
The pyranoacridone alkaloid acronycine (1), originally
isolated from Acronychia baueri SCHOTT (Rutaceae)1—3) has
shown antitumor properties in a panel of murine solid tumor
models, including S-180 and AKR sarcomas, X-5563
myeloma, S-115 carcinoma, and S-91 melanoma.4,5) How-
ever, its moderate potency and poor solubility in aqueous sol-
vents severely hampered the subsequent clinical trials, which
were rapidly discontinued, due to modest therapeutic effects
and dose-limiting gastrointestinal toxicity after oral adminis-
tration.6) Consequently, the development of structural ana-
logues with increased potency and/or better water solubility
was highly desirable.

Our efforts toward the obtainment of more potent deriva-
tives were guided by a hypothesis of bioactivation of the 1,2-
double bond of acronycine into the corresponding epoxide in
vivo.7) Significant improvements in terms of solubility and
potency were obtained with derivatives modified in the pyran
ring, which had a similar reactivity toward nucleophilic
agents as acronycine epoxide, but an improved chemical sta-
bility. Such compounds are exemplified by diesters of cis-
1,2-dihydroxy-1,2-dihydroacronycine8) and diesters of cis-
1,2-dihydroxy-1,2-dihydrobenzo[b]acronycine ((�)-cis-1,2-
dihydroxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-
7H-benzo[b]pyrano[3,2-h]acridin-7-one).9) Representatives of
this latter series are considered as valuable drug candidates
for clinical studies.10) For instance, diacetate 2, currently de-

veloped under the code S23906-1 is currently under phase I
clinical trials. Their mechanism of action implies alkylation
of the 2-amino group of DNA guanine residues by the carbo-
cation resulting from the elimination of the ester leaving
group at position 1 of the drug.11—14)

In the course of the exploration of the structure activity re-
lationships in the acronycine series,15) 2-nitroacronycine, al-
though shown to be toxic in vivo, demonstrated remarkably
high potency when tested against a battery of cultured mam-
malian cells in vitro.4,16,17) In this context, Michael acceptors
in the benzo[b]acronycine series, possessing a 1,2-double
bond and substituted at position 2 by an acyl group appeared
as possible new drug candidates able to undergo additions at
position 1 onto intracellular nuclophilic targets. Additionally,
enol esters at position 2 were also worth exploring for com-
parison purposes. We describe here the synthesis and biologi-
cal activities of various 2-acyl- and 2-acyloxy-6-methoxy-
3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-
h]acridin-7-ones.

Chemistry
Treatment of 6-methoxy-3,3,14-trimethyl-3,14-dihydro-

7H-benzo[b]pyrano[3,2-h]acridin-7-one (3) with an excess of
an appropriate acyl chloride in the presence of aluminum
chloride in dichloromethane afforded the corresponding 2-
acyl-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo-
[b]pyrano[3,2-h]acridin-7-ones. Following this procedure,
the desired 2-acetyl-6-methoxy-3,3,14-trimethyl-3,14-dihy-
dro-7H-benzo[b]pyrano[3,2-h]acridin-7-one (4), 2-butyryl-6-
methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]-
pyrano[3,2-h]acridin-7-one (5), and 2-benzoyl-6-methoxy-
3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-
h]acridin-7-one (6) were prepared in 96, 54, and 42% yield,
respectively.
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A series of 2-acyl-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-h]acridin-7-ones (4—6)
was prepared by treatment of 6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one
(3) with an excess of an appropriate acyl chloride in the presence of aluminum chloride. Treatment of (�)-cis-1-
hydroxy-2-acyloxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-ones (9, 10)
or (�)-cis-1,2-diacyloxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-ones
(2, 11) with hydrochloric acid gave the corresponding 2-acyloxy-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-
benzo[b]pyrano[3,2-h]acridin-7-ones, exemplified by acetate 7 and butyrate 8. None of the Michael acceptors 4—
6 showed significant antiproliferative activity. Enol esters 7 and 8 were markedly cytotoxic toward L1210
leukemia cells, with IC50 values within the same range of magnitude as (�)-cis-1,2-diacetoxy-6-methoxy-3,3,14-
trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one (S23906-1), currently under phase I clini-
cal trials. In contrast with S23906-1, enol esters 7 and 8 were not reactive toward purified DNA.
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Enol esters at position 2, exemplified by acetate 7 and bu-
tyrate 8, were obtained in moderate 40 and 31% yield, re-
spectively, by dehydration of their corresponding (�)-cis-1-
hydroxy-2-acyloxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-
tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-ones 9 and 10
with hydrochloric acid in dichloromethane. When the same
reaction was applied to (�)-cis-1,2-diacyloxy-6-methoxy-3,-
3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-
h]acridin-7-ones 2 and 11, enol esters 7 and 8 were also ob-
tained, but in lower yields (19, 12%, respectively) than when
the monoesters 9 and 10 were used as starting materials.

