Triterpenoid Saponins from Leaves of Hedera pastuchowii

Vakhtang Mshvildadze,^{*a*} Riad Elias,^{*,*b*} Robert Faure,^{*c*} David Rondeau,^{*d*} Laurent Debrauwer,^{*e*} Genri Dekanosidze,^{*a*} Ether Kemertelidze,^{*a*} and Guy Balansard^{*b*}

^a Institute of Pharmacochemistry, Academy of Sciences of Georgia; 36, St. P. Sarajishvili, 380059 Tbilisi, Georgia: ^b Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de la Méditerranée; 27 Boulevard Jean Moulin, 13385 Marseille, cedex 5, France: ^c UMR 6009, Université d'Aix-Marseille III, Avenue Escadrille Normandie Niemen; 13397 Marseille, cedex 20, France: ^d Service Commun d'Analyses Spectroscopiques, Université d'Angers; 2 Bd Lavoisier, 49045 Angers cedex, France: and ^e INRA Centre de Recherche de Toulouse, Laboratoire des Xénobiotiques; 180, chemin de Tournefeuille, BP 3, 31931 Toulouse, France. Received April 5, 2004; accepted July 29, 2004

Five new triterpenoid saponins, pastuchoside A (1), B (3), C (5), D (7) and E (9), were isolated from the leaves of *Hedera pastuchowii*. They have oleanolic acid or hederagenin as aglycone. The structures were established by NMR spectroscopy including gs (gradient selected)-COSY, gs-HSQC, gs-HSQC-TOCSY and gs-HMBC experiments, and mass spectrometry (ESI-HR-MS). Heptaoside saponins, compounds 1 and 3, are described for the first time in the genus *Hedera*.

Key words Hedera pastuchowii; Araliaceae; triterpenoid saponin; NMR; MS; pastuchoside

In the course of our phytochemical investigation of *Hedera* genus growing in Georgia,¹⁾ we have previously reported the isolation of triterpene saponins from leaves and berries of *Hedera colchica*^{2,3)} and their biological activities *in vitro*. α -Hederin and hederacolchiside A were the more active against *Candida glabra* (LD₁₀₀=6.25 µg/ml) and dermatophytes sp. (LD₁₀₀=12.5 µg/ml).⁴⁾ The antileishmanial activity of α -hederin, β -hederin and hederacolchiside A₁ in association with Pentamidine and Amphotericin B showed that subtoxic concentrations of these saponins enhance the efficiency of Pentamidine and Amphotericin B on the promastigote and the amastigote forms of the parasites.^{5,6)}

Hederacolchiside A_1 was strongly cytotoxic against malignant melanoma M_4 Beu (IC₅₀=5 μ M).⁷⁾ This saponin exhibits a preferential cytotoxicity on pigmented melanoma cells and interacts specifically with melanin.⁸⁾ *Hedera helix* saponins were found to have acute and chronic anti-inflammatory effects in rats.⁹⁾

In this paper we describe the isolation and structure determination of five new triterpene saponins, named pastuchosides A (1), B (3), C (5), D (7) and E (9), from the microwave dried leaves of *H. pastuchowii* (Fig. 1). Their structures were established on the basis of various 2D-NMR experiments (COSY, HSQC, HSQC-TOCSY and HMBC). Saponins with seven sugars, compounds 1 and 3, are reported for the first time in the genus *Hedera*. In addition, four known saponins, hederacolchiside F (2),¹⁰ hederacolchiside E (4),¹¹ hederasaponin C (6)¹² and hederasaponin B (8),¹³ were isolated from this plant.

