Four New Cycloartane Glycosides from *Thalictrum fortunei*

Xian-Tao Z A AANG,^{*a*} Lei-Hong Z A AANG,^{*a*} Wen-Cai YE,^{*,*a*,*b*} Xiao-Ling Z A AANG,^{*c*} Zhi-Qi YIN,^{*a*} Shou-Xun Z_{HAO},^{*a*} and Xin-Sheng Y_{AO}^{*b*}

^a Department of Phytochemistry, China Pharmaceutical University; Nanjing 210009, P.R. China: ^b Institute of Traditional Chinese Medicine and Natural Products, Jinan University; Guangzhou 510632, P.R. China: and ^c Department of Phytochemistry, Jiangsu University; Zhenjiang 212013, P.R. China. Received May 23, 2005; accepted August 24, 2005

Four new cycloartane glycosides were isolated from the aerial parts of *Thalictrum fortunei* **(Ranunculaceae).** The chemical structures of these new glycosides were elucidated as $3-O$ - β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-fucopyra**nosyl (22***S***,24***Z***)-cycloart-24-en-3**b**,22,26-triol 26-***O***-**b**-D-glucopyranoside, 3-***O***-**b**-D-glucopyranosyl-(1**→**4)-**b**-D-fucopyranosyl (22***S***,24***Z***)-cycloart-24-en-3**b**,22,26-triol 26-***O***-**b**-D-quinovopyranosyl-(1**→**6)-**b**-D-glucopyranoside, 3-** *O***-**b**-D-glucopyranosyl-(1**→**4)-**b**-D-fucopyranosyl (22***S***,24***Z***)-cycloart-24-en-3**b**,22,26-triol 26-***O***-**b**-D-xylopyranosyl- (1**→**6)-**b**-D-glucopyranoside, and 3-***O***-**b**-D-glucopyranosyl-(1**→**4)-**b**-D-fucopyranosyl (22***S***,24***Z***)-cycloart-24-en-3**b**,22,26-triol 26-***O***-**a**-L-arabinopyranosyl-(1**→**6)-**b**-D-glucopyranoside by extensive NMR methods, HR-ESI-MS, and hydrolysis. This is the first report of (22***S***,24***Z***)-3**b**,22,26-trihydroxycycloartan-24-ene (thelictogenin A, 5) being glycosylated at C-26.**

Key words *Thalictrum fortunei*; Ranunculaceae; cycloartane glycoside

Thalictrum fortunei S. MOORE is a perennial plant distributed in the southeastern part of China. The aerial part of this plant is used as an anticancer, antibacterial and anti-inflammatory agent in traditional Chinese medicines.¹⁾ We previously reported on new cycloartane glycosides from several Cimicifuga species. $2,3)$ As part of the continuing investigation on the triterpene glycosides of Ranunculaceous plants, $4-6$ this paper deals with the isolation and structural elucidation of four new cycloartane glycosides (**1**—**4**).

The dried aerial parts of *T. fortunei* were extracted with 95% ethanol. The *n*-BuOH-soluble fraction was subjected to repeated silica gel column chromatography followed by reversed-phase column chromatography to afford four cycloartane glycosides **1**—**4**.

