz}, 7-H₂), [3.03 (1H, dd, J=8.5, 15.6 Hz), 3.07]$ (1H, dd, $J=9.2$, 15.6 Hz), 1'-H₂]}, a methine bearing an oxygen function [1: δ 4.55 (1H, dd, J=8.8, 9.5 Hz, 2'-H); **1a**: δ 4.54 (1H, dd, $J=8.5$, 9.2 Hz, 2'-H)], and two aromatic protons $[1: \delta \, 6.43 \, (1H, d, J=8.1 \, Hz, 6-H), 6.91 \, (1H, d,$ *J*=8.1 Hz, 5-H); **1a**: δ 6.19 (1H, d, *J*=7.9 Hz, 6-H), 6.79 (1H, d, $J=7.9$ Hz, 5-H)] together with an β -D-glucopyranosyl part $[1: \delta$ 4.86 (1H, d, J=7.3 Hz, Glc-1-H)]. The planar

structure of 1 was constructed on the basis of the ${}^{1}H-{}^{1}H$ correlation spectroscopy $(^1H-^{1}H$ COSY) and heteronuclear multiple bond correlation (HMBC) experiments as shown in Fig. 1. Thus, the ¹ H–¹ H COSY experiment of **1** indicated the presence of partial structures in bold lines (C-5—C-6, C-7— C-8, C-1' $-C$ -2', and Glc-C-1 $-C$ lc-C-6). In the HMBC experiment of **1**, long-range correlations were observed between the following protons and carbons: 5-H and 1, 4-C; 6- H and 2, 4, 7-C; 7-H₂ and 1, 2, 6-C; 8-H₂ and 1, 9-C; 1'-H₂ and 3-C; 2'-H and 3, 4, 3'-5'-C; 4'-H and 2', 3', 5'-C; 5'-H and $2'-4'-C$; Glc-1-H and 2-C (Fig. 1), so that the connectivities of the quaternary carbons, the substitution pattern of the aromatic ring, and the position of the glycosidic linkage in **1**, were clarified. Consequently, the structure of hyuganoside II (**1**) was determined.

Structures of Hyuganosides IIIa (2) and IIIb (3) Hyuganosides IIIa (**2**) and IIIb (**3**) were obtained as a white powder with negative optical rotation $(2: [\alpha]_D^{25} - 6.1^\circ, 3)$: $[\alpha]_D^{25}$ – 16.9°, both in MeOH), respectively. The IR spectrum of **2** showed absorption bands at 3410, 1607, 1508, 1076, and 1032 cm⁻¹ ascribable to hydroxyl, aromatic, and ether functions. In the UV spectrum of **2**, an absorption maximum was observed at 267 ($log \varepsilon$ 4.16) nm. The IR and UV spectra of 3 resembled those of **2** [IR: 3432, 1603, 1508, 1076, and 1030 cm-1 , UV: 270 (3.96) nm]. The positive- and negativeion FAB-MS of **2** and **3** showed the same quasimolecular ion peaks at m/z 561 (M+Na)⁺ and 537 (M-H)⁻, and high-resolution MS analysis revealed the molecular formula of **2** and **3** to be $C_{26}H_{34}O_{12}$. Acid hydrolysis of **2** and **3** with 1.0 M HCl liberated D-glucose.^{8,9)} The ¹H-NMR (DMSO- d_6) and ¹³C-NMR (Table 1) spectra¹⁰⁾ of 2 showed signals assignable to two methylenes and two methines bearing an oxygen function δ 3.60 (2H, br s, 9-H₂), 4.18, 4.40 (1H each, both br dd, *Jca.* 6, 13 Hz, 9-H2), 4.31 (1H, br q, *Jca.* 5 Hz, 8-H), 4.70 (1H, br s, 7-H)], two methoxyl protons $\lceil \delta \rceil$ 3.72, 3.73 (3H each, both s, 3, 3'-OCH₃)], two *trans*-olefinic protons δ 6.21 (1H, ddd, J=5.8, 6.1, 15.9 Hz, 8'-H), 6.54 (1H, brd, $J=ca$. 16 Hz, 7'-H)], and six aromatic protons [δ 6.67 (1H, d, *J*=7.9 Hz, 5-H), 6.77 (1H, dd, *J*=1.5, 7.9 Hz, 6-H), 6.86 $(1H, dd, J=1.5, 8.5 Hz, 6' - H), 6.92 (1H, d, J=8.5 Hz, 5' - H),$ 6.99 (1H, d, J=1.5 Hz, 2-H), 7.00 (1H, d, J=1.5 Hz, 2'-H)] together with an β -D-glucopyranosyl part [δ 4.21 (1H, d, $J=7.6$ Hz, Glc-1-H)]. As shown in Fig. 1, the $\mathrm{^{1}H-^{1}H}$ correlation spectroscopy (¹ H–¹ H COSY) experiment on **2** indicated the presence of partial structures written in the bold lines and the HMBC experiment were observed between the following proton and carbon pairs of **2** (2-H and 3, 4, 6, 7-C; 5-H and 4, 1-C; 6-H and 2, 7-C; 7-H and 1, 2, 6-C; 8-H and 4-C; 2- H and 3', 4', 6', 8'-C; 5'-H and 1', 3', 4'-C; 6'-H and 2', 4', $7'$ -C; $7'$ -H and $1'$, $6'$ -C; $8'$ -H and $1'$, $2'$ -C; Glc-1-H and $9'$ -C; 3-OC H_3 and 3-C; 3'-OC H_3 and 3'-C). The stereostructure