Pastuchoside B (3) was assigned the molecular formula $C_{71}H_{116}O_{34}$ by electrospray ionisation high-resolution mass spectrometry (ESI-HR-MS) ([M+Na]⁺ quasi-molecular ion at m/z 1535.7280; $C_{71}H_{116}NaO_{34}$ requires m/z 1535.7246). Acid hydrolysis of 3 yielded arabinose, glucose and rhamnose as sugars identified by TLC and oleanolic acid as a genin moiety. The ¹³C-NMR spectrum exhibited seven anomeric carbons located at δ 105.7, 105.2, 104.3, 102.9, 102.9, 102.0 and 95.8 (Table 1). The resonances of C-3 at δ 90.6 and C-28 at δ 178.1 for pastuchoside B (3) were characteristic of a bisdesmoside. Interglycosidic and sugar-agly-

cone linkages as well as signal and structural assignments of the sugars were deduced on the basis of the following arguments. First of all, the gs (gradient selected)-HSQC¹⁴⁾ spectral analysis displayed the connectivities network for the anomeric atoms. Then, a gs-HSQC-TOCSY¹⁵ experiment showed for each sugar residue the intra-correlated peaks between anomeric proton and sugar carbons (Table 1). To illustrate this strategy, only four carbon signals at δ 79.1 (CH), 77.0 (CH), 73.4 (CH) and 64.1 (CH₂) showed correlations with the anomeric proton at δ 4.49 (J=6.0 Hz). The above evidence (number and nature of carbons, chemical shifts and coupling constants) indicated that this sugar was an α -Larabinopyranosyl residue. Subsequent examination of the HSQC-TOCSY diagram also indicated the occurrence of three glucose and three rhamnose units (Table 1). It should be noted that the HSQC-TOCSY sequence is more helpful than normal TOCSY for structural elucidation of numerous sugar chains, since severe crowding of sugar resonances occurs in the ¹H-NMR spectrum with increasing monosaccha-

Fig. 1. Triterpenoid Glycosides Isolated from the Leaves of *Hedera pastu-chowii*

ride groups. The sequence and linkage site of the sugar moieties were established using long-range correlation peaks observed in the gs-HMBC¹⁶⁾ diagram (Fig. 2). The HMBC spectrum showed correlations between C-3 (δ 90.6) of oleanolic acid and H-1 (δ 4.49) of the arabinose, between C-2 (δ 77.1) and C-4 (δ 79.1) of the arabinose and H-1 (δ 5.20) of the first rhamnose and H-1 (δ 4.48) of the first glucose, respectively, and between C-4 (δ 79.3) of the first glucose and H-1 (δ 4.87) of the second rhamnose. Similarly, the sequence of the trisaccharide chain at C-28 was indicated by the cross peaks between C-6 (δ 69.4) of the second glucose and H-1 (δ 4.42) of the third glucose, C-4 (δ 79.5) of the third glucose and H-1 (δ 4.86) of the third rhamnose. A cross peak between H-1 (δ 5.38) of the second glucose and the ¹³C resonance of the aglycone carboxy group (δ 178.1) provided definitive evidence for an ester linkage between this trisaccharide chain and the genin. The complementary data from the gs-COSY spectrum was used to obtain a full assignment of the proton resonances (Table 2). Finally, the anomeric configuration for individual monosaccharides

Table 1. Anomeric Proton Connectivities from gs-HSQC and gs-HSQC-TOCSY for Pastuchoside B (3) (δ in ppm, CD₃OD)

l_1	¹³ C					
	HSQC	HSQC-TOCSY				
5.38, d, <i>J</i> =8.1 Hz	95.8	78.2; 78.1; 73.8; 70.9; 69.4				
5.20, d, <i>J</i> =1.2 Hz	102.0	73.9; 72.1; 72.1; 70.2; 18.0				
4.8', d, $J=1.5$ Hz	102.9	73.7; 72.4; 72.2; 70.6; 17.9				
4.86, d, $J=1.5$ Hz	102.9	73.7; 72.4; 72.2; 70.6; 17.9				
4.49, d, $J=6.0$ Hz	105.2	79.1; 77.0; 73.4; 64.1				
4.48, d, <i>J</i> =7.8 Hz	105.7	79.3; 76.9; 76.5; 75.4; 61.9				
4.42, d, <i>J</i> =7.5 Hz	104.3	79.5; 76.8; 76.7; 75.2; 61.9				

Table 2. ¹H-NMR Data for Sugar Moieties of Saponins 1 and 3 (CD₃OD)

was deduced from the magnitude of the coupling constants of anomeric protons and ¹³C-NMR data. Based upon the above observations, the structure of **3** was elucidated as 3β -O-{ α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl-(1 \rightarrow 4)]- α -L-arabinopyranosyl}-28-O-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl]-oleanolate.

