Phenolic Glycosides from the Stem Bark of *Albizzia julibrissin*

Mee Jung JUNG, *^a* Sam Sik KANG, *^b* Yu Jung JUNG, *^a* and Jae Sue CHOI*,*^a*

^a Faculty of Food Science and Biotechnology, Pukyong National University; Busan 608–737, Korea: and bNatural Product Research Institute, Seoul National University; Seoul 110–460, Korea. Received July 27, 2004; accepted September 30, 2004

From the stem bark of *Albizzia julibrissin* **DURAZZ (Leguminosae), two new phenolic glycosides (albibrissinosides A and B) were isolated. Their structures were determined by spectroscopic analysis. The albibrissinoside B was found to be a radical scavenger on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical.**

Key words phenolic glycoside; albibrissinoside A; albibrissinoside B; radical scavenger; 1,1-diphenyl-2-picrylhydrazyl radical; *Albizzia julibrissin*

The dried stem bark of *Albizzia julibrissin* DURAZZ (Leguminosae) has been used in Chinese herbal medicine to treat insomnia, diuresis, sthenia, ascaricide, and confusion.¹⁾ Earlier phytochemical investigations on this species resulted in the isolation of saponins, 2^{5} lignans, 6^{6} phenolic glycosides,⁶⁾ triterpenes,⁹⁾ flavonoids and others.^{10—15)} Previously, we reported that the methanolic extract of the stem bark of *A. julibrissin* exerts an radical scavenging activity on 1,1 diphenyl-2-picrylhydrazyl (DPPH) radical.¹⁶⁾ From this methanolic extract, $3', 4', 7$ -trihydroxyflavone, isookanin, luteolin and syringaresinol glucoside were isolated as the active principles.¹⁷⁾ In a course of continuous work on this plant, two new phenolic glycosides named albibrissinosides A and B were isolated and characterized.

The dried methanolic extract of *A. julibrissin* was subjected to solvent partitioning between hexane, CH_2Cl_2 , EtOAc, *n*-BuOH, and H₂O phases. Further chromatographic isolation was carried out with the EtOAc and *n*-BuOH fractions, which were found to be biologically active in the DPPH radical scavenging assay. The EtOAc fraction was subjected silica gel column chromatography to yield albibrissinoside A (**1**). The *n*-BuOH fraction was successive column chromatographed over silica gel, Sephadex LH-20, RP-18 and MCI gel to afford albibrissinoside B (**2**) that is also structurally related to **1**.

Compound **1** was isolated as an amorphous powder with a molecular formula of $C_{29}H_{38}O_{17}$ on the basis of a *pseudo*molecular ion peak at m/z 681.2006 [M+Na]⁺ in its high resolution (HR)-FAB mass spectrum. The UV spectrum showed absorption maximum at 276 nm for phenolic. The IR spectrum showed a characteristic absorption bands attributable to an ester carbonyl (1713 cm^{-1}) , hydroxyl (3391 cm^{-1}) , aromatic $(1603, 1506 \text{ cm}^{-1})$ groups, as well as glycosidic linkage (1075 cm^{-1}) , respectively. Acid hydrolysis of 1 afforded apiose and glucose as the sugar components identified on TLC analysis by comparison with authentic samples.

Absolute configurations for apiose and glucose were determined to be the D-form by their specific rotation showing +7.2° and +29°, respectively.^{18,19}) The ¹H- and ¹³C-NMR spectra (Table 1) revealed signals for a 1,3,4,5-tetrasubstituted phenolic acid with a glycosidic and a 1,3,4,5-tetrasubstituted benzoyl group. The ¹H-NMR signals at δ 6.26 (2H, s, H-2,6), 3.65 (6H, s, OMe-3,5), and 3.53 (3H, s, OMe-4) due to the aglycon, showed the characteristic pattern of a symmetrically $3,4,5$ -trimethoxy phenolic derivative.⁶⁾ This was supported by the 13 C-NMR spectrum, which showed the

