mCPBA Oxidation of Acetyllycoctonine and Its New Products

Xiang-Li Shen and Feng-Peng WANG*

Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University; No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, P. R. China. Received June 25, 2004; accepted September 30, 2004

Treatment of a lycoctonine-type alkaloid acetyllycoctonine (4) with *m*CPBA at room temperature led to acetyllycoctonine *N*-oxide (5) as the major product together with other interesting compounds 6—12 as the minor products, which were derived from oxidation involving the nitrogen atom¹⁾ and Cope elimination as well as Polonovski-like fragmentation. All of those new compounds (5—12) were fully characterized.

Key words C₁₉-diterpenoid alkaloid; acetyllycoctonine; oxidation involving nitrogen atom; N-oxidation

The diterpenoid alkaloids are a synthetic or structurally modified target for a long time due to their complex and diversities displaying a lot of interesting chemical reactions ^{1,2)} and several biological activities.^{3,4)} Some papers ⁵⁻⁹⁾ reported that treatment of the aconitine-type alkaloids and their derivatives with mCPBA lead to the main products the N-oxides together with the by-products, the amides or the N,O-mixed ketal. In contrast, oxidation of the lycoctonine-type alkaloids with mCPBA has been reported rarely yet besides deltaline (1) containing 7,8-methoxylene and ajacine (2) having the 7,8-glycol group. The former gave the N-oxide in high yield of 95.8%, but the latter only in lower yield of 20%.⁶⁾ In conjunction with our ongoing research program, we have found that treatment of a lycoctonine-type alkaloid acetyllycoctonine (4) with mCPBA afforded not only the major compound acetyllycoctonine N-oxide (5) but also the interesting byproducts (6-12). This paper deals with the isolation and structural elucidation of these new compounds (5-12).

Results and Discussion

When acetyllycoctonine (4) derived from lycoctonine (3) reacted with *m*CPBA at room temperature for 30 min, followed by a column chromatography (silica gel H, CHCl₃-MeOH system), the major product acetyllycoctionine *N*-oxide (5) (31%) was obtained together with the other new interesting minor compounds 6 (0.9%), 7 (2.8%), 8 (8.5%), 9 (7.2%), 10 (1.3%), 11 (1.5%), and 12 (1.5%).

Compound 5 has the molecular formula, $C_{27}H_{43}NO_9$,

based on its HR-MS. The ¹H- and ¹³C-NMR spectra of **5** showed the characteristic signals at $\delta_{\rm H}$ 1.41 (3H, t, J=6.6 Hz) and $\delta_{\rm C}$ 8.8 (q) for an *N*-ethyl group.^{5,6)} This led to determine readily the structure of **5**. ¹³C-NMR comparison of **4** and **5** (Table 1) showed the differences of the δ values of many carbons, *e.g.* C-1, C-2, C-4, C-6, C-7, C-10, C-12, C-13, C-18, especially in C-17, C-19, C-21, and C-22, due to the *N*-oxidation effect.^{5,6)}

The molecular formulae of compounds **6** ($C_{27}H_{41}NO_9$) and 7 ($C_{25}H_{37}NO_9$) were derived from their HR-MS. As compared with 7, the ¹H- (¹³C-) NMR and MS spectra of **6** showed the appearance of an additional *N*-ethyl group (δ_H 1.10 t, *J*=7.2 Hz; δ_C 43.6 t, 11.9 q) and more 28 mass units corresponding to the CH₂CH₂ moiety of the *N*-ethyl group in **6**. The ¹³C-NMR data of both the compounds **6** and 7 also exhibited the distinctive lactam group at δ_C 169.9 s and 173.3 s, respectively. The structures of these two compounds, thus, were assigned to be **6** and **7**. As showed in Table 1, apparently, because of the presence of the electron-donating *N*ethyl group, the d value of C-19 in **6** shifted upfield as compared with **7**.