The molecular formula of pastuchoside A (1) was de duced to be $C_{71}H_{116}O_{35}$ from ESI-HR-MS (measured mass: 1551.7191; theoretical mass for $C_{71}H_{116}NaO_{35}$: 1551.7195). TLC analysis of acid hydrolysis yielded glucose, rhamnose and arabinose as sugars and hederagenin as an aglycone. The ¹³C-NMR spectrum of the sugar moiety (Table 3) were similar to the data previously determined for pastuchoside B. Sugar arrangement was, consequently, the same for both

Fig. 2. Selected gs-HMBC Correlations $(H\rightarrow C)$ Showing Interglycosidic Sugar Linkage for Pastuchoside B (3)

Sugar on C-3 ^{a)}		1	Sugar on C-28 ^{<i>a</i>})	3		1	3
ara	1	4.49	4.47	glc	1	5.38	5.38
	2	3.78	3.77		2	3.35	3.36
	3	3.83	3.83		3	3.43	3.42
	4	3.91	3.93		4	3.41	3.41
	5	4.14; 3.58	4.15; 3.57		5	3.55	3.55
					6	4.11; 3.82	4.12; 3.83
rham	1	5.20	5.19				
	2	3.93	3.94	glc	1	4.42	4.43
	3	3.72	3.71	-	2	3.26	3.25
	4	3.40	3.40		3	3.48	3.48
	5	3.89	3.89		4	3.55	3.56
	6	1.20	1.22		5	3.38	3.38
					6	3.85; 3.67	3.85; 3.66
glc	1	4.48	4.46				
-	2	3.34	3.33	rham	1	4.86	4.84
	3	3.50	3.48		2	3.66	3.67
	4	3.59	3.59		3	3.85	3.85
	5	3.32	3.34		4	3.41	3.41
	6	3.85; 3.67	3.86; 3.66		5	4.00	4.02
		,	,		6	1.21	1.20
rham	1	4.87	4.87				
	2	3.64	3.64				
	3	3.85	3.86				
	4	3.41	3.40				
	5	3.98	3.99				
	6	1.21	1.21				

a) ara = α -L-arabinopyranosyl; glc= β -D-glucopyranosyl; rham = α -L-rhamnopyranosyl

December	2004
----------	------

Table 3. ¹³C-NMR Data for Sugar Moieties of Saponins 1, 3, 5, 7 and 9 (CD_3OD)

