
Aqueous solubility of drugs is one of the key factors in de-
veloping a new drug and the blending of different solvents is
a common method to increase the solubility. Apart from ex-
perimental determinations of a solute solubility in water-co-
solvent mixtures, many mathematical models have been es-
tablished to describe solute solubility in mixed solvents.1—9)

Some of these models are theoretical, while others are semi-
theoretical or empirical. While the empirical ones are mainly
used to correlate between experimental solubilities and inde-
pendent variables such as the volume fraction of the cosol-
vent, the theoretical ones can improve the understanding of
solubility behaviour for drugs in mixed solvents.

It has been found that the solute solubility in mixed sol-
vents can be mathematically represented by a single equa-
tion. There, however, is a number of equations that can be
considered which usually produce comparable results. The
question is then posed—is there a mathematical difference
between these models? To address this point, it has been
demonstrated in this work that all the suggested cosolvency
models could be made equivalent by using algebraic manipu-
lations. Based on these manipulations, a unified cosolvency
model has been proposed in the present study.

Theoretical Treatment
The log-linear relationship,2) extended Hildbrand solubility approach,1)

excess free energy equations,3) the simplest form of the mixture response
surface method,4) and the combined nearly ideal binary solvent/Redlich-
Kister (CNIBS/R-K) model5) have been converted to a general single model,
GSM.8) GSM correlates the logarithm of a solute solubility as a polynomial
function of cosolvent’s volume fraction as:

ln Xm�M0�M1 f1�M2 f1
2�M3 f1

3� · · · (1)

Where Xm is the mole fraction solubility of the solute, f1 is volume fraction
of cosolvent in the absence of the solute and M0—M3 are the model con-

stants. Before the unified cosolvency model derived in this study is dis-
cussed, different non-linear mathematical models on solubility was first re-
viewed.

Mixture Response Surface Model Statistically based mixture response
surface methods, MRS,4) have also been proposed for correlative purposes
and these models are as follows:

ln Xm�b1 f1��b2 f2��b3 f1�f2� (2a)

(2b)

(2c)

in which b1—b3, b1�—b4� and b1�—b5� are the model’s parameters and f1�
and f2�, are given by f1��0.96f1�0.02 and f2��0.96f2�0.02 in which f2 is
volume fraction of water.4)

Modified Wilson Model The modified Wilson model (MWM), is an-
other possibility which is shown below:

(3a)

where X1 and X2 denote the mole fraction solubility in neat cosolvent and
water, respectively.5) It was shown that a simplified form of the modified
Wilson model, SMW,9) is able to calculate solute solubility in water–cosol-
vent mixtures more accurate than MWM, although this simplification is not
successful in the case of solubility prediction in non-aqueous binary sol-
vents.5) Thus the SMW is:

(3b)

where L12
adj, L21

adj, l12
adj and l21

adj are adjustable parameters of the models which
can be evaluated via a nonlinear least squares analysis.
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Organic solvents are amongst the most powerful solubilization agents for a large number of water-insoluble
drugs. A number of equations has been reported for mathematical representation of solute solubility in mixed
solvents. The question is then posed—is there a mathematical difference between these models? To address this
point, it has been demonstrated that all cosolvency models could be made equivalent by using algebraic manipu-
lations. In order to familiarize the readers with the available cosolvency models, they are briefly reviewed. The
models can be divided into two mathematical categories, i.e. linear and non-linear models. The linear models in-
clude: the log-linear, extended Hildebrand solubility approach, excess free energy equations, combined nearly
ideal binary solvent/Redlich-Kister equation and Margule equations which can be converted to a general single
model which expresses the logarithm of mole fraction solubility of a solute as a power series of volume fraction of
the cosolvent. The non-linear models include the mixture response surface methods, two step solvation model
and modified Wilson model which can be converted to a non-linear general form. Also, it has been shown that
both the general single model and a non-linear general model are mathematically identical. To show the applica-
bility of the models on real experimental data, 35 data sets have been collected from the literature. Both linear
and nonlinear models produced comparable accuracies when an equal number of constant terms was employed
in numerical analyses.
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Phenomenological Model Khossravi and Connors7) developed a phe-
nomenological model for describing the solvent effects on the equilibrium
solubility of a solute in a binary solvent mixture. The model could be repre-
sented as:

(4)

Where k is the Boltzman’s constant, T is the absolute temperature, and a, b,
b1 and b2 are the model constanats.7)

Unified Cosolvency Model It can be expected that for a given phenom-
enon, a single model should be able to mathematically represent the experi-
mental solubility data. However, as discussed above, there have been many
different equations. Each of them has different errors in the results when
matched against a training data set, due to the different assumptions and
simplifications employed.