Compound **1** was obtained as a white powder. The molecular formula of 1 was determined to be $C_{48}H_{80}O_{17}$ by high resolution ESI-MS (Found m/z : 927.5291 [M-H]⁻; Calcd for $C_{48}H_{79}O_{17}$: 927.5317). Acid hydrolysis of 1 afforded Dglucose and D-fucose (confirmed by gas chromatography), together with thelictogenin A (5), $[\alpha]_D$ 30.2° (c =0.50, pyridine); which was identified by comparison of the NMR data and physical properties with literature values.⁷⁾ The 1 H-NMR spectrum of 1 showed two doublet signals at δ 0.25 and 0.50, which is characteristic of a cyclopropane methylene, four tertiary methyls at δ 0.88, 1.05, 1.06 and 1.33, an olefinic methyl at δ 1.95, two secondary methyls at δ 1.18 (d, $J=6.6$ Hz) and 1.62 (d, $J=6.4$ Hz), an olefinic proton at δ 5.80 (1H, t, $J=7.2$ Hz) and three anomeric protons at δ 4.72 (1H, d, *J*-7.5 Hz), 4.89 (1H, d, *J*-7.8 Hz) and 5.17 (1H, d, $J=7.8$ Hz). Similarly, the ¹³C-NMR spectrum of **1** (Table 1) showed the corresponding signals due to cyclopropane methylene at δ 29.7, methylene carbon bearing oxygen at δ 67.4 (C-26), methine carbons bearing oxygen at δ 73.0 (C-22) and δ 88.7 (C-3), and three anomeric carbons at δ 103.0, 106.9 and 107.0. Further comparison of the 13C-NMR data of **1** with those of thelictogenin A (**5**) indicated that the triterpene was glycosylated at C-3 and C-26. The interglycosidic linkages of the sugar chains could be deduced from an HMBC experiment. Thus, in the HMBC spectrum of **1** (Fig. 1), correlation signals were observed between H-1" (δ 4.89) of glu-

cose and C-26 (δ 67.4) of aglycone. Moreover, the HMBC spectrum revealed correlations between H-1' (δ 5.17) of glucose and C-4 (δ 83.4) of fucose, as well as between H-1 (δ 4.72) of fucose and C-3 (δ 88.7) of aglycone. From the above evidence, the structure of 1 was concluded to be $3-O-\beta$ -Dglucopyranosyl-(1→4)-b-D-fucopyranosyl (22*S*,24*Z*)-cycloart-24-en-3 β ,22,26-triol 26-*O*- β -D-glucopyranoside.

Compound **2** was obtained as a white powder. The molecular formula of 2 was determined to be $C_{54}H_{90}O_{21}$ by HR-ESI-MS (Found m/z : 1073.5875 [M-H]⁻; Calcd for $C_{54}H_{89}O_{21}$: 1073.5896). Upon acid hydrolysis, 2 afforded Dglucose, D-quinovose, D-fucose, and thelictogenin A (**5**).7) The ¹H-NMR spectrum of 2 showed two doublet signals at δ 0.25 and 0.50, four tertiary methyls at δ 0.89, 1.04, 1.06 and 1.32, an olefinic methyl at δ 1.95, three secondary methyls at δ 1.18 (d, *J*=6.6 Hz), 1.59 (d, *J*=5.7 Hz) and 1.74 (d, $J=6.4$ Hz), an olefinic proton at δ 5.80 (1H, t, $J=7.2$ Hz) and four anomeric protons at δ 4.70 (1H, d, J=7.5 Hz), 4.90 (1H, d, *J*-7.9 Hz), 5.02 (1H, d, *J*-7.5 Hz) and 5.15 (1H, d, $J=7.9$ Hz). The above ¹H-NMR data of 2 were similar to those of 1 except the additional secondary methyl at δ 1.59 and an anomeric proton at δ 5.02. In the ¹³C-NMR spectrum of **2** (Table 1), the signals due to the aglycone moiety were in good agreement with those of **1**. Furthermore, a comparative assignment of the 13C-NMR spectrum of **2** with that of **1** also indicated presence of an additional quinovopyranosyl unit in **2**. The interglycosidic linkages of the sugar chains could be deduced from an HMBC experiment. Thus, in the HMBC spectrum of **2** (Fig. 1), correlation signals were observed between H-1 (δ 5.02) of quinovose and C-6" (δ 70.0) of glucose, between H-1" (δ 4.90) of glucose and C-26 (δ 67.4) of aglycone. Moreover, the HMBC spectrum revealed correlations between H-1' (δ 5.15) of glucose and C-4 (δ 83.0) of fucose, as well as between H-1 (δ 4.70) of fucose and C-3 (δ 88.7) of aglycone. Thus, the structure of **2** was identified as $3-O-\beta$ -D-glucopyranosyl- $(1\rightarrow4)$ - β -D-fucopyranosyl $(22S, 24Z)$ -cycloart-24-en-3 β , 22, 26-triol 26-O- β -D-quinovopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside.