∗ To whom correspondence should be addressed. e-mail: choijs@pknu.ac.kr © 2004 Pharmaceutical Society of Japan

signals for a tetrasubstituted phenolic moiety at δ 153.6 (C-1), 153.0 (C-3,5), 132.4 (C-4), and 94.0 (C-2,6). The ¹ H-NMR spectrum also revealed the presence of two glycosyl moieties, two anomeric proton signals δ 4.84 (1H, d, $J=7.5$ Hz) for glucose; 5.42 (1H, s) for apiose], the proton signals due to the sugar moieties between δ 3.12—5.42 including one symmetrically tetrasubstituted benzoyl group at δ 7.15 (2H, s, H-2^{*m*} and H-6^{*m*}), and 3.77 (6H, OMe-3^{*m*}, 5^{*m*}), in close correspondence to the signals of authentic syringic acid. Furthermore, the coupling constants $(J=7.5 \text{ Hz})$ of the anomeric proton signal of the D-glucosyl moiety as well as the chemical shift (δ 108.6) of the anomeric carbon of the Dapiosyl moiety, demonstrated that both sugar moieties have β -anomeric configurations.²⁰⁾ In ¹³C-NMR spectrum, the downfield shift of a methylene carbon (C-5" at δ 67.1) along with the upfield shift of a neighboring carbon (C-4" at δ 73.9) of an apiose indicated that the syringoyl group is attached at $C-5$ " of the apiose.

Detailed analysis of the NMR data, aided by ${}^{1}H-{}^{1}H$ correlation spectroscopy (COSY), nuclear Overhauser enhancement exchange spectroscopy (NOESY), heteroatom multiple quantum coherence (HMQC) and heteronuclear multiple bond connectivity (HMBC) spectra and comparison with those reported for 3,4,5-trimethoxyphenol $1-O-\beta$ -D-apiofuranosyl(1→2)- β -D-glucopyranoside⁶⁾ isolated from this plant, allowed establishment of the structure of **1**. The protonated carbons and their corresponding protons were unambiguously assigned by the HMQC experiment of **1**, and the connectivities of carbons in **1** were established by the HMBC experiments. In the HMBC spectrum, the important correlations between the syringoyl carbonyl group (δ 165.3) and the

Table 1. NMR Spectral Data of **1** and **2**

a) DMSO- d_6 , *b*) CD₃OD.

H-5" signals and of C-2' and H-1' (δ 77.2, δ 5.42) revealed the syringoyl group to be at $C-5$ " of β -apiofuranosyl moiety and β -apiofuranosyl moiety at C-2' of β -glucopyranosyl moiety. These spectral data established **1** to be the new natural compound $3,4,5$ -trimethoxyphenyl-1- $O-\beta$ -D-(5-*O*-syringoyl)-apiofuranosyl-(1→2)- $β$ -D-glucopyranoside, and was given a trivial name, albibrissinoside A.

Compound **2** was isolated as an amorphous powder with a molecular formula of $C_{27}H_{34}O_{16}$ on the basis of a pseudomolecular ion peak at m/z 637.1745 $[M+Na]^+$ in its HR-FAB mass spectrum. Its IR and UV spectrum were almost identical to that of 1, indicating their similar nature. The ¹H-NMR spectrum of **2** was very similar to that of **1** (Table 1), except for the absence of the proton signal corresponding to the C-5 methoxy group at δ 3.65 (3H), and the replacement of the methoxy group at the C-4 position in **1** by a hydroxyl group. The mass spectrum of **2**, which had a molecular ion peak 44 mass units less than that of **1**, further indicated the presence of a hydroxyl group at the C-4 position and the absence of methoxy group at the C-5 position in **2**. The methoxy group at δ 3.71 could be located at C-3 by a NOESY cross signal between $OCH₃/H-2$ and HMBC correlation between OCH₃ and C-3. Acid hydrolysis of 2 afforded apiose and glucose as the sugar components identified on TLC analysis by comparison with authentic samples. Detailed analysis of the NMR data, aided by $H^{-1}H$ COSY, NOESY, HMQC and HMBC spectra and comparison with **1**, allowed establishment of the structure of **2**. Thus the structure of **2** was elucidated as 4-hydroxy-3-methoxyphenyl-1-*O*- β -D-(5-*O*-syringoyl)-apiofuranosyl-(1→2)- β -D-glucopyranoside, and was given a trivial name, albibrissinoside B.

Albibrissinoside B showed a strong DPPH radical scav-

enging activity with an IC_{50} (50% inhibition concentration) value of 10.2μ M (positive control, L-ascorbic acid IC₅₀ 10.4 μ M), whereas albibrissinoside A showed a weak scavenging activity with an IC₅₀ value of 253 μ M.