Compounds **8** and **9** have the same formula, $C_{34}H_{46}NO_{11}Cl$, which was assigned by HR-ESI-MS m/z680.2823 (M+H, Cacld 680.2831) for **8** and m/z 702.2662 (M+Na, Cacld 702.2651) for **9**. Their ¹H- and ¹³C-NMR spectra are very similar except for C-17, C-19 and C-21 (Table 1). In the ¹H- (¹³C-) NMR spectra of **8** and **9**, a 1Hquartet signal at *ca*. $\delta_{\rm H}$ 6.3 (J=5.4 Hz) and a 3H-doublet sig-

* To whom correspondence should be addressed. e-mail: wfp@wcums.edu.cn

© 2005 Pharmaceutical Society of Japan

Table 1. ¹³C-NMR Data of Compounds 4—11

Carbon	4 ¹⁰⁾	5	6	7	8	9	10	11
1	84.0	87.4	83.5	83.6	83.6	83.7	81.9	81.7
2	26.1	23.7	25.0	25.1	26.2	26.4	20.0	20.6
3	31.9	30.2	28.3	28.5	30.8	30.7	24.5	26.6
4	37.2	39.4	47.2	47.1	39.1	39.2	46.1	42.1
5	43.3	49.0	49.1	49.2	49.9	49.7	42.9	42.9
6	90.9	88.8	91.9	91.7	90.4	90.4	90.6	90.7
7	88.5	83.9	85.9	85.3	87.4	87.1	86.5	84.8
8	77.5	78.3	76.4	76.2	77.1	77.1	77.0	76.4
9	50.4	43.0	42.7	42.8	43.4	43.4	42.9	42.8
10	38.1	47.8	45.2	44.6	45.7	45.8	45.3	46.1
11	49.0	50.0	48.7	48.5	49.0	49.6	50.5	50.6
12	28.7	30.6	29.3	28.6	28.4	28.3	30.4	30.3
13	46.1	36.1	37.5	37.7	37.7	37.7	38.0	38.0
14	84.0	83.0	81.9	81.7	83.0	82.3	83.9	83.9
15	33.7	33.5	33.2	33.1	34.1	34.0	33.1	33.3
16	82.6	81.5	81.3	81.4	82.4	82.1	80.7	80.0
17	64.6	76.9	63.2	59.2	68.5	67.5	64.2	77.7
18	69.1	71.2	66.2	65.6	68.4	68.3	65.7	66.2
19	52.4	69.4	169.9	173.3	55.3	57.1	167.5	136.2
21	51.0	68.6	43.6	_	97.6	98.5		_
22	14.1	8.8	11.9	_	19.0	18.9		_
1-OCH ₃	55.7	56.1	55.1	55.7	55.1	55.4	56.3	56.3
6-OCH ₃	57.8	57.5	57.8	57.8	57.7	57.7	57.7	57.8
14-OCH ₃	58.0	58.2	58.5	58.5	58.2	58.2	58.6	58.7
16-OCH ₃	56.3	56.8	56.3	56.4	56.3	55.9	56.4	56.5
18-OCO	170.9	170.3	170.3	170.2	170.5	170.6	170.4	170.3
CH ₃	20.8	20.5	20.7	20.7	20.6	20.6	20.6	20.6
21-OCO	_	_		_	164.1	163.8		
1'		_	_	_	132.4	132.0		_
2'	_	_		_	129.6	129.7		
3'	_	_			134.2	134.5	_	
4′	_	_	_	_	129.3	129.5	_	
5'	_	_	_	_	127.7	127.8	_	
6'					132.7	133.0		