	1			3			5			7			9	
Sugar on C-3 ^a)													
ara	1	105.2	ara	1	105.2	ara	1	105.2	ara	1	105.2	ara	1	105.2
	2	77.1		2	77.0		2	76.9		2	77.1		2	77.0
	3	73.4		3	73.4		3	73.4		3	73.3		3	73.4
	4	79.1		4	79.1		4	77.8^{b}		4	77.8^{b}		4	77.9^{b}
	5	64.2		5	64.1		5	64.2		5	64.2		5	64.1
rham	1	102.0	rham	1	102.0	rham	1	101.9	rham	1	101.9	rham	1	102.0
	2	72.1		2	72.1		2	72.1		2	72.1		2	72.1
	3	72.1		3	72.1		3	72.1		3	72.1		3	72.1
	4	73.9		4	73.9		4	73.9		4	73.9		4	73.9
	5	70.2		5	70.2		5	70.1		5	70.2		5	70.2
	6	18.0		6	18.0		6	17.9		6	17.9		6	17.9
glc	1	105.7	glc	1	105.7	glc	1	106.1	glc	1	105.9	glc	1	106.0
	2	75.4		2	75.4		2	75.3		2	75.3		2	75.3
	3	76.5		3	76.5		3	77.9^{b}		3	77.8^{b}		3	77.8^{b}
	4	79.3		4	79.3		4	71.3		4	71.4		4	71.5
	5	76.9		5	76.9		5	78.0^{b}		5	78.0^{b}		5	$78.0^{b)}$
	6	61.9		6	61.9		6	62.6		6	62.7		6	62.7
rham	1	102.9	rham	1	102.9									
	2	72.2		2	72.2									
	3	72.4		3	72.4									
	4	73.8		4	73.7									
	5	70.7		5	70.6									
	6	17.9		6	17.9									
Sugar on C-28	<i>a</i>)													
glc	1	95.8	glc	1	95.8	glc	1	95.7	glc	1	95.7	glc	1	95.7
U	2	73.8	e	2	73.8	U	2	73.8	U	2	73.8	U	2	73.9
	3	78.2		3	78.2		3	78.1^{b}		3	78.2^{b}		3	78.2
	4	70.9		4	70.9		4	70.9		4	73.9		4	71.1
	5	78.1		5	78.1		5	78.1^{b}		5	78.1^{b}		5	78.6
	6	69.4		6	69.4		6	69.5		6	69.5		6	62.9
glc	1	104.3	glc	1	104.3	glc	1	104.6	glc	1	104.7			
0	2	75.3	8	2	75.3	0	2	75.1	8	2	75.1			
	3	76.8		3	76.8		3	79.7		3	78.9			
	4	79.5		4	79.5		4	71.5		4	71.5			
	5	76.7		5	76.7		5	78.0^{b}		5	78.0^{b}			
	6	61.9		6	61.9		6	62.7		6	62.7			
rham	1	102.9	rham	1	102.9		Ũ	0217		Ũ	0217			
	2	72.2		2	72.2									
	3	72.4		3	72.4									
	4	73.7		4	73.7									
	5	70.6		5	70.6									
	6	17.9		6	17.9									

a) ara= α -L-arabinopyranosyl; glc= β -D-glucopyranosyl; rham= α -L-rhamnopyranosyl. b) May be reversed.

saponins. Thus, the structure of pastuchoside A (1) was established as 3β -O-{ α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl-(1 \rightarrow 4)]- α -L-arabinopyranosyl}-28-O-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-glucopy

The molecular formula of pastuchoside C (5) was found to be $C_{59}H_{96}O_{27}$ by ESI-HR-MS (quasi-molecular $[M+Na]^+$ ion m/z 1259.5994; calculated m/z for $C_{59}H_{96}NaO_{27}$: 1259.6037). Acid hydrolysis of **5** gave arabinose, glucose, rhamnose and hederagenin. ¹³C-NMR chemical shifts of C-3 and C-28 indicated that saponin was a bisdesmoside. Moreover, this spectrum showed five anomeric carbons at δ 106.1, 105.2, 104.6, 101.9 and 95.7. Further analysis of the ¹³C-NMR data showed for sugar chains linked at C-3 similar chemical shifts with previously reported data of hederacolchiside A'=hederacolchiside A₁.²⁾ It can be concluded that the structure of pastuchoside C was 3β -O-{ α -Lrhamnopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 4)]- α -L- arabinopyranosyl}-28-O-[β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl]-hederagenin.

The molecular formula of pastuchoside D (7) was established as $C_{59}H_{96}O_{26}$ by ESI-HR-MS (m/z 1243.6041 [M+Na]⁺, theoretical mass for $C_{59}H_{96}NaO_{26}$, 1243.6088). Acid hydrolysis of 7 gave arabinose, glucose and rhamnose as sugars, and oleanolic acid as a genin. ¹³C-NMR spectrum data showed that 7 was a bisdesmoside having the same sugar chains linked at C-3 and C-28 with pastuchoside C. Thus, the structure of 7 was determined as 3β -O-{ α -Lrhamnopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 4)]- α -Larabinopyranosyl}-28-O-[β -D-glucopyranosyl-(1 \rightarrow 6)- β -Dglucopyranosyl]-oleanolate.