Compound **3** was obtained as a white powder. The molecular formula of 3 was determined to be $C_{53}H_{88}O_{21}$ by HR-

Table 1. ¹³C-NMR Data for $1 - 5^a$

С	1	2	3	4	5
$\mathbf{1}$	32.2	32.2	32.2	32.2	32.4
\overline{c}	30.0	30.0	30.0	30.0	31.0
3	88.7	88.7	88.6	88.6	80.1
$\overline{4}$	41.3	41.3	41.3	41.3	41.1
5	47.7	47.7	47.7	47.7	47.8
6	21.2	21.2	21.2	21.2	21.3
$\boldsymbol{7}$	26.2	26.2	26.2	26.2	26.3
8 9	48.0 20.1	48.1 20.1	48.0 20.1	48.0 20.1	48.1 20.2
10	26.7	26.7	26.7	26.7	26.7
11	26.4	26.4	26.4	26.4	26.4
12	35.8	35.8	35.8	35.8	36.0
13	45.5	45.5	45.5	45.5	45.6
14	49.1	49.1	49.1	49.1	49.2
15	33.4	33.4	33.4	33.4	33.5
16	28.0	28.0	28.0	28.0	28.1
17 18	49.1	49.1	49.1 18.3	49.1	49.2
19	18.3 29.7	18.3 29.7	29.7	18.3 29.7	18.4 29.9
20	41.7	41.7	41.7	41.7	41.7
21	12.1	12.1	12.1	12.1	12.1
22	73.0	73.0	73.0	73.0	73.1
23	35.0	35.0	35.0	35.0	35.1
24	128.5	128.5	128.5	128.5	125.9
25	133.2	133.2	133.2	133.2	137.3
26	67.4	67.4	67.4	67.4	61.1
27 28	22.2 19.6	22.2 19.6	22.2 19.6	22.2 19.6	22.3 19.6
29	25.8	25.8	25.8	25.8	25.9
30	15.4	15.4	15.4	15.4	15.5
Fuc 1	106.9	106.9	106.9	106.9	
\overline{c}	73.5	73.5	73.5	73.5	
3	75.7	75.7	75.7	75.7	
$\overline{\mathbf{4}}$	83.4	83.0	83.0	83.0	
5 6	70.4	70.4	70.4	70.4	
Glc' 1	17.7 107.0	18.0 106.6	17.9 106.6	17.9 106.6	
\overline{c}	76.2	75.8	75.8	75.8	
3	78.6	78.6	78.6	78.6	
4	71.8	71.7	71.7	71.7	
5	78.6	78.4	78.4	78.4	
6	62.8	62.8	62.8	62.8	
Glc" 1	103.0	103.0	103.0	103.0	
\overline{c} 3	75.2 78.7	75.2 78.7	75.2 78.7	75.2 78.7	
4	71.7	71.7	71.5	71.7	
5	78.4	77.5	77.4	77.2	
6	62.9	70.0	70.0	69.9	
Quin 1		105.3			
\overline{c}		75.5			
3		78.0			
4		76.9			
5 6		73.0 18.6			
Xyl 1			106.0		
2			74.9		
3			78.1		
4			71.2		
5			67.0		
Ara 1				105.6	
2 3				72.4 74.3	
4				69.0	
5				66.4	

a) Spectra were measured in pyridine- $d₅$. Assignments were established by interpretation of the ¹³C-DEPT, HMQC, HMBC and ¹H-¹H COSY spectra. Ara: α -L-arabinopyranosyl; Fuc: β -D-fucopyranosyl; Glc: β -D-glucopyranosyl; Quin: β -Dquinovopyranosyl; Xyl: β -D-xylopyranosyl.