Table 1. 13C-NMR Data for Hyuganosides II (**1**), IIIa (**2**), and IIIb (**3**), and Hyuganol II (**1a**)

	1 ^a	$1a^{a}$	$2^{b)}$	3 ^b
$C-1$	126.2	121.7	133.1	132.8
$C-2$	153.1	152.8	111.6	110.9
$C-3$	118.7	114.4	146.9	146.9
$C-4$	161.8	161.2	145.4	145.3
$C-5$	105.6	101.7	114.6	114.6
$C-6$	130.4	130.4	119.5	118.9
$C-7$	26.7	26.8	71.7	70.9
$C-8$	36.4	37.3	83.8	84.2
$C-9$	178.1	179.9	60.2	60.0
$C-1'$	30.9	29.4	129.7	129.6
$C-2'$	90.8	90.7	110.2	109.8
$C-3'$	72.6	72.6	149.7	149.6
$C-4'$	25.3	25.1	147.9	148.1
$C-5'$	25.4	25.4	115.7	115.3
$C-6'$			119.3	119.3
$C-7'$			131.3	131.3
$C-8'$			124.0	124.0
$C-9'$			68.7	68.7
$3-OCH3$			55.5	55.3
$3'$ -OCH ₃			55.6	55.5
$Glc-1$	103.8		102.0	102.0
Glc-2	75.6		73.5	73.4
Glc-3	78.1		76.7	76.7
$Glc-4$	71.5		70.2	70.0
Glc-5	78.2		76.8	76.8
Glc-6	62.7		61.1	61.0

Measured in *a*) $CD₃OD$ and *b*) $DMSO-d₆$.

of the 7 and 8-positions in **2** was clarified by the nuclear Overhauser enhancement spectroscopy (NOESY) experiment on the acetonide derivative (**2b**). Namely, enzymatic hydrolysis of 2 with β -glucosidase followed by treatment with 2,2dimethoxypropane in the presence of *p*-toluene sulfonic acid (*p*-TsOH) yielded the 7,9-acetonide derivative (**2b**). The NOESY experiment on **2b** showed NOE correlations as shown in Fig. 2, so that the stereostructure of the 7 and 8-positions in **2** was determined to be the *erythro*-form.

