
Crystallization is one of the oldest and most important unit
operations to purify molecules. Although several useful chro-
matographic techniques are available now, crystallization is
still widely applied in pharmaceutical industries to separate
or purify compounds. For example, it is known that more
than a half of chiral pharmaceuticals and their intermediates
in market are produced by crystallization techniques.1) Since
different polymorphs have usually quite different physical
properties, it is also highly required to obtain a suitable poly-
morph for a drug compound to make best use of it.2)

However, it has long accepted the fact that nature governs
crystallization and we have very little control on crystalliza-
tion. Since crystallization has been the most serious problem
for protein crystallography, quite a lot of efforts have been
made to find out the ways to undertake crystallization in
more systematic and rather rational ways. Therefore automa-
tion and high throughput techniques are now prevalent on the
side of protein crystallization.3) On the side of crystallization
of small organic molecules, however, such attention has not
been paid and crystallization is still a matter of trial and
error.

A tremendous number of compounds have been crystal-
lized so far. It is highly desirable to utilize these accumulated
experiences in order to improve crystallization efficacy. To
our best knowledge, however, no study has been made to put
these experiences to good use. A number of factors such as
solvent, temperature, pH, concentration, vibration and others
affect crystallization. Among these factors, solvent is the
most easily controlled variable. Hence usually crystallization
begins with selection of solvents for crystallization. Crystal-
lographic data of small organic molecules are compiled into
the Cambridge Structural Database (CSD).4) The information
regarding solvents or solvent systems successfully used to
obtain single crystals of pertinent molecules is also described
in the database.

Molecular descriptors calculated from two-dimensional
chemical structures (hereafter 2D descriptors)5) are easily
calculated and can represent characteristics of molecules rea-
sonably well. In this study, 2D descriptors have been em-
ployed to investigate the correlations between chemical char-

acteristics of molecules and solvents used to obtain their sin-
gle crystals. From the practical points of view, we must select
a few most promising solvents to start crystallization experi-
ments. We have applied classification methods to predict pri-
ority rank of solvents suitable for crystallization of particular
molecules.

Experimental
Unfortunately crystallization solvents are not described for all compounds

registered in CSD. If we eliminate compounds crystallized from mixed sol-
vent systems, only 6397 compounds crystallized from 15 single solvents are
remained for our study. All these 15 solvents given in Table 1 are popular
ones used for crystallization of small organic molecules. A training dataset
was constructed using these 6397 compounds.

Crystallization is a very complex process. Hence our data and knowledge
about the process is incomplete, indirect, and noisy. Even under these diffi-
cult situations, data mining techniques are useful to make reasoning and
help our decision-making. Decision-tree (C4.5)6) and Bayesian-probability7)

are common methods used in data mining. Decision-tree is a predictive
model that is a mapping of observations about an item to conclusions about
the item’s target value. Bayesian probability method can provide a formal
and consistent way to reasoning in the presence of uncertainty. Therefore de-
cision-tree and Bayesian probability method are applied in this study.

Classification models based on the values of 2D descriptors of compounds
in the training dataset were made in order to apply these methods. 15 sol-
vents are used as target values for classification. The object of the present
study is to predict the priority rankings of 15 solvents for a particular com-
pound. To accomplish this object, classification models were made so as to
discriminate a specific solvent from others. Therefore classification models
were made for 15 different solvents.

2D descriptors are numerical properties that can be calculated from the
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Table 1. Fifteen Organic Solvents Used in Crystallization of 6397 Com-
pounds

Solvent
Number of 

Solvent
Number of 

compounds compounds

1 Ethanol 1328 9 Chloroform 342
2 Methanol 1030 10 Toluene 304
3 Hexane 821 11 Benzene 174
4 Ethyl acetate 573 12 Water 140
5 Dichloromethane 402 13 DMF 79
6 Acetone 394 14 Cyclohexane 56
7 Acetonitrile 379 15 DMSO 29
8 Diethyl ether 346



connection table representation of a molecule. Therefore 2D descriptor is
not dependent on the conformation of a molecule and suitable for this study.
A software package MOE (Molecular Operating Environment)8) prepares
various 2D descriptors to express physical properties, subdivided surface
areas, atom counts, bond counts, Kier and Hall connectivity indices, kappa
shape indices, adjacency and distance matrices, pharmacophore features,
and partial charge. We have calculated the values of these 133 2D descrip-
tors available in MOE for the compounds in the training dataset.