Fig. 1. The Structures of Compounds **1**—**4** and Their Key HMBC Correlations

ESI-MS (Found m/z : 1059.5709 $[M-H]^-$; Calcd for $C_{53}H_{87}O_{21}$: 1059.5740). On acid hydrolysis, 3 afforded p-glucose, D-xylose, D-fucose, and thelictogenin A (5).⁷⁾ The ¹Hand 13C-NMR spectra of **3** (Tables 1, 2) revealed the presence of four sugar residues and the aglycone thelictogenin A. A comparison of the NMR spectral data between **1** and **3** suggested that the latter contained one additional xylose residue on the sugar moiety located at the C-26 position. The results of HMBC (Fig. 1) also supported this assumption. Thus, the HMBC spectrum of **3** displayed correlation signals between H-1 (δ 4.99) of xylose and C-6" (δ 70.0) of glucose, as well as between H-1" (δ 4.90) of glucose and C-26 (δ 67.4) of aglycone. Moreover, the correlations were also demonstrated between H-1' (δ 5.14) of glucose and C-4 (δ 83.0) of fucose, and between H-1 (δ 4.70) of fucose and C-3 (δ 88.6) of aglycone. All available evidence led to the conclusion that **3** was a new triterpene glycoside with the structure of $3-O-\beta$ -D-glucopyranosyl-(1→4)-b-D-fucopyranosyl (22*S*,24*Z*)-cycloart-24-en-3 β ,22,26-triol 26-*O*- β -D-xylopyranosyl-(1→6)- β -Dglucopyranoside.

Compound **4** was obtained as a white powder, and the molecular formula was determined to be $C_{53}H_{88}O_{21}$ by HR-ESI-MS (Found m/z : 1059.5811 [M-H]⁻; Calcd for $C_{53}H_{87}O_{21}$: 1059.5740). Acid hydrolysis of 4 afforded thelictogenin A (5) ,⁷⁾ D-glucose, L-arabinose, and D-fucose. Analysis of the NMR data of **4** (Tables 1, 2), and a comparison with those of 1—3, showed that the former compound possessed an arabinose residue besides a glucose and a fucose. The oligosaccharide structure was subsequently determined by 2D-NMR studies. Thus, in the HMBC spectrum of **4** (Fig. 1), correlation peaks between H-1 (δ 4.93) of arabinose and C-6" (δ 69.9) of glucose, between H-1" (δ 4.90) of glucose and C-26 (δ 67.4) of aglycone, between H-1' (δ 5.14) of glucose and C-4 (δ 83.0) of fucose, as well as between H-1 (δ 4.71) of fucose and C-3 (δ 88.6) of aglycone were displayed. Hence, the structure of 4 was established as $3-O-\beta$ -D-glucopyranosyl-(1→4)-b-D-fucopyranosyl (22*S*,24*Z*)-cycloart-24-en-3 β ,22,26-triol 26-*O*- α -L-arabinopyranosyl- $(1\rightarrow6)$ - β -D-glucopyranoside.

Cycloartane glycosides had been found to widely distribute in the plants of the genus Cimicifuga.^{2,3)} Based on the literature information^{$7-10$} and the results of this paper, these cycloartane glycosides have also been isolated from plants of the genus Thalictrum of the same family (Ranunculaceae). This could imply a close relationship between the two genera.