On the other hand, the proton and carbon signals of **3** in ¹H-NMR (DMSO- d_6) and ¹³C-NMR (Table 1) spectra¹⁰⁾ were almost superimposable on those of **2** {two methylenes and two methines bearing an oxygen function δ 3.25, 3.58 (1H) each, both m, 9-H₂), 4.18, 4.42 (1H each, both br dd, $J=ca$. 6, 13 Hz, 9-H2), 4.28 (1H, br q, *Jca.* 5 Hz, 8-H), 4.71 (1H, br s, 7-H)], two methoxyl protons δ 3.72, 3.80 (3H each, both s, 3, 3'-OCH₃)], two *trans*-olefinic protons [δ 6.24 (1H, ddd, *J*5.6, 6.1, 15.9 Hz, 8-H), 6.56 (1H, br d, *Jca.* 16 Hz, $7'$ -H)], and six aromatic protons δ 6.68 (1H, d, J=8.1 Hz, 5-H), 6.76 (1H, dd, *J*1.2, 8.1 Hz, 6-H), 6.89 (1H, br d, *Jca.* 8 Hz, 6'-H), 6.98 (1H, d, J=8.2 Hz, 5'-H), 6.97 (1H, br s, 2-H), 7.06 (1H, d, $J=1.2$ Hz, 2'-H)], and an β -D-glucopyra-

Fig. 2

nosyl part $\lceil \delta 4.21 \rceil$ (1H, d, J=7.6 Hz, Glc-1-H)]}. By various 2D-NMR experiments, the planar structure of **3** was elucidated to be the same structure of 2. Treatment of 3 with β glucosidase furnished its aglycon $(3a)$,¹¹⁾ and the stereostructure of **3** was determined to be the 7,8-*threo*-form.

Experimental

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter ($l=5$ cm); UV spectra, Shimadzu UV-1600 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; EI-MS and high-resolution MS, JEOL JMS-GCMATE mass spectrometer; FAB-MS and high-resolution MS, JEOL JMS-SX 102A mass spectrometer; ¹H-NMR spectra, JNM-LA500 (500 MHz) spectrometer; ¹³C-NMR spectra, JNM-LA500 (125 MHz) spectrometer with tetramethylsilane as an internal standard; and HPLC detector, Shimadzu RID-6A refractive index, Shimadzu SPD-10A*vp* UV-VIS, and Shodex OR-2 optical rotation detectors.

The following experimental conditions were used for chromatography: ordinary-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150—350 mesh); reversed-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh); TLC, precoated TLC plates with Silica gel $60F_{254}$ (Merck, 0.25 mm) (ordinary phase) and Silica gel RP-18 F_{254S} (Merck, 0.25 mm) (reverse phase); reverse-phase HPTLC, precoated TLC plates with Silica gel RP-18 WF_{254S} (Merck, 0.25 mm); and detection was achieved by spraying with 1% $Ce(SO₄)₂$ -10% aqueous $H₂SO₄$, followed by heating.

Extraction and Isolation The extraction and isolation from the fresh roots of *A. furcijuga* KITAGAWA (cultivated in Miyazaki prefecture, Japan) were described in our previous paper.^{1,2)} The methanolic extract from the fresh roots of *A. furcijuga* was subjected to Diaion HP-20 column chromatography to afford H₂O-eluted fraction and three fractions (Fr. $1-3$). Fraction 2 was separated by ordinary- and reversed-phase column chromatographies to give five fractions (Fr. 2-7-1—2-7-5).^{1,2)} Fraction 2-7-3 (554 mg) was purified by HPLC [detection: RI, column: YMC-pack R&D-ODS-5-A, 20×250 mm i.d. (YMC Co., Ltd., Japan), mobile phase: MeOH–H₂O (30:70, v/v) and 2-PrOH–H₂O (10:90, v/v)] to give hyuganosides II (**1**, 93 mg, 0.003% from the fresh roots), IIIa (**2**, 25 mg, 0.0008%), and IIIb (3, 44 mg, 0.001%) together with $4-[β -D-apiofuranosyl-(1→6)- β -D$ glucopyranosyloxy]-3-methoxypropiophenone (**4**, 30 mg, 0.0009%), hymexelsin (5, 18 mg, 0.0006%), and (R)-peucedanol 7-O- β -D-glucopyranoside (ϵ), 120 mg, 0.004%).