Pharmacology
The study of the biological properties of the new 2-acyl-

benzo[b]acronycines 4, 5, and 6, and of the enol esters 7 and
8 was carried out in vitro in the L1210 murine leukemia cell
line. The results (IC50 values) are reported in Table 1. None
of the Michael acceptors 4—6 showed significant antiprolif-
erative activity. In contrast, enol esters 7 and 8 were markedly
cytotoxic, with IC50 values within the same range of magni-
tude as diacetate 2, currently under phase I clinical trials.

The perturbation of the cell cycle induced by the active
enol esters 7 and 8 was studied in the same cell line. Gel re-
tardation experiments with DNA fragments were also per-
formed for these two compounds, in comparison with diac-
etate 2 previously shown to alkylate purified DNA at the N-2
of guanine residues.11,12) The results are summarized in Table
2. As previously established, diacetate 2 induced a partially
reversible accumulation in the G2�M phases of the cell
cycle at low concentration and an irreversible arrest in the S
phase at higher concentration, whereas accumulation in the
G1 phase was observed with enol acetate 7. No alkylation of
purified DNA was observed with both compounds 7 and 8.
At the cellular level, the mechanism of action of the com-
pound 8 is different from that of 2. Indeed, compound 8 did
not induce an S phase accumulation, which is a common
characteristic of all the derivatives acting as compound 2.
Compound 8 only induced a partial accumulation in the
G2�M phases. The mechanism of action of compound 7 is

clearly different from that of compounds 2 and 8, as shown
by a completely different perturbation of the cell cycle, i.e.
slowing down during the G1 phase.

Results and Discussion
Considering the structure activity relationships in the

benzo[b]acronycine series, it appears that compounds bear-
ing an acyl substituent at position 2, initially considered as
Michael acceptors able to undergo additions to nucleophilic
cellular targets, were devoid of cytotoxic activity. From a
chemical point of view, this result should be correlated with
the high delocalization of the electrons in the benzo[b]-
acronycine chromophore.

Enol esters at position 2, exemplified by 7 and 8, displayed
cytotoxic activities within the same range of magnitude as
(�)-cis-1,2-diacetoxy-1,2-dihydro benzo[b]acronycine. Nev-
ertheless, the mechanism of their action at the molecular
level differs from that of 2. In agreement with this statement,
both enol esters 7 and 8 did not bind to purified DNA.

Experimental
Chemistry The melting points were determined on a Leica VM appara-

tus and are not corrected. IR spectra (nmax in cm�1) were obtained on a
Perkin-Elmer 257 instrument. UV spectra (lmax in nm) were determined in
spectroscopic-grade MeOH on a Beckman Model 34 spectrophotometer. 1H-
NMR (d [ppm], J [Hz]) and 13C-NMR spectra were recorded at 400 and
100 MHz respectively, using a Bruker Avance 400 spectrometer. When nec-
essary, the signals were unambiguously assigned by 2D NMR techniques:
1H–1H COSY, 1H–1H NOESY, 13C–1H HMQC, and 13C–1H HMBC. These
experiments were performed using standard Bruker microprograms. Mass
spectra were recorded with a Nermag R-10-10C spectrometer using electron
impact ionization (EI-MS; 70 eV) technique. Flash column chromatogra-
phies were performed using silica gel 60 Merck (35—70 mm) with an over-
pressure of 300 mbar.