To handle and analyze high volume data effectively and flexibly we have
chosen a software system KDE (Knowledge Discovery Environment)9) as a
data-mining tool.

The decision-tree classification models were created by KDE using de-
fault parameter set, and no cross-validation is followed as manual optimiza-
tion and pruning of molecular descriptors are required. Bayesian-probability
models were created by MOE. For each model, an optimal set of descriptors
were selected to maximize prediction and cross-validation accuracy.

Ranks of confidence values for predicted solvents were used to express
priority ranks. In decision-tree model, confidence values were re-calculated
according to the overall population of true positive, false positive, true nega-
tive, and false negative. The confidence value for the predicted solvent was
multiplied by TP/(TP�FP), and that for predicted otherwise was calculated
as (1-confidence)*TN/(TN�FN). TP, FP, TN, and FN are the count of true
positives, false positives, true negatives and false negatives, respectively. In
Bayesian-probability model, the confidence value was calculated as a proba-
bility that the compound is crystallized from the specified solvent. Before
ranking solvents, confidence values from both models were normalized to
have unit sum for each target compound.

Results and Discussion
Predicted priority ranks of 15 solvents are illustrated in

Fig. 1. If predictions are perfect, the predicted ranks for 15
solvents should be 1. Predicted ranks in this figure, however,
distribute in certain ranges because the predictions are not
accurate enough. In the case of ethanol the ranks from deci-
sion-tree model distribute from 1 to 11, but the average rank
is almost 1. It means that ethanol is almost perfectly pre-
dicted as a crystallizing solvent from the chemical structures
of compounds. The results by two classification models for
cyclohexane, DMF and DMSO are significantly different.
The numbers of compounds crystallized from these solvents
are relatively small. For other solvents, however, these two
models gave similar ranking results. It is obvious that well-
trained solvents are predicted precisely. Although the deci-
sion-tree model predicts generally better than the Bayesian
probability model, the latter model seems to be good at pre-
diction of solvents such as cyclohexane, DMF and DMSO. It
indicates that the two models have rather complementary
characteristics.

The enrichment curve for acetone is given in Fig. 2. If all
compounds crystallized from acetone are predicted perfectly,
the sampled percentage of 100% can be attained at the count
number of 394 that is the number of compounds crystallized
from acetone. In reality, however, the decision-tree model in-
dicates that the rankings of about 1500 compounds should be
considered to cover 80% of compounds that were crystallized
from acetone. In this case both models predict similarly. The
shape of this curve is typical for solvents with moderate
number of data. The decision-tree model is generally supe-
rior to the Bayesian model. The curve of decision-tree model
approaches the best prediction curve for the solvents with
many data. For the solvents with fewer data, however, the
Bayesian model approaches the best prediction curve.

Ranking histograms obtained by the two classification
models are shown in Fig. 3. The abscissa axis gives the pre-
dicted ranking of solvents. A histogram bar at a certain rank

gives the number of compounds whose crystallization sol-
vent was correctly determined from the predicted solvent
with the ranking number. For example, solvents for nearly
4500 compounds were correctly determined from the first-
ranking solvent predicted by decision-tree model. This figure
shows that suitable crystallization solvents for most com-
pounds can be obtained from a few high-ranking solvents in-
dicated by prediction. The decision-tree model gives gener-
ally higher count, namely better prediction, than the Bayesian
model. For nearly 70% compounds, the solvents ranked first
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Fig. 1. Ranking Distribution for Each Solvent Predicted by Decision-Tree
Model (a) and Bayesian-Probability Model (b)

The numbers of solvents correspond to those in Table 1. The vertical lines designate
the ranges of minimum and maximum ranks, the boxes the ranges between 25 and 75
percentiles. The small triangular and rectangular marks designate their averages.

Fig. 2. Enrichment Curves for Acetone

The vertical axis is a sampled percentage of total entries of acetone. Solid and dotted
lines show the cases of ideal and random samplings, respectively. The lines connected
by small triangular and rectangular marks show predicted results by decision-tree and
Bayesian-probability methods, respectively.



by the decision-tree model accord with the very solvents
used in actual crystallization. Accuracy rate achieved by the
decision-tree model reaches to 80% if the three highest rank-
ing solvents are considered. By use of the Bayesian model,
however, the same accuracy rate is attained if the seven high-
est ranking solvents are considered. Although these accuracy
rates alone indicate that the decision-tree model is much bet-
ter than the Bayesian, both models complement each other.