Compounds **4**—**6** were identified by comparison of its physical data $([\alpha]_D, MS, {}^{1}H_{\text{-}}$, and ${}^{13}C\text{-NMR}$) with reported values.^{1,7)}

Hyuganoside II (1): A white powder, $[\alpha]_D^{25} + 8.7^{\circ}$ (*c*=1.11, MeOH). Highresolution positive-ion FAB-MS: Calcd for $C_{20}H_{28}O_{10}Na$ $(M+Na)^+$: 451.1580. Found: 451.1576. UV (MeOH, nm, log ^e): 230 (sh, 3.82), 285 (3.43), 323 (3.24). IR (KBr): 3410, 1719, 1708, 1613, 1560, 1509, 1075, 812 cm^{-1} . ¹H-NMR (500 MHz, CD₃OD) δ : 1.22, 1.24 (3H each, both s, 3'*gem*-CH3), [2.55 (1H, br dd, *Jca.* 7, 16 Hz), 2.60 (1H, br dd, *Jca.* 8, 16 Hz), 8-H₂], [2.89 (1H, ddd, J=7.6, 7.9, 14.4 Hz), 2.97 (1H, ddd, J=7.0, 7.3, 14.4 Hz), 7-H₂, [3.29 (1H, dd, J=8.8, 16.2 Hz), 3.35 (1H, dd, J=9.5, 16.2 Hz), 1'-H₂], [3.70 (1H, dd, J=5.2, 11.9 Hz), 3.85 (1H, dd, J=2.4, 11.9 Hz), Glc-6-H₂], 4.55 (1H, dd, J=8.8, 9.5 Hz, 2'-H), 4.86 (1H, d, *J*=7.3 Hz, Glc-1-H), 6.43 (1H, d, *J*=8.1 Hz, 6-H), 6.91 (1H, d, *J*=8.1 Hz, 5-H). ¹³C-NMR (125 MHz, CD₃OD) δ_c : given in Table 1. Positive-ion FAB-MS: m/z 857 (2M+H)⁺, 451 (M+Na)⁺. Negative-ion FAB-MS m/z : 855 $(2M-H)^{-}$, 427 $(M-H)^{-}$, 265 $(M-C_6H_{11}O_5)^{-}$.

Hyuganoside IIIa (2): A white powder, $[\alpha]_D^{25}$ -6.1° (*c*=0.22, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{26}H_{34}O_{12}Na$ (M+Na)⁺: 561.1948. Found: 561.1953. UV (MeOH, nm, log ^e): 267 (4.16). IR (KBr): 3410, 1607, 1508, 1076, 1032 cm⁻¹. ¹H-NMR (500 MHz, DMSO-d₆) δ: 3.46, 3.69 (1H each, both br d, $J=ca$. 12 Hz, Glc-6-H₂), 3.60 (2H, br s, 9-H₂), 3.72, 3.73 (3H each, both s, 3, 3'-OCH₃), 4.18, 4.40 (1H each, both br dd, $J = ca$. 6, 13 Hz, 9'-H₂), 4.21 (1H, d, $J = 7.6$ Hz, Glc-1-H), 4.31 (1H, br q, *Jca.* 5 Hz, 8-H), 4.70 (1H, br s, 7-H), 6.21 (1H, ddd, *J*5.8, 6.1, 15.9 Hz, 8'-H), 6.54 (1H, br d, *J*=ca. 16 Hz, 7'-H), 6.67 (1H, d, *J*=7.9 Hz, 5-H), 6.77 (1H, dd, J=1.5, 7.9 Hz, 6-H), 6.86 (1H, dd, J=1.5, 8.5 Hz, 6'-H), 6.92 (1H, d, J=8.5 Hz, 5'-H), 6.99 (1H, d, J=1.5 Hz, 2-H), 7.00 (1H, d, $J=1.5$ Hz, 2'-H). ¹³C-NMR (125 MHz, DMSO- d_6) δ_c : given in Table 1. Positive-ion FAB-MS: m/z 561 $(M+Na)^+$ Negative-ion FAB-MS m/z : 537 $(M-H)^{-}$.

