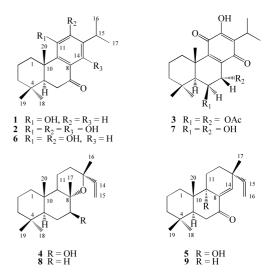
Five New Diterpenoids from the Bark of Taiwania cryptomerioides

Chi-I CHANG,^a Mei-Huims TSENG,^b and Yueh-Hsiung Kuo*,^c

^a Graduate Institute of Biotechnology, National Pingtung University of Science and Technology; Pingtung, Taiwan, 912: ^b Department of Science Education, Taipei Municipal Teachers College; Taipei, Taiwan, 106: and ^c Department of Chemistry, National Taiwan University; Taipei, Taiwan, 106, R.O.C. Received September 17, 2004; accepted November 22, 2004

Five new diterpenoids, 11-hydroxyabieta-8,11,13-trien-7-one (1), 11,12,14-trihydroxyabieta-8,11,13-trien-7-one (2), 6β , 7α -diacetoxyroyleanone (3), 7β -hydroxymanoyl oxide (4), and 9α -hydroxyisopimara-8(14),15-dien-7-one (5) were obtained from the bark of *Taiwania cryptomerioides*. The structures of the new compounds 1—5 were elucidated on the basis of spectral analysis and chemical evidence.

Key words Taiwania cryptomerioides; 6β , 7α -diacetoxyroyleanone; 7β -hydroxymanoyl oxide; 11-hydroxyabieta-8,11,13-trien-7-one; 11,12,14-trihydroxyabieta-8,11,13-trien-7-one; 9α -hydroxyisopimara-8(14),15-dien-7-one


Taiwania cryptomerioides HAYATA (Taxodiaceae) is a decay-resistant, endemic tree that grows at elevations from 1800 to 2600 m in the central mountains of Taiwan. It is an economically important tree species in Taiwan. In previous phytochemical investigations, various sesquiterpenes, lignans, diterpenes, and bisflavones were isolated from the heartwood,¹⁻³⁾ bark,^{4,5)} and leaves⁶⁻⁹⁾ of this plant. Recently, we reinvestigated the constituents of the bark of T. cryptomerioides, resulting in the discovery of several new diterpenes with $5(6 \rightarrow 7)$ abeoabietane and podocarpane skeletons.^{10–17)} In continuing work on the same extracts of the plant, we also obtained five new diterpenoids, designated as 11-hydroxyabieta-8,11,13-trien-7-one (1), 11,12,14-trihydroxyabieta-8,11,13-trien-7-one (2), 6β , 7α -diacetoxyroyleanone (3), 7 β -hydroxymanoyl oxide (4), and 9 α -hydroxyisopimara-8(14),15-dien-7-one (5). In this paper, we describe the isolation and structural elucidation of the above new diterpenes.

Compound 1 was isolated as an amorphous solid. The high resolution electron impact mass spectrum (HR-EI-MS) afforded a molecular ion at 300.2080, consistent with the molecular formula C20H28O2 and indicated seven degrees of unsaturation. The IR spectrum of 1 showed characteristic absorptions at 3430 (hydroxyl group), 1505, 1625 (aromatic groups), and 1660 (conjugated carbonyl group) cm⁻¹. The UV absorptions at λ_{max} 225 and 267 nm were attributable to the benzoyl moiety. The ¹H-NMR (Table 1) spectrum displayed three singlets of methyl groups at $\delta_{\rm H}$ 0.93, 0.96 and 1.38 (each 3H, H-18, H-19, H-20), an isopropyl group attached to a phenyl group at $\delta_{\rm H}$ 2.82 (1H, sep, J=6.8 Hz, H-15) and 1.19 (6H, d, J=6.8 Hz, H-16, 17), a hydroxyl group at $\delta_{\rm H}$ 4.98 (1H, brs, disappeared on D₂O exchange), and two *meta* aromatic protons at $\delta_{\rm H}$ 6.69 (1H, d, J=1.6 Hz, H-12) and 7.55 (1H, d, J=1.6 Hz, H-14). The above data suggested that 1 is an 7-oxodehydroabietane skeleton derivative. An ABX system at $\delta_{\rm H}$ 1.81 (1H, dd, J=3.2, 13.0 Hz), 2.54 (1H, dd, J=13.0, 17.0 Hz) and 2.64 (1H, dd, J=3.2, 17.0 Hz) was observed, and it was assigned to H-5 and H2-6, respectively. A downfield H_{\beta}-1 signal appeared at $\delta_{\rm H}$ 3.16 (1H, br d, J=13.4 Hz) and could be reasonably explained in terms of strong deshielding by a phenol group located at C-11.¹⁸) The ¹³C-NMR spectrum (Table 2) exhibited twenty signals including a conjugated carbonyl ($\delta_{\rm C}$ 200.1) and six aromatic carbons ($\delta_{\rm C}$ 118.3, 120.5, 133.1, 138.2, 147.8, 153.4). The spectral characteristics were similar to the known compound