We have checked the performance of the relevant methods
by predicting the solvent rankings for randomly selected 30

compounds from the training set. These 30 compounds are
given in Table 2. A large variety of compounds are contained
in the test dataset. Now classification models were obtained
from the remaining 6367 compounds. The results are given
in Fig. 4 that shows the ranking histograms of predicted sol-
vents. In Table 3, predicted top three solvents are given. The
results obtained by the decision-tree model indicate that the
accuracy rate of 80% can be attained if we consider the ten
highest ranking solvents. By the Bayesian-probability model,
however, the same accuracy rate can be attained with the top
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Table 2. Systematic Chemical Names of 30 Randomly Selected Molecules

Compound 
Systematic name

number

1 Ethyl 6-amino-2-methoxypyridine-3-carboxylate
2 Di-n-butyl pyridine-2,6-dicarboxylate
3 6b,8a-Dihydrocyclobut(a)acenaphthylene-7,8-dicarbonitrile
4 (4-(Dimethylammonio)butyl)-bis(2-methyllactato-O,O�)-silicate
5 (1R*,5S*,7S*)-1-(4-Nitrophenyl)-7-phenyl-7-trimethylsiloxy-2-oxabicyclo(3.2.0)heptane-3,4-dione
6 Tris(3,5-di-tert-butyl-2-(cyanomethoxy)phenyl)methane
7 1,2-Bis(bis(2-methylthiophenyl)phosphino)ethane
8 2,4-Bis-(2,4,6-tri-t-butylphenyl)-1-trimethylsilyl-2,4-diphosphabicyclo(1.1.0)butane
9 1-(2-Deoxy-b-D-erythro-pentofuranosyl)-4-methylbenzimidazole monohydrate

10 N,N�-Bis(2-methoxyphenyl)-4,6-dibenzyloxybenzene-1,3-dicarboxamide
11 1,5,6,7,8,12,13,14,15,15-Decachloro-16,16-dimethoxypentacyclo(10.2.1.15,8.02,11.04,9)hexadeca-6,13-diene
12 Tetraethyl 2,2�-(1,4-phenylene)-bis(1,3-dioxane)-5,5,5�,5�-tetracarboxylate
13 4-(Dimethylamino)-3-cyanobiphenyl
14 E-2-(2-Nitrophenylhydrazono)-3-oxobutanenitrile
15 2,4�-Diphenyl-3,3�-diisopropoxy-4,2�-dihydroxy-4,4�-bicyclobutenone
16 3b-Acetoxy nor-31-lanostene-7,11-dione
17 Bis(m2-hydrido bis(dimethyl(t-butyl)silyl)silyl)-bis(tetrahydrofuran)-di-lithium
18 N-(3-(1,1,1-Triethoxysilyl)propyl)-(E)-3-phenyl-2-propenamide
19 5,6-(1,2-Dicarba-closo-dodecaboranylene)-1,1,4,4-tetramethyl-2,3-diphenyl-1,4-disilacyclohex-2-ene
20 Dibenzyl-cis-[4a]-cisoid-[4a,4b]-cis-[4b]-dodecahydro-9,11-dimethyl-2,4,6,8-tetraoxocyclobuta[1,2-d; 3,4-d�]dipyrimidine-1,5-diacetate
21 7-Methyl-2,7-diaza-11-oxatetracyclo(6.6.2.04,16.012,15)hexadeca-1(14),3,12,15-tetraene
22 6-Methoxy-1,6-diphenyl-4-thioxo-3,4,5,6-tetrahydro-2,3,5-triazine
23 Rac-(S*,S*)-2,2-diphenyl-4-(phenoxy)-6-(anilino)-4,6-(3,6,9-trioxaundecane-1,11-dioxy)cyclotriphosphazene
24 N,N�-Bis(cyanoborane)-1,4-diammoniobutane
25 Methyl 2,3-di-O-pivaloyl-4-(O-3-methylpent-4-enoyl)-6-deoxy-6-iodo-a-D-glucopyranoside
26 2,2-Tetramethylene-1,2,3,4-tetrahydroquinazolin-4-one
27 N,N-Bis(diphenylphosphino)-N-((S )-a-methylbenzyl)amine
28 (2c,4ar,8ac)-2-Methyl-4a,5,6,7,8,8a-hexahydro-2H,4H-1,3-benzodithiine
29 Bis((diphenyl(piperidinomethyl)silyl)methyl)-magnesium
30 cis,cis-1,3,5-Cyclohexanetricarboxylic acid tris(urea)

Fig. 3. Histogram of Counts (Bar) and Accumulated Percentages (Line) of
Predicted Solvents

The results obtained by decision-tree and Bayesian-probability models are shown in
white and grey, respectively.