Substitution of f2 with (1�f1) in non-linear Eqs. 2b, 2c and 3a, 3b with
subsequent rearrangements yields:

(5a)

Where J0—J3 and K0—K3 are the model constants computed by using a non-
linear least square analysis. Since the ln Xm terms on the left-hand side of
Eqs. 1 and 5a are the same, it is possible to write:

(5b)

By multiplying (M0�M1 f1�M2 f1
2�M3 f1

3�· · · ) in (K0�K1 f1�K2 f1
2�

K3 f1
3�· · · ) for Eq. 5b and subsequent rearranging, it is possible to obtain:

K0(M0�M1 f1�M2 f1
2�M3 f1

3�· · · )�K1 f1(M0�M1 f1�M2 f1
2�M3 f1

3�· · · )
�K2 f1

2(M0�M1 f1�M2 f1
2�M3 f1

3�· · · )�K3 f1
3(M0�M1 f1�M2 f1

2

�M3 f1
3�· · · )�J0�J1 f1�J2 f1

2�J3 f1
3�· · · (5c)

Further rearrangement of Eq. 5c can produce:

K0M0�(K0M1�K1M0) f1�(K0M2�K1M1�K2M0) f1
2�(K0M3�K1M2

�K2M1�K3M0) f1
3�· · ·�J0�J1 f1�J2 f1

2�J3 f1
3�· · · (5d)

Since K0M0 and other terms in parentheses are constant values for a given
binary system, it is possible to re-write Eq. 5d as Eq. 5e.

A0�A1 f1�A2 f1
2�A3 f1

3�· · ·�J0�J1 f1�J2 f1
2�J3 f1

3�· · · (5e)

As an example, Eq. 3b could be rewritten as:

(3c)

By replacing f2 with (1�f1), (1�ln X1) and (1�ln X2) with l3 and l4 and
subsequent rearranging the following equation can be obtained:

(3d)

or:

(3e)

or:
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or by further arrangement:
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Since l terms in Eq. 3g are constant for a given solute in a binary solvent
system, it is possible to summarize Eq. 3g as:

(3h)

Where J0�(�l12
adj�l4l12

adj), J1�(�1�l12
adjl21

adj�2l12
adj�l3�l4�2l4l12

adj),
J2�(1�l 12

adjl 21
adj�l 21

adj�l 12
adj�l 3l 21

adj�l �l 4�l 4l 12
adj), K0�l 12

adj, K1�(1
�l12

adjl21
adj�2l12

adj) and K2�(�1�l12
adjl21

adj�l21
adj�l12

adj).
From these equations, we can summarise all cosolvency models as a

power series of volume fraction of the cosolvent, GSM model. The GSM
was used in earlier works by Martin and co-workers10,11) and a mathematical
justification for GSM has been provided.8) The above mentioned mathemati-
cal manipulations showed that the non-linear cosolvency models could also
be converted to GSM. These findings are not however unexpected as it is
generally the case that a definite experimental phenomenon, like drug solu-
bility in water-cosolvent mixtures, would have a single mathematical repre-
sentation. Here it has been shown that this is in fact true for the cosolvency
models. However, the accuracy of these models differs from each other. This
is because the models employed a different arrangement of independent
variables.

Computational Methods To assess the accuracy of the equations, the
experimental Xm values were fitted into the equations and the mean percent-
age deviation (MPD) between experimental and calculated Xm values was
considered as an accuracy criterion. The MPD is defined as:

where N is the number of experimental data points in each set. The mean
value of MPDs is denoted as overall MPD (OMPD) and is given by:

The computations could be carried out using various statistical softwares. As
an example, a computer program using the SPSS was presented in the ap-
pendix section. The program calculates various statistical data of the most
comprehensive equation including model constants and the MPD value for
the solubility of oxolinic acid in water�ethanol mixture.