* To whom correspondence should be addressed. e-mail: yhkuo@ccms.ntu.edu.tw

6, 11-hydroxysugiol.¹⁹ By comparison of ¹H- and ¹³C-NMR signals between **6** and **1**, the only difference was a proton attached to C-12 in **1** instead of a hydroxyl group attached to C-12 in **6**. Thus, compound **1** was determined as 11-hydroxy-abieta-8,11,13-trien-7-one.

Compound 2 was obtained as a yellowish amorphous solid. Its molecular formula C₂₀H₂₈O₄ was determined from an $[M]^+$ ion at m/z 332.1996 in the HR-EI-MS and indicated seven degrees of unsaturation. Analysis of the IR spectrum of 2 suggested that it contained a hydroxyl group (3396 cm^{-1}) , aromatic groups $(1510, 1610 \text{ cm}^{-1})$, and a conjugated carbonyl group (1666 cm^{-1}). The UV spectrum of 2 showed conjugated carbonyl absorption bands at λ_{max} 220 and 253 nm. The ¹H-NMR (Table 1) signals included three methyl groups [$\delta_{\rm H}$ 0.92, 0.94, 1.34 (each 3H, s)], an isopropyl group [$\delta_{\rm H}$ 3.42 (1H, sep, J=6.8 Hz, H-15) and 1.32 (6H, d, J=6.8 Hz, H-16, 17)], and a downfield H_{β}-1 signal $[\delta_{\rm H} 2.98 \text{ (1H, br d, } J=12.4 \text{ Hz})]$. Three singlets at $\delta_{\rm H} 4.83$, 6.33 and 12.16 (each 1H, brs, disappeared on D₂O exchange) were attributed to phenolic hydroxyl groups. The ¹³C-NMR (Table 2) spectrum showed 20 carbons including a conjugated carbonyl ($\delta_{\rm C}$ 204.5) and six aromatic carbons ($\delta_{\rm C}$ 108.8, 118.4, 132.7, 137.3, 151.8, 159.5). From the above characteristics, compound 2 was similar to the structure of 1 with the abieta-8,11,13-trien-7-one skeleton. The only difference was that two *meta*-phenyl protons in 1 were

© 2005 Pharmaceutical Society of Japan

Table 1. ¹H-NMR Spectral Data of Compounds 1—5 (300 MHz in CDCl₃)