 Table 2.
 2D-NMR Data of Compound 12

Carbon	$\delta_{ ext{ H}}$	$\delta_{ m C}$	HMBC (H \rightarrow C)
1	3.09 dd (15.2, 4.4)	91.7 d	C-10, C-11, C-17
2	1.19—1.29 m (α) 2.03—2.05 m (β)	23.5 t	C-1 —
3	1.60—1.64 m (β) 1.87—1.90 m (α)	33.1 t	C-2, C-4, C-19 C-1, C-2, C-5
4		39.2 s	
5	2.13 s	49.5 d	C-1, C-4, C-6, C-7, C-11, C-17, C-18, C-19
6	3.77 d (1.6)	88.6 d	C-4, C-5, C-7, C-8, C-11
7	_ ``	207.7 s	
8		74.8 s	
9	3.78—3.80 m	40.6 d	C-8, C-11, C-12, C-14, C-15
10	2.47—2.53 m	45.2 d	C-1, C-8, C-9, C-11, C-12, C-13, C-14, C-17
11		46.0 s	_
12	1.48 dd (15.6, 7.6) (β)	28.1 t	C-10, C-13, C-14, C-16
	$2.11 - 2.18 \text{ m}(\alpha)$		C-13, C-14
13	2.63—2.65 m	36.2 d	C-14, C-15
14	3.35—3.36 m	80.3 d	C-8, C-13
15	1.58 dd (17.2, 6.4) (α)	33.5 t	C-8, C-14
	2.47—2.53 m (β)		C-8, C-9, C-13
16	3.78—3.80 m	84.2 d	C-8, C-12, C-14, C-15
17	7.06 s	136.6 d	C-5, C-10, C-19
18	3.88 ABg (12.0)	67.7 t	C-3, C-4, C-5, C-19, OCOCH ₃
	4.24 ABg (11.6)		C-3, C-4, C-5, C-19, OCOCH ₂
19	3.56 ABg (16.8)	62.8 t	C-3, C-4, C-5, C-17
	3.79—3.82 hidden		C-3, C-4, C-5, C-17, C-18
1-OCH ₃	3.25 s	56.3 g	C-1
6-OCH	3.38 s	58.4 g	C-6
14-OCH ₃	3.31 s	57.0 g	C-14
16-OCH,	3.45 s	58.1 g	C-16
18-OCO	_	170.2 s	_
CH ₃	2.09 s	20.6 q	O <u>CO</u> CH ₃

nal at around $\delta_{\rm H}$ 1.5 (*J*=5.4 Hz) were attributed to H-21 and H₃-22, respectively, implying the presence of a oxygenated substitution at the C-21 position and also that compounds **8** and **9** are a pair of epimers.

Compounds 10 and 11 have the molecular formulae $C_{25}H_{37}NO_8$ (HR-EI-MS m/z 479.2500 Cacld 479.2519) and $C_{25}H_{37}NO_9$ (HR-EI-MS m/z 495.2456 Cacld 495.2468), respectively. They also possess the same unsaturated degree (n=8) but the presence of difference of 16 mass units between 10 and 11 in the MS spectra, indicating that 11 is possibly derived from the *N*-oxidation of 10. The ¹H- and ¹³C-NMR spectra of 10 and 11 exhibited the distinctive imine signals (10: δ_H 7.72 br s, δ_C 167.5 d; 11: δ_H 6.77 d, J=1.2 Hz, δ_C 136.2 d). In addition, their ¹³C-NMR spectra (Table 1) are similar except for C-4, C-7, C-17 and C-19. It is worthy to note that changes of the δ values caused by the *N*-oxidation from 10 to 11 corresponding to $4\rightarrow$ 5 are less together with a great upfield-shift of the δ value of C-19 in the ¹³C-NMR spectra of 11 as compared with those of 10.

Compound **12**, $C_{25}H_{37}NO_9$ (HR-EI-MS *m/z* 495.2473) Cacld 495.2468), was obtained as a white amorphous powder with smaller *Rf* value (0.43) on TLC (petroleum ether–acetone 1:1). The ¹H- and ¹³C-NMR spectra of **12** showed the presence of four methoxyl groups ($\delta_{\rm H}$ 3.25 s, 3.31 s, 3.38 s, 3.45 s), an acetyl group ($\delta_{\rm H}$ 2.09 s, $\delta_{\rm C}$ 170.2 s, 20.6 q), an imine group ($\delta_{\rm H}$ 7.06 s, $\delta_{\rm C}$ 136.6 d), and a ketone group ($\delta_{\rm C}$ 207.7s). Its structure was confirmed by 2D-NMR spectra. It is also a novel artifact 17,7-seco C₁₉-diterpenoid alkaloid.