Table 2. ¹ H-NMR Data of the Saccharide Moieties of Compounds **1**—**4***^a*,*b*)

H	$\mathbf{1}$	$\mathbf{2}$	3	$\overline{\mathbf{4}}$
Fuc 1	4.72 d (7.5)	4.70 d (7.5)	4.70 d (7.5)	4.71 d (7.5)
$\sqrt{2}$	4.35 dd (7.5, 8.2)	4.32 dd (7.5, 8.2)	4.31 dd (7.5, 8.0)	4.32 dd (7.5, 8.1)
$\sqrt{3}$	4.10^{c}	4.02^{c}	4.02^{c}	4.02^{c}
$\overline{4}$	4.11^{c}	4.04^{c}	4.05	4.03^{c}
5	3.79 dd (13.2, 6.4)	3.75 dd (13.2, 6.4)	3.75 dd (13.3, 6.5)	3.77 dd (13.2, 6.4)
6	1.62 d (6.4)	1.74 d (6.4)	1.74 d (6.5)	1.74 d (6.4)
Glc' 1	5.17 d (7.8)	5.15 d (7.9)	5.14 d (7.9)	5.14 d (7.9)
$\overline{2}$	4.03 dd (7.8, 9.2)	3.94 dd (7.8, 9.0)	3.95 dd (7.8, 9.0)	3.95 dd (7.8, 9.2)
$\ensuremath{\mathfrak{Z}}$	4.20^{c}	4.11^{c}	4.11^{c}	4.12^{c}
$\overline{4}$	4.29^{c}	4.24^{c}	4.25^{c}	4.25^{c}
5	3.91^{c}	3.94^{c}	3.94^{c}	3.95^{c}
6a	4.48 brd (11.0)	4.55 brd (12.0)	4.55 brd (11.9)	4.56 brd (11.6)
6 _b	4.38 dd (11.0, 4.4)	4.41 dd (12.0, 4.7)	4.40 dd (11.9, 4.3)	4.42 d (11.6, 4.6)
Glc" 1	4.89 d (7.8)	4.90 d (7.9)	4.90 d (7.5)	4.90 d (7.6)
$\overline{2}$	4.05 dd (7.8, 9.0)	4.04^{c}	4.05 dd (7.5, 8.8)	4.03^{c}
$\mathfrak z$	4.23^{c}	4.24^{c}	4.23^{c}	4.25^{c}
4	4.20^{c}	4.13^{c}	4.18^{c}	4.10^{c}
5	3.95^{c}	4.00^{c}	3.98^{c}	3.99
6a	4.54 brd (11.5)	4.78 brd (11.0)	4.76 brd (11.4)	4.76 brd (11.5)
6b	4.41 dd (11.5, 4, 7)	4.33 dd $(11.0, 4.6)$	4.30 dd (11.4, 4.7)	4.25 dd (11.5, 4.5)
Quin1		5.02 d(7.5)		
$\overline{2}$		4.10^{c}		
\mathfrak{Z}		3.70^{c}		
$\overline{\mathcal{A}}$		4.03^{c}		
5		3.71^{c}		
6		1.59 d (5.7)		
Xyl 1			4.99 d (7.4)	
$\overline{2}$			4.02 dd (7.4)	
\mathfrak{Z}			3.94^{c}	
$\overline{4}$			4.12^{c}	
5a			4.30 brd (11.3)	
5 _b			3.65 dd (11.3, 9.5)	
Ara 1				4.93 d (6.7)
$\sqrt{2}$				4.45 dd $(6.7, 6.8)$
\mathfrak{Z}				4.16 dd $(6.8, 3.2)$
$\overline{4}$				4.29^{c}
5a				4.27 dd (10.7, 2.5)
5 _b				3.73 brd (10.7)

a) Recorded in pyridine-*d₅*. Assignments were established by HMQC, HMBC, and ¹H-¹H COSY spectra. *b*) *J* values (in Hz) in parentheses. *c*) Overlapped signals. Ara: α -L-arabinopyranosyl; Fuc: β -D-fucopyranosyl; Glc: β -D-glucopyranosyl; Quin: β -D-quinovopyranosyl; Xyl: β -D-xylopyranosyl.