Fig. 4. Histogram of Counts (Bar) and Accumulated Percentages (Line) of
Predicted Solvents for 30 Test Compounds

The results obtained by decision-tree and Bayesian-probability models are shown in
white and grey, respectively.



seven solvents. From the practical point of view, these results
are not necessarily satisfactory, but encouraging and useful.
As the two models are complementary to each other as al-
ready mentioned, it is worthwhile to take both results into ac-
count. If the results are simply combined, the experimentally
used solvents are correctly predicted for 21 compounds by
use of the top three solvents predicted from the two methods.
It means that up to six solvents must be considered. The ac-
curacy rate is 70% in this case. The results are now almost
satisfactory from a practical standpoint.

Since crystallization conditions of small organic molecules
have not been screened systematically so far, the solvents
used to get crystals for structure determinations compiled in
CSD are not necessarily the optimum ones. The solvents de-
scribed in CSD should be considered as those that gave sin-

gle crystals sufficient for diffraction work. It is highly possi-
ble that other solvents can give better crystals. In addition,
crystallization process is governed by various conditions and
solvent is an important but just one factor that affects crystal-
lization process. In spite of these difficult circumstances, rea-
sonably good prediction results have been obtained. It
strongly suggests that the method applied in the present
study is sound in principle, and it is expected that the accu-
racy rate will be greatly improved if we could use the data
obtained by more systematic experiments.

Conclusion
Crystallization is a very important operation in pharma-

ceutical industries. The operation for a small organic mole-
cule is, however, still a matter of trial and error. In order to
carry out crystallization in more rational way, we made use
of cheminformatics methods to rank the solvents suitable for
crystallization. A large number of crystallization data com-
piled in CSD were employed. We applied decision-tree and
Bayesian-probability methods to rank solvents that can be
used for crystallization of a particular compound. Both meth-
ods are found to be complementary to each other in the pre-
sent case. Classifications were undertaken using 2D descrip-
tors calculated for 6397 compounds in CSD. Suitable crystal-
lization solvents for test compounds that were randomly cho-
sen from the training dataset were predicted satisfactorily.
The present study has demonstrated that cheminformatics
methods can be applied to a complex problem such as pre-
diction of solvents suitable for crystallization of small or-
ganic molecules including various pharmaceuticals.
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Table 3. Predicted Top Three Solvents for 30 Randomly Selected Com-
pounds

Predicted solvents

Compound CSD Used 
number code solvent

Decision-tree Bayesian

1st 2nd 3rd 1st 2nd 3rd

1 SAQZEO 6 1 2 6 1 2 4
2 TIFRUV 6 1 6 8 1 2 4
3 VAQVAK 6 2 8 5 1 4 14
4 HOQVUE 7 7 1 6 7 1 10
5 NINJOJ 11 2 8 5 1 4 2
6 XILKEI 9 1 11 8 3 11 10
7 NESWOX 5 10 8 4 5 3 7
8 CIQQOI 13 2 11 8 3 11 10
9 BAGVEK 1 2 4 6 1 4 2

10 LUDXAJ 1 9 8 1 7 1 2
11 NUYPIG 1 6 8 5 6 7 9
12 SAQMEC 1 8 5 3 9 2 10
13 XEMWER 1 6 4 2 1 2 4
14 GUFLUO 4 6 4 2 1 2 4
15 XIWPAU 4 4 2 6 1 2 4
16 CABZAH 3 2 6 1 2 1 4
17 LUGFIC 3 3 8 5 6 7 9
18 TACNIV 3 3 1 6 1 2 4
19 XEKLII 3 3 2 8 3 10 11
20 CUPHAW 2 2 9 1 7 6 2
21 FOXQOY 2 2 6 8 2 8 1
22 GIZNUY 2 1 2 8 1 2 4
23 GUZQAT 2 2 10 8 6 7 9
24 LOYTAU 2 3 8 9 6 7 9
25 QEKFOB 2 4 6 1 3 4 2
26 QELCEP 2 6 1 8 1 2 4
27 XAGMOH 2 2 8 4 10 2 8
28 XOYCOD 2 1 3 2 1 6 4
29 XORVUV 10 11 7 6 3 5 9
30 XORMUM 12 2 12 1 12 2 9

The numbers of solvents correspond to those in Table 1.