Finally, our results together with the data on the oxidation involved the nitrogen atom of diterpenoid alkaloids¹⁾ led us to propose a plausible process from 4 to compounds 5—12 depicted in Chart 1: *m*-CPBA oxidation of acetyllycoctonine (4) first produces the *N*-oxide 5, and then, 5 was subjected to a Cope elimination to give the intermediate A in company with loss of a molecular ethylene. Cleavage of the C_{17} – C_7 bond in A *via* a Polonovski-like process formed the imine ketone B followed by treating with *m*-CPBA to afford 12. The salt D formed from A under acid condition gave 10a through an α -elimination of water, *m*CPBA oxidation of 10 afforded competitively the nitrone 11 instead of the oxaziridine 13.^{9,11} Another pathway of formation of 10 involved possibly in a Cope elimination of the intermediate G, and continued the

 $R = OCC_6H_5Cl(m)$

reaction of **10** with H_2O followed by oxidation led to form 7. On the other hand, esterification of **5** with (*m*)Cl-C₅H₆COOH gave the intermediates **C** and **F**, leading to produce a pair of regioisomeric immonium salts **D** and **G**. The former reacted with (*m*)Cl-C₅H₆COOH to form a pair of epimer **8** and **9**, the latter in the presence of H₂O gave the intermediate **H** followed by oxidation into **6**.

Expenimental

General Experimental Procedure Melting points were uncorrected. IR spectra were recorded on a Nicolet FT-IR 200SXV spectrometer. Optical rotations were measured with a JASCO DIP-370 polarimeter. ¹H- and ¹³C-NMR spectra were acquired on a Varian INOVA 400/54 or a Bruker AC-E 200 spectrometer in CDCl₃ with TMS as internal standard. MS spectra were obtained on Finnigan LCQ and Micromass Auto Spec Ultima-Tof spectrometer.

Preparation of Compounds (5)—(12) To acetyllycoctonine (4) (1.28 g, 2.52 mmol) prepared from lycoctonine (3) with acetic anhydride in CHCl₃ (30 ml) *m*CPBA (2.15 g, 12.6 mmol) was added, and this solution was stirred at room temperature for 30 min. Evaporation in vacuum to give a residue, which was subjected to column chromatography on silica gel H (total amount of 200 g) using CHCl₃–MeOH (98:2 \rightarrow 9:1) \rightarrow petroleum–acetone–H₂O (50:50:1) as eluents yield the major compound (5) (399 mg, 31%), and the minor ones (6) (37 mg, 2.8%), (7) (12 mg, 0.9%), (8) (146 mg, 8.5%), (9) (123 mg, 7.2%), (10) (15 mg. 1.3%), (11) (20 mg, 1.5%), and (12) (20 mg, 1.5%).

Compound **5**: White amorphous powder, $C_{27}H_{43}NO_9$, HR-ESI-MS m/z 526.3021 (M+H, Cacld 526.3010), mp 128—129 °C, $[\alpha]_{D}^{20} + 23.3^{\circ}$ (c=1.965, CHCl₃); IR (cm⁻¹): 3460 (OH), 1741 (COO). ¹H-NMR (200 MHz, CDCl₃) δ : 1.41 (3H, t, J=6.6 Hz, <u>N</u>-CH₂<u>CH₃</u>); 2.04 (3H, s, OAc); 3.24, 3.27, 3.36, 3.37 (each 3H, s, 4×OCH₃); 3.58 (IH, t, J=4.4 Hz, H-14 β); ¹³C-NMR (50 MHz, CDCl₃): see Table 1; ESI-MS: m/z 526 (M+1, 100).