2-Acetyl-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]-
pyrano[3,2-h]acridin-7-one (4) Acetyl chloride (59 m l, 0.824 mmol) and
aluminium chloride (108 mg, 0.673 mmol) were added to a solution of 6-
methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-h]acridin-7-
one (3) (50 mg, 0.1374 mmol) in CH2Cl2 (2 ml) at 0 °C. The reaction mixture
was stirred at 20 °C for 3 h and poured onto 10% aqueous HCl solution
(100 ml) at 0 °C. The mixture was extracted with CH2Cl2 (3�100 ml). The
combined organic layer was washed with saturated Na2CO3 aqueous solution
(100 ml), water (2�100 ml), dried over anhydrous Na2SO4, and evaporated
under reduced pressure. Flash chromatography (solvent: CH2Cl2, then
CH2Cl2/MeOH 99 : 1 to 95 : 5) gave 4 (54 mg, 96%) as yellow needles, mp
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Table 1. Inhibition of L1210 Cell Proliferation by Compounds 4—8 in
Comparison with Benzo[b]acronycine (3) and S23906-1 (2)

Compound 2 3 4 5 6 7 8

IC50 (mM) 0.8 15 20 30 �50 0.75 1.8

Table 2. Cell Cycle Perturbation Induced in L1210 Cell Line and in Vitro
DNA Alkylation Induced by Compounds 7 and 8 in Comparison with
S23906-1 (2)

Compound 2 7 8

Cell cycle perturbation 72% G2�M 55% G1 51% G2�M
(1 mM) (20 mM) (20 mM)
73% S
(5 mM)

In vitro DNA Alkylation �� 0 0

The capacity of the tested compounds to form complexes with purified DNA was in-
vestigated by gel shift assay. Symbol �� refers to strong alkylation, whereas 0 means
no alkylation at all.

Chart 2



277 °C (EtOH). IR (KBr) cm�1: 3050, 2973, 2940, 1647, 1602, 1559, 1488,
1459, 1405, 1364, 1238, 1209, 1123, 1087, 809, 735. UV lmax (MeOH) nm
(log e): 238 (4.36), 271 (4.76), 339 (4.58), 440 (3.85). 1H-NMR (400 MHz,
CDCl3) d : 8.94 (1H, s, C8-H), 8.05 (1H, dd, J�9, 1 Hz, C9-H), 7.89 (1H,
dd, J�9, 1 Hz, C12-H), 7.73 (1H, s, C13-H), 7.59 (1H, ddd, J�9, 8, 1 Hz,
C11-H), 7.55 (1H, s, C1-H), 7.47 (1H, ddd, J�9, 8, 1 Hz, C10-H), 6.29 (1H,
s, C5-H), 4.03 (3H, s, O-CH3), 3.99 (3H, s, N-CH3), 2.47 (3H, s, C2-
COCH3), 1.72 (6H, s, C3-(CH3)2). 

13C-NMR (75 MHz, CDCl3) d : 195.2
(C2-CO–), 177.5 (C-7), 165.9 (C-6), 161.3 (C-4a), 148.4 (C-14a), 142.1 (C-
13a), 135.7 (C-12a), 132.6 (C-2), 131.5 (C-1), 129.6 (C-9), 129.0 (C-8a),
128.5 (C-11), 128.3 (C-8), 126.8 (C-12), 125.4 (C-7a), 124.9 (C-10), 112.4
(C-13), 109.6 (C-6a), 102.4 (C-14b), 93.7 (C-5), 79.9 (C-3), 56.6 (OCH3),
45.4 (NCH3), 26.6 (C2-COCH3), 25.9 (C3(CH3)2). EI-MS m/z: 413 [M]� · ,
398 [M�CH3]

�. Anal. Calcd for C26H23NO4: C, 75.53; H, 5.61; N, 3.39.
Found: C, 75.22; H, 5.67; N, 3.46.