The ESI-HR-MS analysis of pastuchoside E (9) gave a quasi-molecular $[M+Na]^+$ ion at m/z 1081.5569 in agreement with a molecular formula of $C_{53}H_{86}O_{21}$ ($C_{53}H_{86}NaO_{21}$ requires 1081.5559 as theoretical mass). Acid hydrolysis of 9 yielded arabinose, glucose and rhamnose as sugars, and

Table 4. ¹³C-NMR Data for Aglycone Moieties of Saponins 1, 3, 5, 7 and 9 (CD₃OD)

С	1	3	5	7	9
1	39.8	40.0	39.8	40.0	40.0
2	26.5	27.0	26.5	27.0	27.1
3	82.3	90.6	82.3	90.5	90.6
4	44.0	40.7	44.0	40.8	40.7
5	48.2	57.2	48.3	57.2	57.2
6	18.8	19.4	18.8	19.4	19.4
7	33.2	33.3	33.2	33.2	33.2
8	40.7	40.3	40.7	40.3	40.3
9	49.2	49.0	49.2	49.1	49.1
10	37.7	37.9	37.6	37.9	38.0
11	24.6	24.6	24.6	24.6	24.6
12	123.8	123.8	123.7	123.8	123.8
13	144.9	144.9	144.9	144.9	144.9
14	43.0	42.9	43.0	43.0	43.0
15	28.9	28.9	28.9	28.9	28.9
16	24.1	24.0	24.1	24.0	24.0
17	48.1	48.1	48.1	48.1	48.1
18	42.5	42.5	42.6	42.8	42.6
19	47.2	47.2	47.2	47.3	47.3
20	31.6	31.6	31.5	31.6	31.6
21	34.9	34.9	34.9	34.9	34.9
22	33.4	33.9	33.3	33.9	34.0
23	65.1	28.6	65.0	28.7	28.7
24	13.2	17.2	13.2	17.2	17.2
25	16.6	16.2	16.6	16.2	16.2
26	18.0	17.7	18.0	17.8	17.9
27	26.4	26.3	26.4	26.3	26.4
28	178.1	178.1	178.1	178.1	178.1
29	33.5	33.5	33.5	33.5	33.6
30	24.1	24.1	24.1	24.1	24.1

oleanolic acid as a genin. The ¹³C chemical shifts of C-3 and C-28 indicated that saponin **9** was a bisdesmoside. Moreover, ¹³C shifts of sugars were indicative of similar sugar chains linked at C-3 with both saponins **5** and **7**. It can be concluded that the structure of pastuchoside E was 3β -O-{ α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 4)]- α -L-arabinopyranosyl}-28-O- β -D-glucopyranosyl-oleanolate.

Experimental

General Mass spectrometry analyses were performed on a Jeol JMS-700 (Jeol LTD, Akishima, Tokyo, Japan) double focusing mass spectrometer, equipped with an electrospray ionization (ESI) source operating under positive ion mode. Samples diluted in H2O/CH3OH (50/50) were introduced into the ESI interface via a syringe pump (PHD 2000 infusion, Harvard Apparatus, Holliston, MA, U.S.A.) at a $30 \,\mu l \cdot min^{-1}$ flow rate. A 5-kV acceleration voltage was applied and the elemental composition of ions was checked at a typical resolving power of 8000 (10% valley) using a mixture of PEGs as internal standard. 1H- and 13C-NMR spectra were recorded on a Bruker DRX-500 spectrometer in CD₃OD solutions. TMS was used as an internal standard in ¹H and ¹³C measurements. Standard Bruker pulse sequences were used for two-dimensional experiments (gradient selected COSY, HSQC, HSQC-TOCSY and HMBC). Microwave Pr KS-22E (850 W, 2450 MHz) was used to dry the leaves. Melting points were determined on an Electrothermal IA 9300 apparatus. Optical rotations $[\alpha]_D^{25}$ were measured on a Perkin-Elmer model 341 Orot polarimeter. TLC analyses of saponins and sugars were performed on precoated silica gel plates (Kiesegel 60F254, Merck) using the following solvent systems: CHCl₃-MeOH-H₂O (26:14:3) [system 1]; n-BuOH-HOAc-H₂O (4:1:5) [system 2]; CHCl₃-MeOH (20:1) [system 3]; CH₂Cl₂-MeOH-H₂O (50:25:5) [system 4]. Spots were detected by spraying the plates with phosphoric acid naphtoresorcinol for sugars and H₂SO₄ for saponins followed by heating at 110 °C.