Compound **6**: White amorphous powder, $C_{27}H_{41}NO_9$, HR-EI-MS m/z 523.2774 (M⁺, Cacld 523.2781), mp 80—81 °C, $[\alpha]_D^{20}$ +26.6° (c=1.330, CHCl₃); IR (cm⁻¹): 3479 (OH), 1746 (COO), 1633 (CONR). ¹H-NMR (400 MHz, CDCl₃) δ : 1.10 (3H, t, J=7.2 Hz, <u>N</u>-CH<u>CH₃</u>); 2.06 (3H, s, OAc), 3.20, 3.35, 3.36, 3.41 (each 3H, s, $4 \times OCH_3$), 3.64 (1H, t, J=4.4 Hz, H-14 β), 3.76 (1H, s), 3.93 (1H, s), 4.06 (1H, m), 4.27, 4.59 (2H, ABq, J=12.0 Hz, H₂-18); ¹³C-NMR (50 MHz, CDCl₃): see Table 1; EI-MS: m/z 523 (M⁺, 20), 505 (M-18, 90), 490 (45), 432 (50).

Compound 7: White amorphous powder, $C_{25}H_{37}NO_9$, HR-EI-MS m/z 495.2470 (M⁺, Cacld 495.2468), mp 97—98.5 °C, $[\alpha]_D^{20}$ +64.9° (c=0.535, CHCl₃); IR (cm⁻¹): 3465 (OH), 1741 (COO), 1661 (CONH). ¹H-NMR (400 MHz, CDCl₃) δ : 2.08 (3H, s, OAc), 3.26, 3.34, 3.40, 3.43 (each 3H, s, 4×OCH₃); 3.65 (1H, t, J=4.4 Hz, H-14 β); 4.29, 4.58 (each 1H, ABq, J=12.0 Hz, H₂-18); 6.25 (1H, d, J=4.4 Hz, NH); ¹³C-NMR (50 MHz, CDCl₃): see Table 1; EI-MS: m/z 495 (M⁺, 15), 480 (M-15, 85), 464 (M-31, 20).

Compound **8**: White amorphous powder, $C_{34}H_{46}NO_{11}Cl$, HR-ESI-MS m/z 680.2823 (M+H, Cacld 680.2831), mp 78—79 °C, $[\alpha]_{20}^{20}$ +18.8° (c=0.595, CHCl₃); IR (cm⁻¹): 3467 (OH), 3067 (Ar), 1740 (COO), 1640, 1573 (Ar). ¹H-NMR (200 MHz, CDCl₃) δ : 1.51 (3H, d, J=5.4 Hz, <u>N-CHCH₃</u>); 2.06 (3H, s, OAc); 3.40, 3.41 (each 6H, s, 4×OCH₃); 3.56 (1H, t, J=4.4 Hz, H-14 β); 6.39 (1H, q, J=5.4 Hz, <u>N-CHCH₃</u>); 7.35—8.06 (4H, m, H-Ar); ¹³C-

NMR (50 MHz, CDCl₃): see Table 1; ESI-MS: *m/z* 702 (M+Na, 100).

Compound **9**: White amorphous powder, $C_{34}H_{46}NO_{11}Cl$, HR-ESI-MS m/z702.2662 (M+Na, Cacld 702.2651), mp 80—81 °C, $[\alpha]_D^{20}$ +22.7° (c=2.140, CHCl₃); IR (cm⁻¹): 3459 (OH), 3094 (Ar), 1742 (COO), 1663, 1571 (Ar). ¹H-NMR (200 MHz, CDCl₃) δ : 1.56 (3H, d, J=5.6 Hz, <u>N-CHCH₃</u>); 2.06 (3H, s, OAc); 3.31, 3.26, 3.42, 3.42 (each 3H, s, 4×OCH₃); 6.38 (1H, q, J=5.4 Hz, N-<u>CH</u>CH₃); 7.37—8.12 (4H, m, H-Ar); ¹³C-NMR (50 MHz, CDCl₃): see Table 1; ESI-MS: m/z 702 (M+Na, 100).