2-Butyryl-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo-
[b]pyrano[3,2-h]acridin-7-one (5) Compound 5 was obtained from 3
(50 mg, 0.137 mmol) under conditions similar with those described for the
preparation of 4, using butyryl chloride (84 m l, 0.808 mmol) instead of
acetyl chloride. Purification by flash chromatography (solvent: CH2Cl2, then
CH2Cl2/MeOH 99 : 1 to 94 : 6) gave 5 (32 mg, 54%) as pale yellow needles,
mp 302 °C (acetone/hexane 7 : 3). IR (KBr) cm�1: 3050, 2966, 2870, 1636,
1592, 1577, 1563, 1489, 1462, 1404, 1360, 1246, 1211, 1172, 1125, 1087,
1028, 804, 738. UV lmax (MeOH) nm (log e): 237 (4.40), 271 (4.79), 339
(4.61), 442 (3.87). 1H-NMR (400 MHz, CDCl3) d : 8.94 (1H, s, C8-H), 8.05
(1H, dd, J�9, 1 Hz, C9-H), 7.89 (1H, dd, J�9, 1 Hz, C12-H), 7.74 (1H, s,
C13-H), 7.57 (1H, ddd, J�9, 8, 1 Hz, C11-H), 7.50 (1H, s, C1-H), 7.45 (1H,
ddd, J�9, 8, 1 Hz, C10-H), 6.29 (1H, s, C5-H), 4.04 (3H, s, O-CH3), 3.97
(3H, s, N-CH3), 2.76 (2H, t, J�7.5 Hz, C2-COCH2CH2CH3), 1.75 (2H, m,
C2-COCH2CH2CH3), 1.72 (6H, s, C3-(CH3)2), 1.02 (3H, t, J�7.5 Hz, C2-
COCH2CH2CH3). 

13C-NMR (75 MHz, CDCl3) d : 198.1 (C2-CO–), 177.6
(C-7), 165.7 (C-6), 161.2 (C-4a), 148.8 (C-14a), 141.5 (C-13a), 135.7 (C-
12a), 131.6 (C-2), 131.1 (C-1), 129.7 (C-9), 128.9 (C-8a), 128.5 (C-11),
128.4 (C-8), 126.8 (C-12), 125.4 (C-7a), 124.9 (C-10), 112.4 (C-13), 110.0
(C-6a), 102.1 (C-14b), 93.7 (C-5), 79.9 (C-3), 56.6 (OCH3), 45.4 (NCH3),
40.3 (C2-COCH2CH2CH3), 25.9 (C3(CH3)2), 18.6 (C2-COCH2CH2CH3),
13.9 (C2-COCH2CH2CH3). EI-MS m/z: 441 [M]� · , 426 [M�CH3]

�, 412
[M�C2H5]

�. Anal. Calcd for C28H27NO4: C, 76.17; H, 6.16; N, 3.17. Found:
C, 76.21; H, 6.07; N, 3.26.

2-Benzoyl-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo-
[b]pyrano[3,2-h]acridin-7-one (6) Compound 6 was obtained from 3
(50 mg, 0.137 mmol) under conditions similar with those described for the
preparation of 4, using benzoyl chloride (384 m l, 3.23 mmol) instead of
acetyl chloride. Purification by flash chromatography (solvent: CH2Cl2, then
CH2Cl2/MeOH 99 : 1 to 94 : 6) gave 6 (27 mg, 42%) as an orange amorphous
solid. IR (KBr) cm�1: 3050, 2966, 2929, 1632, 1510, 1585, 1559, 1489,
1459, 1403, 1360, 1246, 1213, 1135, 1084, 1025, 805, 729. UV lmax

(MeOH) nm (log e): 240 (4.37), 271 (4.62), 343 (4.42), 437 (4.14). 1H-NMR
(400 MHz, CDCl3) d : 8.94 (1H, s, C8-H), 8.03 (1H, d, J�9 Hz, C9-H), 7.80
(3H, m, C12-H, C2�-H, C6�-H), 7.57 (3H, m, C13-H, C11-H, C4�-H), 7.48
(3H, m, C10-H, C3�-H, C5�-H), 7.10 (1H, s, C1-H), 6.36 (1H, s, C5-H), 4.07
(3H, s, O-CH3), 3.73 (3H, s, N-CH3), 1.82 (6H, s, C3(CH3)2). 

13C-NMR
(75 MHz, CDCl3) d : 193.9 (C2-CO–), 178.0 (C-7), 165.6 (C-6), 161.3 (C-
4a), 148.6 (C-14a), 140.9 (C-13a), 137.9 (C-12a), 135.6 (C-2), 134.0 (C-1),
132.4 (C-4�), 130.5 (C-1�), 129.4 (C-2��C-6�), 129.3 (C-9), 128.7 (C-8a),
128.4 (C-11�C-3��C-5�), 128.0 (C-8), 126.7 (C-12), 124.9 (C-10), 124.7
(C-7a), 112.4 (C-13), 109.1 (C-6a), 102.2 (C-14b), 93.6 (C-5), 79.8 (C-3),
56.2 (OCH3), 44.8 (NCH3), 25.2 (C3(CH3)2). EI-MS m/z: 475 [M]� · , 460
[��CH3]

�. Anal. Calcd for C31H25NO4: C, 78.30; H, 5.30; N, 2.95. Found:
C, 78.20; H, 5.37; N, 2.96.