No.	1	2	3	4	5
1	1.38 m	1.53 m	1.20 m	1.50 m	1.44 m
	3.16 br d (13.4)	2.98 br d (12.4)	2.64 br d (12.6)	1.54 m	1.61 m
2	1.50 m	1.42 m	1.56 m	1.20 m	1.20 m
	1.71 m	1.72 m	1.60 m	1.51 m	1.56 m
3	1.21 m	1.24 m	1.22 m	1.10 m	1.24 m
	1.43 m	1.44 m	1.45 m	1.36 m	1.43 m
5	1.81 dd	$1.78^{a)}$	1.51^{a}	0.98 m	2.34 dd
	(3.2,13.0)				(2.6, 12.2)
6	2.54 dd	2.57 m	5.48 br s	1.30 m	2.21 dd
	(13.0, 17.0)			1.80 m	(2.6, 15.8)
	2.64 dd				2.54 dd
	(3.2, 17.0)				(12.2, 15.8)
7	(012, 1710)		5.69 d (2.0)	3.59 dd	(1212, 1010)
			0.03 a (2.0)	(4.8, 12.7)	
9				1.18 m	
11				1.58 m	$1.60 \text{ m}(\alpha)$
				1.60 m	$1.92 \text{ m}(\beta)$
12	6.69 d (1.6)			1.70 m	$1.62 \text{ m}(\beta)$ 1.62 m (α)
	0.09 4 (1.0)			1.78 m	$1.68 \text{ m} (\beta)$
14	7.55 d (1.6)			5.82 dd	6.66 s
	7.55 u (1.6)			(10.5, 17.1)	0.00 3
15	2.82 sep (6.8)	3.42 sep (6.8)	3.14 sep (7.0)	4.88 d (10.5)	5.82 dd
	2.02 3cp (0.0)	5.42 sep (0.0)	5.14 sep (7.0)	5.09 d (17.1)	(10.5, 17.4)
16	1.19 d (6.8)	1.32 d (6.8)	1.17 d (7.0)	1.23 s	5.00 d (10.5)
	1.19 û (0.8)	1.52 u (0.8)	1.17 u (7.0)	1.25 3	5.04 d (17.4
17	1.19 d (6.8)	1.32 d (6.8)	1.20 d (7.0)	1.24 s	1.07 s
18	0.93 s	0.92 s	0.97 s	0.86 s	0.88 s
19	0.96 s	0.92 s 0.94 s	0.97 s	0.30 s 0.79 s	0.88 s 0.90 s
20	1.38 s	1.34 s	1.57 s	0.77 s	0.96 s
6-OCOCH ₃	1.58 \$	1.54 8	2.01 s	0.778	0.90 8
$7-OCOC\underline{H}_3$			2.01 s 2.02 s		
7-осос <u>н</u> ₃ 11-он	4.98 br s	4.83 br s	2.02.8		
12-OH	4.90 01 8	4.83 brs 6.33 brs	7.19 s		
12-OH 13-OH		0.33 brs 12.16 brs	1.198		

a) Obscured by another singal.

replaced by two phenolic hydroxyl groups ($\delta_{\rm H}$ 6.33, 12.16). Thus, compound **2** was identified as 11,12,14-trihydroxyabieta-8,11,13-trien-7-one. The conclusion was fully confirmed by COSY, HMQC, HMBC, and NOESY spectral data. In the HMBC spectrum of **2**, the methine proton H-5 ($\delta_{\rm H}$ 1.78) showed correlations with quaternary carbon C-4 ($\delta_{\rm C}$ 33.4), C-18 ($\delta_{\rm C}$ 33.0) and C-20 ($\delta_{\rm C}$ 19.0), and methylene proton H-6 ($\delta_{\rm H}$ 2.57) exhibited correlation signals with C-7 ($\delta_{\rm C}$ 204.5) to further confirm the structure of the AB ring. The isopropyl group attached to C-13 was confirmed by the correlations, and methine proton H-15 ($\delta_{\rm H}$ 3.42) exhibited coupling with C-12 ($\delta_{\rm C}$ 151.8), C-13 ($\delta_{\rm C}$ 118.4), and C-14 ($\delta_{\rm C}$ 159.5).

Compound **3** was obtained as a yellowish amorphous solid. The HR-EI-MS showed a molecular ion at m/z 432.2156, consistent with the molecular formula $C_{24}H_{32}O_7$ and indicated nine degrees of unsaturation. Two absorption bands at 1655 and 1665 cm⁻¹ in the IR spectrum, the yellowish color, and λ_{max} 272 nm in the UV spectrum, together with the observation of signals at δ_C 124.8, 137.0, 149.3, 150.8, 183.2 and 185.3 in the ¹³C-NMR spectrum (Table 2) indicated the presence of quinone moiety. The ¹H- and ¹³C-NMR spectra of **3** (Tables 1, 2) showed signals due to an isopropyl group [δ_H 3.14 (1H, sep, J=7.0 Hz, H-15), 1.17 (3H, d, J=7.0 Hz, H-16) and 1.20 (3H, d, J=7.0 Hz, H-17)] bonded to a quinone ring, three tertiary methyls [δ_H 0.97 (6H, s),