Experimental

Optical rotations were obtained using a Perkin-Elmer 241 polarimeter. IR spectra were measured on a Nicolet Impact 410 FT-IR instrument. UV spectra were recorded on a Shimadzu UV-2501 spectrophotometer. The ¹H- and ¹³C-NMR spectra were obtained on a Bruker AV500 Avance spectrometer (1 H, 500 MHz; 13 C, 125 MHz) and chemical shifts were given in δ (ppm) with TMS as a reference. HR-ESI-MS spectra were obtained on an Applied Biosystems Mariner 5140 spectrometer. HPLC was carried out using a Zobax XDB-18 column (10 mm i.d. \times 15 cm). Column chromatography was performed on silica gel (230—400 mesh, Merck), Sephadex LH-20 (Pharmacia Fine Chem. Co., Ltd.) and ODS (Merck). TLC was conducted on precoated silica gel 60 F_{254} and RP-18 F_{254} S plates (Merck). GC experiments were carried out on an HP-1 TCD instrument (Hewlett-Packard) using an HP-Chiral column (30×0.25×1.0, 20% permethylated β -cyclodextrin). The conditions selected for GC analysis were: front inlet 250 °C, column 80 °C→230 °C, 5 °C/min. All chemical reagents (AR grade) were purchased from Nanjing Reagent Co., Ltd.

Plant Material The aerial parts of *T. fortunei* were collected in Anhui province of the People's Republic of China in April 2004, and authenticated by Dr. Ming-Jian Qin of China Pharmaceutical University. A voucher specimen (no. 040192) was deposited in the herbarium of China Pharmaceutical University, Nanjing.

Extraction and Isolation The dried aerial parts (4.8 kg) of *T. fortunei* were extracted with 95% EtOH (3 \times 201) under reflux. The EtOH extract was suspended in water and then successively extracted with petroleum ether, EtOAc, and *n*-BuOH. The *n*-BuOH solution was concentrated and given a residue (207 g), which was separated by a silica gel column using CHCl₃–MeOH $(1:0\rightarrow1:1)$ as eluent, affording five fractions (frs. 1–5). Fraction 4 was further purified by Sephadex LH-20 chromatography with MeOH, followed by ODS column chromatography with MeOH–H₂O (65%) to afford compound **1** (230 mg). Fraction 5 was purified by Sephadex LH-20 chromatography with MeOH, followed by ODS column chromatography with MeOH–H₂O (50% \rightarrow 67%) and HPLC with CH₃CN–H₂O (27% \rightarrow 29%) to afford compounds **2** (120 mg), **3** (80 mg), and **4** (190 mg), respectively.

Compound **1**: White powder, $[\alpha]_D$ 7.40° (c =0.14, MeOH); IR (KBr) v_{max} 3417, 2937, 1604, 1384, 1363, 1107, 1081, 773, 627, 471 cm⁻¹; ESI-MS (negative ion mode) m/z 927 [M-H]⁻, 765 [M-163]⁻, 603 [M-325]⁻; HR-ESI-MS *m*/*z* 927.5291 [M-H]⁻, Calcd for C₄₈H₇₉O₁₇: 927.5317; ¹H-NMR (pyridine- d_5) δ : 0.25, 0.50 (each 1H, ABq, J=3.8 Hz, H-19a, -19b), 0.88, 1.05, 1.06, 1.33, 1.95 (each 3H, s, Me-28, -30, -18, -29, -27), 1.18 (3H, d, *J*-6.6 Hz, Me-21), 1.62 (3H, d, *J*-6.4 Hz, Me-6 of fucose), 3.47 (1H, dd, *J*-11.7, 4.3 Hz, H-3), 4.51, 4.71 (each 1H, ABq, *J*-12.0 Hz, H-26a, -26b), 5.80 (1H, t, $J=7.2$ Hz, H-24); ¹H-NMR data of the saccharide residues, see Table 2; ¹³C-NMR (125 MHz, pyridine- d_5), see Table 1.