Experimental

General ¹H- and ¹³C-NMR spectra were determined on a JNM ECP-400 spectrometer using $CD₃OD$ and $DMSO-d₆$ with tetramethylsilane (TMS) as an internal standard. HMQC and HMBC spectra were recorded using pulsed field gradients. FAB-MS, IR and optical rotation were taken with a JEOL JMS-HX110A/HX110A Tandem mass spectrometer, a Perkin-Elmer 2000 FT-IR spectrometer, and a Perkin-Elmer 341 polarimeter, respectively. Column chromatography was done with silica gel 60 (70—230 mesh, Merck, Germany), MCI gel (Mitsubishi Chem. Co., Japan), RP-18 Lichroprep (Merck), and Sephadex LH-20 (Sigma, St. Louis, MO, U.S.A.). TLC was carried out on precoated Merck Kieselgel 60 F_{254s} plates (0.25 mm) and RP-18 F_{254s} plates (Merck) and the spots were detected under UV light using 50% H₂SO₄ reagent. All the solvent for column chromatography was of a reagent grade from commercial sources.

Plant Material The stem bark of *A. julibrissin* was purchased from the herbal medicine cooperative association in Busan Province, Korea in August 2001. A voucher specimen (no. 20010820) has been deposited in author's laboratory (J. S. Choi).

Extraction and Isolation The stem bark (9.1 kg) of *A. julibrissin* was refluxed with MeOH (3×18 l) for 3 h. The extract (1.50 kg) was suspended in distilled water and partitioned with CH_2Cl_2 (465 g), EtOAc (43 g), *n*-BuOH (325 g), and $H₂O$ (510 g) in sequence. The EtOAc fraction (43 g) was first chromatographed over the silica gel (1 kg) column (12 cm \times 1.5 m). The column was eluted using mixtures of CH₂Cl₂/MeOH under gradient conditions $(10:1-1:1)$ to yield the 29 subfractions (F001-F029). The F021 and F022 (2.5 g) were subjected to column chromatography over RP-18 gel column with MeOH–H₂O (6:4 to MeOH) to give 12 subfractions (F030– F041). Compound **1** (20 mg) was obtained from the RP-18 column chromatography (50% MeOH) of F038 (0.8 g). The *n*-BuOH fraction (65 g) was first chromatographed over the silica gel (1.5 kg) column $(12 \text{ cm} \times 1.5 \text{ m})$. The column was eluted using mixture of CH₂Cl₂/MeOH under gradient conditions $(10:1-1:1)$ to yield the 18 subfractions (F001-F018). The F005 (5.2 g) was subjected to column chromatography over MCI gel column with

MeOH–H₂O $(0:100 \text{ to } 100:0)$ to give 4 subfractions (F005-1 to F005-4). Compound **2** (15 mg) from F005-2 (2 g) was achieved by RP-18 column chromatography using a 30% MeOH, then purified by Sephadex LH-20 column chromatography with MeOH as a solvent, respectively.

Albibrissinoside A (1): Amorphous powder. $[\alpha]_D^{20} + 3.70^\circ$ (*c*=0.015, MeOH). IR v_{max} cm⁻¹: 3391, 2942, 1713, 1603, 1506, 1464, 1426, 1336, 1228, 1126, 1075, 818, 764. UV λ_{max} (MeOH) nm (log ε): 276 (4.04). UV ^l max (MeOH-NaOMe): 285 (sh. 3.68), 327 (4.25). HR-FAB-MS *m*/*z*: 681.2006 (Calcd for $C_{29}H_{38}O_{17}$ Na m/z 681.2006). ¹H- and ¹³C-NMR: see Table 1.

Albibrissinoside B (2): Amorphous powder, $[\alpha]_D^{20} + 3.29^\circ$ (*c*=0.002, MeOH). IR v_{max} cm⁻¹: 3390, 2942, 1715, 1604, 1506, 1465, 1425, 1335, 1228, 1125, 1075, 818, 765. UV λ_{max} (MeOH) nm (log ε): 279 (4.40). UV ^l max (MeOH-NaOMe): 289 (sh. 3.89), 323 (4.14). HR-FAB-MS *m*/*z*: 637.1740 (Calcd for $C_{27}H_{34}O_{16}$ Na m/z 637.1745). ¹H- and ¹³C-NMR: see Table 1.

Acidic Hydrolysis of 1 and 2 Compounds **1** and **2** (each 11 mg) were dissolved in 5% aqueous HCl (5 ml) and refluxed for 1 h, separately. The sugar components were identified by TLC on Si gel (developing solvent EtOAc/MeOH/H₂O/AcOH=13 : 3 : 3 : 4) as apiose (*Rf* 0.50) and glucose (*Rf* 0.30) in comparison with authentic samples. The reaction mixtures were also chromatographed on Si gel eluting with $CHCl₃–MeOH–H₂O$ (6:4:1) to yield D-apiose ($[\alpha]_D^{20} + 7.2^{\circ}$) and D-glucose ($[\alpha]_D^{20} + 29^{\circ}$), respectively. Authentic D-apiose was obtained from cassitoroside, a naphthalene glycoside embracing **D-apiofuranosyl** unit through the same procedure as described above. 21