2-Acetoxy-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]-
pyrano[3,2-h]acridin-7-one (7) Method a: Aqueous HCl solution (10%,
0.2 ml) was added to a solution of (�)-cis-2-acetoxy-1-hydroxy-6-methoxy-
3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-
one (9) (40 mg, 0.082 mmol) in CH2Cl2 (2 ml). The reaction mixture was
stirred for 4 d at 20 °C and evaporated under reduced pressure. Flash chro-
matography (solvent: CH2Cl2, then CH2Cl2/MeOH 99 : 1 to 90 : 10) gave 7
(14 mg, 40%) as orange needles, mp 165 °C (acetone). IR (KBr) cm�1: 3048,
2971, 2931, 1765, 1647, 1620, 1586, 1569, 1492, 1461, 1397, 1333, 1231,
1194, 1110, 1086, 1029, 874, 799. UV lmax (MeOH) nm (log e): 240 (4.37),
275 (4.72), 307 (4.70), 360 (3.93), 443 (3.71). 1H-NMR (400 MHz, CDCl3)
d : 8.90 (1H, s, C8-H), 8.02 (1H, dd, J�9, 1 Hz, C9-H), 7.87 (1H, dd, J�9,
1 Hz, C12-H), 7.65 (1H, s, C13-H), 7.54 (1H, ddd, J�9, 8, 1 Hz, C11-H),

7.41 (1H, ddd, J�9, 8, 1 Hz, C10-H), 6.54 (1H, s, C1-H), 6.35 (1H, s, C5-
H), 4.01 (3H, s, O-CH3), 3.95 (3H, s, N-CH3), 2.29 (3H, s, C2-OCOCH3),
1.59 (6H, s, C3-(CH3)2). 

13C-NMR (75 MHz, CDCl3) d : 178.2 (C-7), 169.2
(C2-OCOCH3), 163.0 (C-6), 157.7 (C-4a), 150.1 (C-14a), 142.0 (C-2),
141.0 (C-13a), 135.8 (C-12a), 129.6 (C-9), 128.7 (C-8a), 128.2 (C-11�C-8),
126.8 (C-12), 125.5 (C-7a), 124.5 (C-10), 112.5 (C-6a), 111.9 (C-13), 109.9
(C-5), 102.3 (C-14b), 93.8 (C-1), 78.0 (C-3), 56.4 (OCH3), 44.7 (NCH3),
24.1 (C3(CH3)2), 21.1 (C2-OCOCH3). EI-MS m/z: 429 [M]� · , 387
[M�COCH2]

� · . Anal. Calcd for C26H23NO5: C, 72.71; H, 5.40; N, 3.26.
Found: C, 77.81; H, 5.45; N, 3.21.

Method b: The same reaction applied to (�)-cis-1,2-diacetoxy-6-
methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-
h]acridin-7-one (2) (40 mg, 0.0818 mmol) afforded 7 (11 mg, 31%).