Results and Discussion
In the present study, we tested the accuracy of the equa-

tions by fitting the experimental data sets (for details see
Table 1) to the equations and considered the number of con-
stant terms, the MPD and OMPD values. The differences be-
tween the OMPD values for all of the models discussed
above using the equal number of constant terms, i.e. 4—6,
were evaluated using ANOVA and the mean differences (de-
tails were not shown here) in all cases were statistically sig-
nificant (ANOVA, p�0.0005). This finding is in agreement
with a previously reported result.12) The differences in
OMPDs produced by the equations could be justified by con-
sidering the different assumptions used to derive the models,
the simplifications made during the model development
process, different independent variables and the numerical
analysis method. As an example, it has been shown that two
different numerical methods in obtaining the model constants
of the CNIBS/R-K model produced various MPD values.13)

As shown in the theoretical treatment, Eq. 3b could be
made equivalent to Eq. 3h, and by doing this the OMPDs and
standard deviations for Eqs. 3b and 3h were 10.2�7.0 and
10.1�15.2, respectively. The OMPD difference is insignifi-
cant (paired t-test, p�0.99). The OMPD obtained from Eqs.
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1 and 3h were 9.0�5.4 and 10.2�7.0, respectively, and again
the mean difference is not significant (paired t-test, p�0.57).
Figure 1 shows the reproduced solubility profile of oxolinic
acid at different ethanol concentrations using the different
models discussed. The high standard deviation for Eq. 3h is
related to the nature of the iteration method, where standard
errors of all model constants for non-linear models are also

high. As an example, J0 (of Eq. 3h) for data of theophylline
in water-acetonitrile mixtures7) is �0.14 and its standard
error is 14265.50. To reduce the standard error of the model
constants for non-linear equations, it is suggested to employ
more data points. This, however, is not a suitable solution,
when the aim of a research is to optimise solvent composi-
tion of a binary solvent mixture for solubilization and/or de-
solubilization purposes, and to give a fast and low-costly
method. But we should be careful not to include too many
experimental data points since the purpose of mathematical
modeling (i.e. prediction) will be lost. Previously we have
used trained mathematical models by five experimental
data,14) which provides accurate predictions.

In conclusion, it has been shown that all cosolvency mod-
els from the literature could be made mathematically equiva-
lent and with different cosolvency models described above
regarding solute solubility data in a binary solvent mixture,
researchers have the dilemma of having many models to
choose from in their practical applications. From the work
carried out both in this paper and in previous studies by the
group,6,8,12) Eq. 6 is recommended for practical applications.
Equation 6 is6):

(6)

where Qi is the model constant and q is usually 2—3. As has
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Table 1. Details of Solubility Data, the Number of Data Points in Each Set (N), the Mean Percentage Deviation (MPD) of Eq. 6 and the References

No. Cosolvent Solute Na) MPD Reference

1 Acetonitrile Theophylline 17 3.1 7
2 Dimethylformamide Caffeine 11 4.0 22
3 Dimethylformamide Sulphadiazine 14 2.2 10
4 Dioxane Caffeine 16 3.7 1
5 Dioxane p-Hydroxybenzoic acid 13 5.0 23
6 Dioxane Paracetamol 17 7.7 24
7 Dioxane Phenacetin 13 3.7 25
8 Dioxane Sulphadiazine 17 11.3 26
9 Dioxane Sulphadimidine 19 14.6 26