Table 2. ¹³C-NMR Spectral Data of Compounds 1-5 (75 MHz in CDCl₃)

No.	1	2	3	4	5
1	36.4	37.4	38.3	38.7	31.5
2	19.0	19.1	18.9	18.5	18.5
3	41.2	40.8	42.4	41.9	41.2
4	33.4	33.4	33.5	33.2	33.1
5	50.2	49.4	48.9	54.1	40.8
6	35.7	35.5	67.1	26.8	37.7
7	200.1	204.5	65.2	81.1	201.8
8	133.1	108.8	137.0	78.4	137.4
9	138.2	137.3	149.3	53.8	74.3
10	40.0	40.3	38.7	37.2	40.3
11	153.4	132.7	183.2	14.8	25.7
12	120.5	151.8	150.8	35.7	30.0
13	147.8	118.4	124.8	73.1	38.5
14	118.3	159.5	185.3	147.7	146.1
15	33.2	24.3	24.1	110.1	145.7
16	23.6	21.5	19.7	28.3	112.3
17	23.6	21.6	19.8	20.2	23.7
18	33.2	33.0	33.2	33.3	32.9
19	21.5	20.3	22.9	21.4	21.3
20	17.9	19.0	20.8	15.5	16.9
6-OCO <u>C</u> H ₃			21.2		
6-O <u>C</u> OCH ₃			169.0		
7-OCO <u>C</u> H ₃			21.2		
7-O <u>C</u> OCH ₃			168.1		

1.57 (3H, s)], two lowfield methyl signals of acetyl groups $[\delta_{\rm H} 2.01 (3H, s), 2.02 (3H, s)]$, two methine protons in proximity to the ester groups $[\delta_{\rm H} 5.48 (1H, {\rm br s}, {\rm H-6}), 5.69 (1H, d, J=2.0 {\rm Hz}, {\rm H-7})]$, and a singlet at $\delta_{\rm H}$ 7.19 (1H, s, disappeared on D₂O exchange) was attributed to a *para*-quinone hydroxyl group. An obvious characteristic signal at $\delta_{\rm H} 2.64$ was assigned as an H_β-1 signal. The ¹H- and ¹³C-NMR spectra of **3** (Tables 1, 2) showed a great similarity to the known compound 7, 6β ,7 α -dihydroxyroyleanone,⁴) except for two acetyl groups in **3** instead of two hydroxyl groups in 7 attached to C-6 and C-7. Saponification of **3** under basic conditions gave the product which was identified as compound 7. Complete ¹H and ¹³C chemical shifts (Tables 1, 2) were obtained from COSY, HMQC, HMBC and NOESY spectra.