Hyuganoside IIIb (3): A white powder, $[\alpha]_D^{23} - 16.9^\circ$ (*c*=0.51, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{26}H_{34}O_{12}Na$ (M+Na)⁺: 561.1948. Found: 561.1961. UV (MeOH, nm, log ^e): 270 (3.96). IR (KBr): 3432, 1603, 1508, 1076, 1030 cm⁻¹. ¹H-NMR (500 MHz, DMSO- d_6) δ : 3.25, 3.58 (1H each, both m, 9-H₂), [3.45 (1H, dd, J=6.3, 10.6 Hz), 3.69 (1H, br d, $J = ca$. 11 Hz), Glc-6-H₂], 3.72, 3.80 (3H each, both s, 3,3'-OCH₃), 4.18, 4.42 (1H each, both br dd, *Jca.* 6, 13 Hz, 9-H2), 4.21 (1H, d, *J*7.6 Hz, Glc-1-H), 4.28 (1H, br q, *Jca.* 5 Hz, 8-H), 4.71 (1H, br s, 7-H), 6.24 (1H, ddd, *J*=5.6, 6.1, 15.9 Hz, 8'-H), 6.56 (1H, br d, *J*=ca. 16 Hz, 7'-H), 6.68 (1H, d, $J=8.1$ Hz, $5-H$), 6.76 (1H, dd, $J=1.2$, 8.1 Hz, $6-H$), 6.89 (1H, br d, *J*=ca. 8 Hz, 6'-H), 6.98 (1H, d, *J*=8.2 Hz, 5'-H), 6.97 (1H, br s, 2-H), 7.06 (1H, d, $J=1.2$ Hz, 2'-H). ¹³C-NMR (125 MHz, DMSO- d_6) δ_c : given in Table 1. Positive-ion FAB-MS: m/z 561 (M+Na)⁺. Negative-ion FAB-MS m/z : 537 (M-H)⁻.

Acid Hydrolysis of 1—3 A solution of **1—3** (2.0 mg each) in 1.0 ^M HCl (0.1 ml) were heated under reflux for 1 h. After cooling, the reaction mixture was extracted with AcOEt (0.1 ml). The H_2O layer was analyzed by HPLC under the following conditions [detection: optical rotation, column: Kaseisorb LC NH₂-60-5, 4.6×250 mm i.d., 5μ m (Tokyo Kasei Kogyo Co., Ltd., Japan), mobile-phase: CH₃CN–H₂O (3 : 1, v/v), flow rate: 0.8 ml/min, injection volume: $10 \mu l$, column temperature: room temperature]. Identification of D -glucose present in the H_2O layer was carried out by comparison of its retention time and optical rotation with that of authentic sample. t_R : 12.3 min (D-glucose, positive optical rotation).

Enzymatic Hydrolysis of 1 A solution of **1** (12.6 mg, 0.029 mmol) in 0.2 M acetate buffer (pH 3.8, 1.5 ml) was treated with naringinase (15.0 mg, Sigma), and the solution was stood at 38 °C for 24 h. After treatment of the reaction mixture with EtOH, the mixture was evaporated to dryness under reduced pressure and the residue was purified by ordinary-phase silica gel column chromatography [1.0 g, CHCl₃-MeOH-H₂O (10:3:1, v/v/v, lower layer)] to give hyuganol II (**1a**, 7.8 mg, quant.).