10 Dioxane Sulphamethiazole 19 17.0 27
11 Dioxane Sulphamethoxazole 15 9.7 26
12 Dioxane Sulphapyridine 17 10.2 28
13 Dioxane Sulphamethoxypyridazine 18 8.7 26
14 Dioxane Sulphanilamide 16 11.3 29
15 Dioxane Sulphasomidine 21 12.5 30
16 Dioxane Theobromine 11 1.8 30
17 Dioxane Theophylline 21 5.9 31
18 Ethanol Furosemide 13 6.2 32
19 Ethanol Oxolinic acid 11 0.8 33
20 Ethanol Paracetamol 13 6.6 24
21 Ethanol Sulphamethazine 11 4.9 34
22 Ethanol Sulphanilamide 12 3.0 34
23 Ethylene glycol Naphthalene 18 1.4 7
24 Ethylene glycol Theophylline 17 1.9 7
25 Glycerine Furosemide 12 3.3 32
26 Methanol Theophylline 13 1.4 7
27 Propylene glycol Butyl p-aminbenzoate 11 4.7 35
28 Propylene glycol Butyl p-hydroxybenzoate 11 4.0 35
29 Propylene glycol Ethyl p-aminobenzoate 11 3.0 35
30 Propylene glycol Ethyl p-hydroxybenzoate 11 5.1 35
31 Propylene glycol Furosemide 13 5.3 32
32 Propylene glycol Methyl p-aminobenzoate 11 2.0 35
33 Propylene glycol Methyl p-hydroxybenzoate 11 3.2 35
34 Propylene glycol Proply p-aminobenzoate 11 3.7 35
35 Propylene glycol Proply p-hydroxybenzoate 11 4.4 35

5.6�4.0

Fig. 1. Experimental Solubility of Oxolinic Acid in Water–Ethanol Mix-
tures,33) and the Reproduced Curves Using Eqs. 1, 3h and 6



been shown in Table 1, Eq. 6 provides the most accurate cal-
culations and its main advantages over the others are:
• Simple and reliable calculations (see the Appendix)
• Capability of calculating the solute solubility in mixed sol-

vents at different temperatures15)

• Capability of describing multiple solubility maxima in
mixed solvents15)

• Capability of calculating the solubility of structurally re-
lated drugs in mixed solvents16)

• Representation the solubility of polymorphs in mixed sol-
vents17)

• Possibility of extending its solubility prediction capabili-
ties to ternary solvents using sub-binary data18,19)

• Possessing as many curve-fitting parameters as needed for
accurate representation of experimental data in mixed sol-
vents

• Capability of describing other physico-chemical properties
of solutes in mixed solvent systems.20,21)

If this equation is used, then the pharmaceutical chemist is
likely to be able to reduce the length of operation of the drug
solubilization/desolubilization process using solvent mix-
tures.
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Appendix
A computer program using the SPSS software for calcula-

tion of solubility of a solute in binary aquous cosolvent mix-
ture using Eq. 6 (with q�2).

* F1: Volume fraction of the cosolvent.
* LXM: Logarithm of mole fraction solubility of the solute in mixed solvent.
DATA LIST FREE/ F1 LXM.
BEGIN DATA.
0.00 -13.74
0.10 -12.74
0.20 -12.13
0.30 -11.81
0.40 -11.52
0.50 -11.28
0.60 -11.02
0.70 -10.81
0.80 -10.77
0.90 -10.99
1.00 -11.71
END DATA.
TITLE ‘Solubility of oxolinic acid in water–ethanol at 25 °C’.
SUBTITLE ‘Data taken from Jouyban et al., Chem. Pharm. Bull., 48 (2000)
175–178’.
* LX1: Logarithm of mole fraction solubility of the solute in neat cosolvent.
* LX2: Logarithm of mole fraction solubility of the solute in neat water.
COMPUTE LX1��11.71.
COMPUTE LX2��13.74.
* F2: Volume fraction of water.
COMPUTE F2�1-F1.
COMPUTE Q0�F1*F2.
COMPUTE Q1�F1*F2*(F1-F2).
COMPUTE Q2�F1*F2*(F1-F2)*(F1-F2).
COMPUTE Y�LXM-F1*LX1-F2*LX2.
REGRESSION /ORIGIN /DEPENDENT Y/METHOD�ENTER Q0 Q1
Q2 /SAVE PRED.
COMPUTE LXMP�PRE_1�F1*LX1�F2*LX2.
COMPUTE XMP�EXP(LXMP).
COMPUTE XM�EXP(LXM).
COMPUTE MPD�ABS (100*(XMP-XM)/XM).
DESCRIPTIVES VARIABLES�MPD /STATISTICS�MEAN.
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