Compound 4 was obtained as an amorphous solid. The IR spectrum revealed the presence of a hydroxyl absorption band (3456 cm^{-1}) and a monosubstituted double bond (1646,983, 910 cm^{-1}). The HR-EI-MS showed a molecular ion at m/z 306.2567, together with twenty carbon signals in the ¹³C-NMR spectrum, indicated the molecular formula $C_{20}H_{34}O_2$ for 4 with an unsaturation index of four. The ¹H- and ¹³C-NMR spectra of 4 showed signals assignable to five tertiary methyl groups [δ 0.77, 0.79, 0.86, 1.23, 1.24 (each 3H, s)] and an ABX system of a vinyl group [$\delta_{\rm H}$ 4.88 (1H, d, J=10.5 Hz, H-15a), 5.09 (1H, d, J=17.1 Hz, H-15b), 5.82 (1H, dd, J=10.5, 17.1 Hz, H-14); $\delta_{\rm C}$ 110.1 (C-15), 147.7 (C-14)]. A signal at $\delta_{\rm H}$ 3.59 (1H, dd, J=4.8, 12.7 Hz, H-7) was attributable to an axial proton geminal to a hydroxyl group and coupled with two other vicinal protons observed from the COSY correlations. Additionally, two downfield quaternary carbons [$\delta_{\rm C}$ 73.1 (C-13), 78.4 (C-8)] and a tertiary carbon [$\delta_{\rm C}$ 81.1 (C-7)] were attached to the oxygen atom in the ¹³C-NMR spectrum. From these characteristics, compound 4 was considered as a manoyl oxide (8) derivative with an extra hydroxyl group located on C-7 by comparison of its ¹³C-NMR data with those of $\mathbf{8}^{20}$ Based on the multiplicity and J values of the cabinol methine proton at $\delta_{\rm H}$ 3.59 (1H, dd, J=4.8, 12.7 Hz), the hydroxyl group neighboring the methylene group could be placed at either C-1, C-3, C-7, or C-17. From the HMBC correlations, methine proton H-7 ($\delta_{\rm H}$ 3.59) showed cross-peaks with quaternary carbon C-8 ($\delta_{\rm C}$ 78.4) and methylene carbon C-6 ($\delta_{\rm C}$ 26.8), and methine carbon C-9 ($\delta_{\rm C}$ 53.8) supported the hydroxyl group attached to C-7. The relative stereochemistry was established by NOESY. In the NOESY spectrum, the correlations as below H-7/H $_{\alpha}$ -5, H_{α} -6 (δ_{H} 1.80); H_{β} -1 (δ_{H} 1.54)/H-20; H_{β} -11 (δ_{H} 1.58)/H-16, -17, -20 and no correlation between H_{α} -5 and H-20 indicated that H-20, H-17, and H-16 are all in axial orientation, and the AB ring is trans-fused. Thus, compound 4 was identified as 7β -hydroxymanoyl oxide.

Compound **5** was obtained as an amorphous solid and had the molecular formula $C_{20}H_{30}O_2$ which was established by its HR-EI-MS spectrum with an [M]⁺ ion at m/z 302.2233 with six degrees of unsaturation. The IR spectrum of **5** exhibited a hydroxyl group (3460 cm⁻¹), a monosubstituted double bond (1640, 980, 910 cm⁻¹), and a conjugated carbonyl group (1680 cm⁻¹). A conjugated carbonyl absorption band appeared at λ_{max} 242 nm in the UV spectrum. The ¹H-NMR spectrum showed signals for four tertiary methyl groups [$\delta_{\rm H}$ 0.88, 0.90, 0.96, 1.07 (each 3H, s)], a β -H of α , β -unsaturated double bond [6.66 (1H, s, H-14)], and two ABX coupling system. Among the ABX coupling systems, one belongs to a vinyl group [5.00 (1H, d, J=10.5 Hz, H-16a), 5.04 (1H, d, J=17.4 Hz, H-16b), 5.82 (1H, dd, J=10.5, 17.4 Hz, H-15)], the other was contributed by the coupling between the methine and methylene neighboring a carbonyl group [$\delta_{\rm H}$ 2.21 (1H, dd, J=2.6, 15.8 Hz), 2.34 (1H, dd, J=2.6, 12.2 Hz) and 2.54 (1H, dd, J=12.2, 15.8 Hz)]. The ¹³C-NMR (Table 2) spectrum displayed 20 carbons including a conjugated carbonyl ($\delta_{\rm C}$ 201.8) and four olefinic carbon signals ($\delta_{\rm C}$ 112.3, 137.4, 145.7, 146.1). From the above observations, compound 5 was similar to the characteristics of the known compound, isopimara-8(14),15-dien-7-one (9).²¹⁾ The only difference was that H-9 in 9 was replaced by a hydroxyl group in 5, resulting in the absence of an allylic coupling of H-14 with H-9 in 9 and the presence of a downfield carbon signal C-9 $(\delta_{\rm C}$ 74.3) in 5. Further evidence was provided by the correlations between H-20/C-9 and H-14/C-9. The NOESY correlations between H-18/H-5, H_{α} -6 (δ 2.21); H_{β} -6 (δ 2.54)/H-19, H-20, and H_{β}-11 (δ 1.92)/H-17, H-20 confirmed the relative stereochemistry of 5. Thus, compound 5 was identified as 9α -hydroxyisopimara-8(14),15-dien-7-one.