2-Butyroxy-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo-
[b]pyrano[3,2-h]acridin-7-one (8) Compound 8 was obtained from (�)-
cis-2-butyryloxy-1-hydroxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahy-
dro-7H-benzo[b]pyrano[3,2-h]acridin-7-one (10) (method a) or (�)-cis-1,2-
dibutyryloxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-
benzo[b]pyrano[3,2-h]acridin-7-one (11) (method b) under conditions simi-
lar with those described for the preparation of 7. Purification by flash chro-
matography (solvent: CH2Cl2, then CH2Cl2/MeOH 99 : 1 to 95 : 5) gave 5 in
19 and 12% yield, respectively, as orange needles, mp 180 °C (CH2Cl2). IR
(KBr) cm�1: 3052, 2960, 1756, 1649, 1618, 1587, 1566, 1494, 1460, 1397,
1332, 1211, 1138, 1108, 1084, 1025, 872, 811, 745. UV lmax (MeOH) nm
(log e): 239 (4.43), 275 (4.77), 307 (4.72), 360 (3.95), 440 (3.77). 1H-NMR
(400 MHz, CDCl3) d : 8.90 (1H, s, C8-H), 8.01 (1H, dd, J�9, 1 Hz, C9-H),
7.84 (1H, dd, J�9, 1 Hz, C12-H), 7.65 (1H, s, C13-H), 7.53 (1H, ddd, J�9,
8, 1 Hz, C11-H), 7.40 (1H, ddd, J�9, 8, 1 Hz, C10-H), 6.55 (1H, s, C1-H),
6.32 (1H, s, C5-H), 4.00 (3H, s, O-CH3), 3.94 (3H, s, N-CH3), 2.52 (2H, t,
J�7.5 Hz, C2-COCH2CH2CH3), 1.79 (2H, m, C2-COCH2CH2CH3), 1.59
(6H, s, C3-(CH3)2), 1.07 (3H, t, J�7.5 Hz, C2-COCH2CH2CH3). 

13C-NMR
(75 MHz, CDCl3) d : 178.0 (C-7), 172.0 (C2-OCO), 163.0 (C-6), 157.6 (C-
4a), 150.3 (C-14a), 147.5 (C-2), 141.0 (C-13a), 135.8 (C-12a), 129.6 (C-9),
128.7 (C-8a), 128.2 (C-11�C-8), 126.7 (C-12), 125.7 (C-7a), 124.5 (C-10),
111.9 (C-13), 110.1 (C-6a), 109.7 (C-5), 102.4 (C-14b), 98.8 (C-1), 77.2 (C-
3), 56.4 (OCH3), 44.6 (NCH3), 36.3 (C2-OCOCH2CH2CH3), 24.1
(C3(CH3)2), 18.4 (C2-OCOCH2CH2CH3), 13.7 (C2-OCOCH2CH2CH3). EI-
MS m/z: 457 [M]� · , 387 [M�CO(CH2)3]

� · . Anal. Calcd for C28H27NO5: C,
73.51; H, 5.95; N, 3.06. Found: C, 73.58; H, 6.01; N, 2.99.

Pharmacology. Cytotoxicity Murine leukemia L1210 cells from the
American Type Culture Collection (Rockville Pike, MD, U.S.A.) were
grown in RPMI medium 1640 supplemented with 10% fetal calf serum,
2 mM L-glutamine, penicillin 100 U/ml, streptomycin 100 mg/ml and 10 mM

HEPES buffer (pH 7.4). The cytotoxicity was measured using the microcul-
ture tetrazolium assay essentially as described.16) Cells were exposed for
48 h to nine graded concentrations in triplicate of the test drug. Results are
expressed as IC50 values (mean, n�3), which are defined as the drug con-
centration inhibiting the absorbance by 50% with respect to that of untreated
cells.

Cell Cycle Analysis For the cell cycle analysis, L1210 cells (5�
105 cells/ml) were incubated for 21 h with various concentrations of drugs.
Cells were then fixed with 70% ethanol (v/v), washed, and incubated in PBS
containing RNAse 100 mg/ml and propidium iodide 50 mg/ml for 30 min at
20 °C. For each sample, 10000 cells were analyzed on an XLMCL flow cy-
tometer (Beckman Coulter, France). Results are expressed as the percentage
of cells arrested in the given phases of the cell cycle.

Binding to DNA: Gel Shift Studies A typical cross-linking reaction
consisted of incubating 8 m l radiolabelled DNA, 2 m l of buffer (10 mM Na
cacodylate, pH 7.0; Tris buffer must be avoided due to the presence of reac-
tive amine functions) and 10 m l of the drug at the desired concentration in
the dark at room temperature, for 16 h, prior to adding 5 m l of a 50% glyc-
erol solution containing tracking dyes. DNA samples were resolved by elec-
trophoresis under non-denaturing conditions in 6% acrylamide gels for
about 5 h at 300 V at room temperature in TBE buffer (89 mM boric acid,
2.5 mM Na2EDTA, pH 8.3). Gels were transferred to Whatman 3MM paper,
dried under vacuum at 80 °C, and then analyzed on a phosphorimager (Mol-
ecular Dynamics 445SI).
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