Extraction and Separation Plant material was collected in the Lagodekhi region of Georgia (September 1999) and dried by microwave oven. A voucher specimen is kept in the Department of Pharmacobotany, Institute of Pharmacochemistry, Tbilisi, Georgia (leaves No. 97799). 500 g of

crushed leaves was extracted with 80% MeOH (2 l). After concentration, the aqueous layer was extracted by *n*-BuOH, to obtain a crude extract of saponins (100 g), which was subjected to column chromatography on silica gel (0.04—0.063 mm, Merck) and eluted with $CHCl_3$ —MeOH–H₂O (26:14:3) to afford 3 fractions. Fraction 3, containing the most polar triterpene saponins, was subjected repeatedly to low pressure liquid chromatography (ChromatoSPAC Prep 100, Lichroprep C-18, 15—25 μ m) and eluted with MeOH–H₂O (20% to 80% of MeOH) to give 1 (15 mg), 2 (180 mg), 3 (15 mg), 4 (150 mg), 5 (impure, 100 mg), 6 (110 mg), 7 (50 mg), mixture of **8** and 9 (250 mg).

A fraction containing a mixture of **8** and **9** was purified by CC on silica gel (0.04-0.063 mm, Merck) and eluted with CHCl₃-MeOH-H₂O (26:14:3) to yield **8** (100 mg) and **9** (50 mg).

The purification of 5 was carried out on polyamide column (SC 6 0.07 mm, Macherey-Nagel), with 50% of MeOH to obtain 50 mg of 5.

Acid Hydrolysis of 1, 3, 7 and 9 The saponin (4 mg) was heated with aqueous 10% HCl (3 ml) in a sealed tube at 100 °C for 4 h. The sapogenin was extracted with Et₂O and then the aqueous layer was neutralized with *N*,*N*-dioctylmethylamine (10% in CHCl₃) and dried. The sapogenin and sugars were identified by TLC analyses with authentic samples in systems 3 and 4, respectively.

Alkaline Hydrolysis of 1, 3, 7 and 9 The saponin (5 mg) in 5% aqueous KOH (5 ml) was heated at 100 °C in a sealed tube for 90 min. After neutralization with 10% HCl (pH 5) the prosapogenin was extracted with n-BuOH. TLC analyses were performed using systems 1 and 2.

Pastuchoside A (1): White powder; Rf=0.09 (in system 1). mp 198 °C; $[\alpha]_D^{20}$ -16° (c=0.1, MeOH). ESI-HR-MS m/z: 1551.7191 [M+Na]⁺ (Calcd for C₇₁H₁₁₆O₃₅). ¹H-NMR data for sugar part, see Table 2. ¹³C-NMR data for sugar and aglycone parts see Tables 3 and 4.

Pastuchoside B (3): White powder; Rf=0.13 (in system 1). mp 212 °C; $[\alpha]_D^{20} - 40^\circ$ (c=0.1, MeOH). ESI-HR-MS m/z: 1535.7280 [M+Na]⁺ (Calcd for $C_{71}H_{116}O_{34}$). ¹H-NMR data for sugar part, see Table 2. ¹³C-NMR data for sugar and aglycone parts see Tables 3 and 4.

Pastuchoside C (5): White powder; Rf=0.12 (in system 1). mp 201 °C; $[\alpha]_D^{20} - 18^{\circ}$ (c=0.1, MeOH). ESI-HR-MS m/z: 1259.5994 [M+Na]⁺ (Calcd for C₅₃H₉₆O₂₇). ¹H-NMR data for anomeric protons of sugar (CD₃OD) δ : 5.34 (d, J=7.9 Hz), 5.16 (br s), 4.47 (d, J=5.3 Hz), 4.43 (d, J=7.6 Hz), 4.32 (d, J=7.8 Hz). ¹³C-NMR data for sugar and aglycone parts see Tables 3 and 4.