Experimental

General Experimental Procedures Melting points were determined with a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded on a Bruker AM-300 at 300 and 75 MHz in CDCl₃, with tetramethylsilane as an internal standard. EI-MS, IR, UV, and specific rotations were recorded on a Finnigan TSQ-46 C, Perkin-Elmer 983, a Hitachi S-3200 spectrometer, and a JASCO DIP-180 digital polarimeter, respectively. Extracts were chromatographed on silica gel (Merck 70—230 mesh, 230—400 mesh, ASTM).

Plant Material The bark of *T. cryptomerioides* was collected in Tai-Chun, Taiwan, in 1996. The plant material was identified by Mr. Muh-Tsuen Gun, formerly a technician of the Department of Botany, National Taiwan University. A voucher specimen (no. 013542) has been deposited at the Herbarium of the Department of Botany, National Taiwan University, Taipei, Taiwan.

Extraction and Isolation Air-dried pieces of *T. cryptomerioides* bark (12 kg) were extracted three times with acetone (601) at room temperature (7 d each time). The acetone extract was evaporated *in vacuo* to leave a black residue, which was suspended in H₂O (81), and then partitioned (3×) with 11 of ethyl acetate. The EtOAc fraction (360 g) was chromatographed on Si gel using *n*-hexane and EtOAc of increasing polarity as eluent and further purified by HPLC eluted with *n*-hexane : EtOAc (75 : 25). Five components, 11-hydroxyabieta-8,11,13-trien-7-one (1) (8.2 mg), 11,12,14-trihydroxyabieta-8,11,13-trien-7-one (2) (6.8 mg), 6 β ,7 α -diacetoxyroyleanone (3) (10.2 mg), 7 β -hydroxymanoyl oxide (4) (7.8 mg), and 9 α -hydroxyisopimara-8(14),15-dien-7-one (5) (18.2 mg) were obtained in the pure form.

11-Hydroxyabieta-8,11,13-trien-7-one (1): Amorphous solid; $[\alpha]_{23}^{23} =$ +22.3° (c=0.3, CHCl₃); UV λ_{\max}^{MeOH} nm (log ε) 327 (3.1), 267 (3.5), 225 (4.0, sh), 211 (4.2); IR (dry film) v_{\max} 3430, 1660, 1625, 1600, 1505 cm⁻¹; ¹H- and ¹³C-NMR, see Tables 1 and 2; EI-MS (70 eV) (rel. int. %) *m/z* 300 (M⁺, 71), 285 (100), 243 (23), 215 (100), 203 (65), 189 (36); HR-EI-MS *m/z* 300.2080 (Calcd for C₂₀H₂₈O₂, 300.2090).

11,12,14-Trihydroxyabieta-8,11,13-trien-7-one (2): Yellowish solid; $[\alpha]_D^{23} = +92.0^{\circ} (c=0.4, \text{ CHCl}_3); UV \lambda_{\text{max}}^{\text{MeOH}} \text{ nm } (\log \varepsilon), 253 (3.4, \text{ sh}), 318$ (3.6), 344 (3.5, sh); IR (dry film) v_{max} 3396, 1666, 1610, 1510, 1447, 1288, 1182, 903 cm⁻¹; ¹H- and ¹³C-NMR, see Tables 1 and 2; EI-MS (70 eV) (rel. int. %) *m/z* 332 (M⁺, 100), 317 (66), 247 (18), 235 (15), 203 (10); HR-EI-MS *m/z* 332.1996 (Calcd for C₂₀H₂₈O₄, 332.1988).

6β,7α-Diacetoxyroyleanone (3): Yellowish solid; $[\alpha]_D^{23} = -56.7^\circ$ (*c*=0.3, CHCl₃); UV λ_{max}^{MeOH} nm (log ε) 272 (3.3), 403 (3.2); IR (dry film) v_{max} 3397, 1732, 1665, 1655, 1600, 1460, 1367, 1228, 1023, 897 cm⁻¹; ¹H- and ¹³C-NMR, see Tables 1 and 2; EI-MS (70 eV) (rel. int. %) *m/z* 432 (M⁺, 2), 372 (6), 330 (78), 314 (100), 299 (30), 245 (58), 232 (62); HR-EI-MS *m/z* 432.2156 (Calcd for C₂₄H₃₂O₇, 432.2149).