DPPH Radical Scavenging Effect The DPPH radical scavenging effect was evaluated as previously described by Blois²²⁾ with minor modifications. A methanolic sample solution of 160 μ l at several concentrations and 40 μ l of the DPPH methanolic solution $(1.5\times10^{-4} \text{ M})$ were added to a 96-well microplate, in a total volume of 200μ . After standing the reaction mixture at room temperature for 30 min, its absorbance was determined at 520 nm, in a microplate reader (VERSA max, Molecular device, CA, U.S.A.).

Acknowledgements The FAB-MS spectra were provided by the Korea Basic Science Institute. This study was supported by a grant from the Ministry of Health & Welfare, Republic of Korea (01-PJ2-PG6-01NA01-0002).

References and Notes

1) Namba T., "Colored Illustrations of Wakan Yaku," Vol. II, Hoikusha

Publishing Co., Japan, 1980, pp. 157—158.

- 2) Ikeda T., Fujiwara S., Araki K., Kinjo J., Nohara T., Miyoshi T., *J. Nat. Prod.*, **60**, 102—107 (1997).
- 3) Ikeda T., Fujiwara S., Kinjo J., Nohara T., Ida Y., Shoji J., Shingu T., Isobe R., Kajimoto T., *Bull. Chem. Soc. Jpn.*, **68**, 3483—3490 (1995).
- 4) Zou K., Zhao Y. U., Tu G. Z., Zhang R. Y., Zheng J. H., *J. Chin. Pharm. Sci.*, **9**, 125—127 (2000) and references cited therein.
- 5) Kinjo T., Araki K., Fukui K., Higuchi H., Ikeda T., Nohara T., Ida Y., Takemoto N., Miyakoshi M., Shoji J., *Chem. Pharm. Bull.*, **40**, 3269— 3273 (1992).
- 6) Higuchi H., Fukui K., Kinjo J., Nohara T., *Chem. Pharm. Bull.*, **40**, 534—535 (1992).
- 7) Kinjo J., Fukui K., Higuchi H., Nohara T., *Chem. Pharm. Bull.*, **39**, 1623—1625 (1991).
- 8) Kinjo J., Higuchi H., Fukui K., Nohara T., *Chem. Pharm. Bull.*, **39**, 2952—2955 (1991).
- 9) Woo W. S., Kang S. S., *J. Nat. Prod.*, **47**, 547—549 (1984).
- 10) Chamsuksai P., Choi J. S., Woo W. S., *Arch. Pharm. Res.*, **4**, 129—131 (1981).
- 11) Kang T. H., Jeong S. J., Kim N. Y., Higuchi R., Kim Y. C., *J. Ethnopharmacol.*, **71**, 321—323 (2000).
- 12) Yadava R. N., Reddy V. Madhu Sudhan, *J. Inst. Chemist* (India), **73**, 195—199 (2001).
- 13) Wang Q., Xie L., Zhai J., *Acta Cryst.*, **C56**, 197—198 (2000).
- 14) Ueda M., Yamamura S., *Tetrahedron Lett.*, **40**, 7823—7826 (1999).
- 15) Jung M. J., Kang S. S., Choi J. S., *Arch. Pharm. Res.*, **26**, 207—209 (2003).
- 16) Jung M. J., Chung H. Y., Kang S. S., Choi J. H., Bae K. S., Choi J. S., *Arch. Pharm. Res.*, **26**, 456—462 (2003).
- 17) Jung M. J., Kang S. S., Jung H. A., Kim G. J., Choi J. S., *Arch. Pharm. Res.*, **27**, 593—599 (2004).
- 18) Kyriakopoulou I., Magiatis P., Skaltsounis A.-L., Aligiannis N., Harvala C., *J. Nat. Prod.*, **64**, 1095—1097 (2001).
- 19) Mimaki Y., Kanmoto T., Sashida Y., Nishino A., Satomi Y., Nishino H., *Phytochemistry*, **41**, 1405—1410 (1996).
- 20) Kitagawa I., Sakagami M., Hashiuchi F., Zhou J. L., Yoshikawa M., Ren J., *Chem. Pharm. Bull.*, **37**, 551—553 (1989).
- 21) Choi J. S., Jung J. H., Lee H. J., Lee J. H., Kang S. S., *Phytochemistry*, **40**, 997—999 (1995).
- 22) Blois M. S., *Nature* (London), **181**, 1199—1200 (1958).