Compound **10**: White amorphous powder, $C_{25}H_{37}NO_8$, HR-EI-MS m/z479.2500 (M⁺, Cacld 479.2519), mp 136—137 °C, $[\alpha]_D^{20}$ +103.8° (c=0.530, CHCl₃); IR (cm⁻¹): 3466 (OH), 1743 (COO), 1635 (C=N). ¹H-NMR (200 MHz, CDCl₃) δ : 2.09 (3H, s, OAc), 3.13, 3.33, 3.34, 3.39 (each 3H, s, 4×OCH₃); 3.64 (1H, t, J=4.4 Hz, H-14 β); 4.21, 4.31 (each 1H, ABq, J=11.4 Hz, H₂-18); 7.72 (1H, br s, H-19); ¹³C-NMR (50 MHz, CDCl₃): see Table 1; EI-MS: m/z 479 (M⁺, 100), 464 (M-15, 95), 448 (M-31, 90).

Compound **11**: White amorphous powder, $C_{25}H_{37}NO_9$, HR-EI-MS m/z495.2456 (M⁺, Cacld 495.2468), mp 127—128 °C, $[\alpha]_{D}^{20}$ +21.9° (c=0.740, CHCl₃); IR (cm⁻¹): 3449 (OH), 1742 (COO), 1599 (C=N). ¹H-NMR (400 MHz, CDCl₃) δ : 2.10 (3H, s, OAc); 3.22, 3.34, 3.40, 3.42 (each 3H, s, 4×OCH₃); 3.67 (1H, t, J=4.4 Hz, H-14 β), 3.98 (1H, d, J=0.8 Hz, H-6 β), 4.15, 4.19 (2H, ABq, J=11.2 Hz, H₂-18), 6.77 (1H, d, J=1.2 Hz, H-19); ¹³C-NMR (50 MHz, CDCl₃): see Table 1; EI-MS: m/z 495 (M⁺, 30), 480 (M-15, 72), 464 (M-31, 60).

Compound **12**: White amorphous powder, $C_{25}H_{37}NO_9$, HR-EI-MS m/z 495.2473 (M⁺, Cacld 495.2468), mp 131—132 °C, $[\alpha]_D^{20} - 3.4^\circ$ (c=0.670, CHCl₃); IR (cm⁻¹): 3429 (OH), 1739 (COO), 1708 (CO), 1578 (C=N). ¹H-(400 MHz) and ¹³C-NMR (100 MHz, CDCl₃) see Table 2; EI-MS: m/z 495 (M⁺, 40), 479 (M-16, 35), 464 (M-31, 60).

Acknowledgments This work was supported by the National Natural science Foundation of China (No. 30472075).

References

- Wang F. P., Liang X. T., "The Alkaloids: Chemistry and Biology," Vol. 42, ed. by Cordell G. A., Academic Press, New York, 1992, pp. 151– 247.
- Wang F. P., Liang X. T., "The Alkaloids: Chemistry and Biology," Vol. 59, ed. by Cordell G. A., Elsevier Science, New York, 2002, pp. 1– 280.
- Benn M. H., Jacyno J. M., "The Alkaloids: Chemistry and Biological Perspectives," Vol. 1, ed. by Pelletier S. W., Wiley & Sons, New York, 1983, pp. 120—153.
- Dzhakhargirov F. N., Sultankhodzhaev M. N., Tashkhodzhaev B., Silmov B. T., *Khim. Prir. Soedin.*, 33, 254–270 (1997).
- 5) Wang F. P., Pelletier S. W., West China J. Pharm. Sci., 4, 193–200 (1989).
- Bai Y. L., Desai H. K., Pelletier S. W., J. Nat. Prod., 58, 929–933 (1995).
- 7) Wang F. P., Pelletier S. W., Chin. Chem. Lett., 2, 103-106 (1991).
- Wang F. P., Fan J. Z., Li Z. B., Yang J. S., Li B. G., Chin. Chem. Lett., 10, 375–378 (1999).
- 9) Chen Q. H., Xu L., Wang F. P., Tetrahedron, 58, 9431-9444 (2002).
- Pelletier S. W., Mody N. V., Sawhney R. S., Bhattacharyya J., *Hetero-cycles*, 7, 327–339 (1977).
- 11) Ogata Y., Sawaki Y., J. Am. Chem. Soc., **95**, 4687–4692, 4692–4698 (1973).