7β-Hydroxymanoyl Oxide (4): Amorphous solid; $[\alpha]_D^{23} = +35.2^\circ$ (c=0.5, CHCl₃); IR (dry film) v_{max} 3456, 1646, 1069, 983, 910 cm⁻¹; ¹H- and ¹³C-

NMR, see Tables 1 and 2; EI-MS (70 eV) (rel. int. %) m/z 306 (M⁺, 18), 291 (100), 273 (39), 177 (48), 123 (100); HR-EI-MS m/z 306.2567 (Calcd for $C_{20}H_{34}O_2$, 306.2560).

9α-Hydroxyisopimara-8(14),15-dien-7-one (5): Amorphous solid, $[\alpha]_D^{23} = -30.0^{\circ} (c=0.6, \text{CHCl}_3); \text{ IR } v_{\text{max}} 3460, 1680, 1640, 980, 910 cm^{-1};$ ¹H- and ¹³C-NMR, see Tables 1 and 2; UV $\lambda_{\text{max}}^{\text{MeaN}}$ nm (log ε) 242 (3.1) nm; EI-MS (70 eV) (rel. int. %) *m/z* 302 (M⁺, 6), 284 (50), 269 (91), 234 (19), 178 (100), 160 (60); HR-EI-MS *m/z* 302.2233 (Calcd for C₂₀H₃₀O₂, 302.2247).

Acknowledgments This research was supported by the National Science Council of the Republic of China (NSC 93-2323-B-002-010).

References

- Cheng Y. S., Kuo Y. H., Lin Y. T., J. Chem. Soc. Chem. Commun., 1967, 565–566 (1967).
- Lin Y. T., Cheng Y. S., Kuo Y. H., Tetrahedron Lett., 1968, 3881– 3882 (1968).
- Kuo Y. H., Cheng Y. S., Lin Y. T., *Tetrahedron Lett.*, **1969**, 2375– 2377 (1969).
- Kuo Y. H., Shih J. S., Lin Y. T., Lin Y. T., J. Chin. Chem. Soc., 26, 71-73 (1979).
- 5) Kuo Y. H., Lin Y. T., Lin Y. T., J. Chin. Chem. Soc., **32**, 381–383 (1985).
- Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, 48, 1391–1397 (1998).
- 7) Lin W. H., Fang J. M., Cheng Y. S., Phytochemistry, 40, 871-873

(1995).

- Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, 42, 1657–1663 (1996).
- Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, 46, 169–173 (1997).
- Kuo Y. H., Chang C. I., Lee C. K., Chem. Pharm. Bull., 48, 597–599 (2000).
- 11) Kuo Y. H., Chang C. I., J. Nat. Prod., 63, 650-652 (2000).
- 12) Kuo Y. H., Chien S. C., Chem. Pharm. Bull., 49, 1033-1035 (2001).
- Kuo Y. H., Chien S. C., Huang S. L., Chem. Pharm. Bull., 50, 544– 546 (2002).
- 14) Chang C. I., Chien S. C., Lee S. M., Kuo Y. H., Chem. Pharm. Bull., 51, 1420—1422 (2003).
- Kuo Y. H., Chien S. C., Kuo C. C., Planta Med., 68, 1020–1023 (2002).
- 16) Chien S. C., Kuo Y. H., Helv. Chim. Acta, 87, 554-559 (2004).
- 17) Chang C. I., Chang J. Y., Kuo C. C., Pan W. Y., Kuo Y. H., *Planta Med.*, **71**, 1–5 (2005).
- 18) Danheiser R. L., Casebier D. S., Firooznia F., J. Org. Chem., 60, 8341-8350 (1995).
- 19) Yang Z., Kitano Y., Chiba K., Shibata N., Kurokawa H., Doi Y., Arakawa Y., Tada M., *Bioorg. Med. Chem.*, 9, 347–356 (2001).
- 20) Stierle D. B., Stierle A. A., Larsen R. D., Phytochemistry, 27, 517– 522 (1988).
- Touche E. M. G., Lopez E. G., A. Reyes P., Sanchez H., Honecker F., Achenbach H., *Phytochemistry*, 45, 387–390 (1997).