Pastuchoside D (7): White powder; Rf=0.18 (in system 1). mp 213 °C; $[\alpha]_D^{20}$ -30° (c=0.1, MeOH). ESI-HR-MS m/z: 1243.6041 [M+Na]⁺ (Calcd for C₅₃H₉₆O₂₆). ¹H-NMR data for anomeric protons of sugar (CD₃OD) δ : 5.34 (d, J=7.9 Hz), 5.16 (br s), 4.46 (d, J=5.3 Hz), 4.43 (d, J=7.6 Hz), 4.33 (d, J=7.8 Hz). ¹³C-NMR data for sugar and aglycone parts see Tables 3 and 4.

Pastuchoside E (9): White powder; Rf=0.36 (in system 1). mp 205 °C; $[\alpha]_D^{20} + 25^\circ$ (c=0.1, MeOH). ESI-HR-MS m/z: 1081.5569 [M+Na]⁺ (Calcd for C₅₃H₈₆O₂₁). ¹H-NMR data for anomeric protons of sugar (CD₃OD) δ : 5.36 (d, J=7.9 Hz), 5.16 (br s), 4.48 (d, J=5.3 Hz), 4.33 (d, J=7.8 Hz). ¹³C-NMR data for sugar and aglycone parts see Tables 3 and 4.

Acknowledgements This work was supported by the INTAS program (project No. 97-0491). We wish thank Mr. Gilbert BOUDON for his technical assistance.

References

- 1) Sakartvelos Metsniereba, Tbilisi, 1984, IX, pp. 124-128.
- Mshvildadze V. D., Dekanosidze G. E., Shashkof A. S., Kemertelidze E. P., *Bioorganicheskaia Khimia*, 19, 1001–1007 (1993).
- Mshvildadze V. D., Elias R., Faure R., Debrauwer L., Dekanosidze G. E., Kemertelidze E. P., Balansard G., *Chem. Pharm. Bull.*, 49, 752– 754 (2001).
- Mshvildadze V. D., Favel A., Delmas F., Elias R., Faure R., Dekanosidze G. E., Kemertelidze E. P., Balansard G., *Pharmazie*, 55, 325–326 (2000).
- Delmas F., Di Giorgio C., Elias R., Gasquet M., Azas N., Mshvildadze V. D., Dekanosidze G. E., Kemertelidze E. P., Timon-David P., *Planta Med.*, 66, 1–5 (2000).
- Ridoux O., Di Giorgio C., Delmas F., Elias R., Mshvildadze V. D., Dekanosidze G. E., Kemertelidze E. P., Balansard G., Timon-David P., *Phytother. Res.*, 15, 298–301 (2001).
- Barthomeuf C., Debiton E., Mshvildadze V. D., Kemertelidze E. P., Balansard G., *Planta Med.*, 68, 672–675 (2002).
- 8) Debiton E., Borel M., Communal Y., Mshvildadze V. D., Barthomeuf

- Süleyman H., Mshvildadze V. D., Gepdiremen A., Elias R., *Phytomedecine*, 10, 370–374 (2003).
- Dekanosidze G. E., Djikia O. D., Vulgalter M. M., Kemertelidze E. P., *Khim. Prir. Soedi.*, 6, 747–749 (1984).
- 11) Dekanosidze G. E., Kemertelidze E. P., *Khim. Prir. Soedi.*, **2**, 259–263 (1980).
- 12) Elias R., Diaz-Lanza A. M., Vidal-Ollivier E., Balansard G., Faure R., Babadjamian A., J. Nat. Prod., 54, 98–103 (1991).
- Tschesche R., Schmidt W., Wulff Gr., Zhur. Naturforsch., 20, 708– 709 (1965).
- 14) Kay L. E., Kiefer P., Saarinen T., J. Am. Chem. Soc., 114, 10663– 10665 (1992).
- 15) John B. K., Plant D., Head S. L., Hurd R. E., J. Magn. Reson., 94, 664—669 (1991).
- 16) Wilker W., Leibfritz D., Kerssebaum R., Bermel W., Magn. Reson. Chem., 31, 287–292 (1993).