Hyuganol II (1a): A white powder, $[\alpha]_D^{25} + 47.3^{\circ}$ (*c*=0.41, MeOH). Highresolution EI-MS: Calcd for $C_{14}H_{18}O_5$ (M⁺): 266.1154. Found: 266.1156. UV (MeOH, nm, log ε): 215 (3.94), 227 (sh, 3.77), 281 (3.11). IR (KBr): 3400, 1718, 1701, 1611, 1560, 1508, 1061, 798 cm⁻¹. ¹H-NMR (500 MHz, CD₃OD) δ: 1.21, 1.23 (3H each, both s, 3'-gem-CH₃), 2.51 (2H, t, *J*=7.2 Hz, 8-H₂), 2.78 (2H, t, J=7.2 Hz, 7-H₂), [3.03 (1H, dd, J=8.5, 15.6 Hz), 3.07 (1H, dd, J=9.2, 15.6 Hz), 1'-H₂], 4.54 (1H, dd, J=8.5, 9.2 Hz, 2'-H), 6.19 (1H, d, *J*=7.9 Hz, 6-H), 6.79 (1H, d, *J*=7.9 Hz, 5-H). ¹³C-NMR (125 MHz, CD₃OD) δ_c : given in Table 1. EI-MS m/z (%): 266 (M⁺, 11), 248 $(M⁺-H₂O, 30), 190 (100).$

Preparation of Acetonide Derivative (2b) A solution of **2** (5.4 mg, 0.010 mmol) in 0.2 M acetate buffer (pH 4.4, 1.0 ml) was treated with β -glucosidase (5.0 mg, Oriental Yeast Co., Ltd., Japan), and the solution was stood at 38 °C for 15 h. After treatment of the reaction mixture with EtOH, the mixture was evaporated to dryness under reduced pressure, and the residue was purified by ordinary-phase silica gel column chromatography [0.5 g, CHCl₃–MeOH–H₂O (10 : 3 : 1, v/v/v, lower layer)] to give an aglycon $(2a, 3.7 \text{ mg}, \text{quant.})$.¹¹ $2a: [\alpha]_D^{24} - 2.3^{\circ}$ (*c*=0.19, MeOH). High-resolution EI-MS: Calcd for $C_{20}H_{24}O_7$ (M⁺): 376.1522. Found: 376.1514. UV (MeOH, nm, log ^e): 270 (4.60). IR (KBr): 3450, 1654, 1564, 1509, 1270, 1135, 1030 cm⁻¹. EI-MS m/z (%): 376 (M⁺, 9), 358 (M⁺-H₂O, 43), 206 (65), 180 (53), 163 (22), 153 (22), 137 (100), 124 (53), 91 (67), 77 (48). A solution of **2a** (2.0 mg, 0.005 mmol) in dry-DMF (0.3 ml) was treated with 2,2 dimethoxypropane (0.1 ml) and *p*-toluensulfonic acid (*ca.* 2 mg), and the mixture was stirred at room temperature for 1 h. The reaction mixture was poured into H2O and the whole was extracted with AcOEt. The AcOEt extract was treated in the usual manner to give a residue, which was purified by ordinary-phase silica gel column chromatography $[0.5 \text{ g}, \text{CHCl}_3$ -MeOH–H₂O (30 : 3 : 1, v/v/v, lower layer)] to give an acetonide derivative (**2b**, 2.2 mg, quant.).

2b: Colorless oil. ¹H-NMR (500 MHz, CDCl₃) δ : 1.51, 1.63 (3H each, both s, $-CH_{3\alpha}$, $-CH_{3\alpha}$, 3.77, 3.84 (3H each, both s, 3, 3'-OCH₃), 4.00 (1H, dd, J = 8.7, 10.8 Hz, 9-H_{ax}), 4.15 (1H, ddd, J = 3.7, 8.7, 8.8 Hz, 8-H), 4.16 (1H, dd, $J=3.7$, 10.8 Hz, 9-H_{eq}), 4.28 (2H, br d, $J=ca$. 6 Hz, 9'-H₂), 4.88 (1H, d, $J=8.8$ Hz, 7-H), 6.19 (1H, td, $J=5.7$, 15.9 Hz, 8'-H), 6.44 (1H, d, *J*=8.2 Hz, 5'-H), 6.47 (1H, br d, *J*=ca. 16 Hz, 7'-H), 6.72 (1H, dd, *J*=2.1, 8.2 Hz, 6'-H), 6.83 (1H, d, J=2.1 Hz, 2'-H), 6.86 (1H, d, J=8.1 Hz, 5-H), 6.99 (1H, d, J=1.8 Hz, 2-H), 7.02 (1H, dd, J=1.8, 8.1 Hz, 6-H).

Enzymatic Hydrolysis of 3 A solution of **3** (6.0 mg, 0.022 mmol) in 0.2 M acetate buffer (pH 4.4, 1.0 ml) was treated with β -glucosidase (5.0 mg,

Oriental Yeast Co., Ltd., Japan), and the solution was stood at 38 °C for 15 h. After treatment of the reaction mixture with EtOH, the mixture was evaporated to dryness under reduced pressure, and the residue was purified by ordinary-phase silica gel column chromatography [0.5 g, CHCl₃-MeOH-H₂O $(10:3:1, v/v/v,$ lower layer)] to give an aglycon $(3a, 7.2 \text{ mg}, 86.4\%)$.¹¹⁾ $3a$: $[\alpha]_D^{24}$ – 7.8° (*c*=0.20, MeOH). High-resolution EI-MS: Calcd for C₂₀H₂₄O₇ (M^+): 376.1522. Found: 376.1528. UV (MeOH, nm, $\log \varepsilon$): 272 (4.73). IR (KBr): 3453, 1655, 1561, 1509, 1271, 1136, 1032 cm⁻¹. EI-MS m/z (%): 376 (M⁺, 6), 358 (M⁺ $-H_2O$, 9.2), 206 (45), 180 (56), 163 (23), 153 (51), 137 (100), 124 (57), 91 (43), 77 (51). The aglycon (**3a**) was identified by comparison of the 1 H- and 13 C-NMR data with reported values.¹¹⁾

References and Notes

- 1) Matsuda H., Murakami T., Nishida N., Kageura T., Yoshikawa M., *Chem. Pharm. Bull.*, **48**, 1429—1435 (2000).
- 2) Matsuda H., Murakami T., Kageura T., Ninomiya K., Toguchida I., Nishida N., Yoshikawa M., *Bioorg. Med. Chem. Lett.*, **8**, 2191—2196 (1998).
- 3) Matsuda H., Morikawa T., Tao J., Ueda K., Yoshikawa M., *Chem. Pharm. Bull.*, **50**, 208—215 (2002).
- 4) Tao J., Morikawa T., Toguchida I., Ando S., Matsuda H., Yoshikawa M., *Bioorg. Med. Chem.*, **10**, 4005—4012 (2002).
- 5) Morikawa T., Tao J., Toguchida I., Matsuda H., Yoshikawa M., *J. Nat. Prod.*, **66**, 86—91 (2003).
- 6) Morikawa T., Tao J., Ueda K., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **51**, 62—67 (2003).
- 7) Yuan Z., Tezuka Y., Kadota S., Li X., *Chem. Pharm. Bull.*, **50**, 73—77 (2002).
- 8) Yoshikawa M., Morikawa T., Kashima Y., Ninomiya K., Matsuda H., *J. Nat. Prod.*, **66**, 922—927 (2003).
- 9) Morikawa T., Sun B., Matsuda H., Wu L. J., Harima S., Yoshikawa M., *Chem. Pharm. Bull.*, **52**, 1194—1199 (2004).
- 10) The ¹ H- and 13C-NMR spectra of **1**—**3**, and **1a** were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), homo- and hetero-correlation spectroscopy $(^1H-^{1}H, ^{13}C-^{1}H$ COSY), and HMBC experiments.
- 11) Li S., Lundquist K., Wallis A. F. A., *Phytochemistry*, **49**, 2125—2128 (1998).