Compound 2: White powder, $[\alpha]_D$ 3.58° (c =0.12, MeOH); IR (KBr) v_{max} 3413, 2935, 1600, 1400, 1363, 1107, 1070, 775, 625, 471 cm⁻¹; ESI-MS (negative ion mode) m/z 1073 [M-1]⁻, 927 [M-147]⁻, 765 [M-309]⁻, 603 [M-471]⁻; HR-ESI-MS m/z 1073.5875 [M-H]⁻, Calcd for C₅₄H₈₉O₂₁: 1073.5896; ¹H-NMR (pyridine-*d*₅) δ: 0.25, 0.50 (each 1H, ABq, J=3.8 Hz, H-19a, -19b), 0.89, 1.04, 1.06, 1.32, 1.95 (each 3H, s, Me-28, -30, -18, -29, -27), 1.18 (3H, d, *J*-6.6 Hz, Me-21), 1.74 (3H, d, *J*-6.4 Hz, Me-6 of fucose), 1.59 (3H, d, *J*-5.7 Hz, Me-6 of quinovose), 3.45 (1H, dd, *J*-11.7, 4.3 Hz, H-3), 4.51, 4.73 (each 1H, ABq, *J*=12.0 Hz, H-26a, -26b); ¹H-NMR data of the saccharide residues, see Table 2; 13 C-NMR (125 MHz, pyridine d_5), see Table 1.

Compound **3**: White powder, $[\alpha]_D$ -2.91° (c =0.28, MeOH); mp 118— 220 °C; IR (KBr) V_{max} 3418, 2935, 1600, 1385, 1354, 1105, 1072, 768, 625, 474 cm^{-1} ; ESI-MS (negative ion mode) m/z 1059 [M-1]⁻, 927 [M-133]⁻, 765 [M-295]⁻, 603 [M-457]⁻ and 457 [M-603]⁻; HR-ESI-MS m/z 1059.5709 [M-H]⁻, Calcd for $C_{53}H_{87}O_{21}$: 1059.5740; ¹H-NMR (pyridine*d*5) d: 0.25, 0.50 (each 1H, ABq, *J*-3.8 Hz, H-19a, -19b), 0.90, 1.04, 1.06, 1.32, 1.95 (each 3H, s, Me-28, -30, -18, - 29, -27), 1.18 (3H, d, *J*-6.6 Hz, Me-21), 1.72 (3H, d, *J*-6.5 Hz, Me-6 of fucose), 3.45 (1H, dd, *J*-11.7, 4.3 Hz, H-3), 4.51, 4.73 (each 1H, ABq, *J*=12.0 Hz, H-26a, -26b); ¹H-NMR data of the saccharide residues, see Table 2; 13 C-NMR (125 MHz, pyridine d_5), see Table 1.

Compound 4: White powder, $[\alpha]_D$ 26.4° ($c = 0.025$, MeOH); IR (KBr) v_{max} 3427, 2935, 1607, 1385, 1364, 1105, 1082, 773, 627, 471 cm⁻¹; ESI-MS (negative ion mode) m/z 1059 [M-1]⁻, 927 [M-133]⁻, 765 [M-295]⁻, 603 [M-457]⁻; HR-ESI-MS m/z 1059.5811 [M-H]⁻, Calcd for $C_{53}H_{87}O_{21}$: 1059.5740; ¹H-NMR (pyridine- d_5) δ : 0.25, 0.50 (each 1H, ABq, *J*-3.8 Hz, H-19a, -19b), 0.89, 1.04, 1.06, 1.32, 1.96 (each 3H, s, Me-28, -30, -18, -29, -27), 1.18 (3H, d, *J*-6.6 Hz, Me-21), 1.74 (3H, d, *J*-6.4 Hz, Me-6 of fucose), 3.47 (1H, dd, *J*-11.7, 4.3 Hz, H-3), 4.53, 4.72 (each 1H, ABq, $J=12.0$ Hz, H-26a, -26b); ¹H-NMR data of the saccharide residues, see Table 2; ¹³C-NMR (125 MHz, pyridine- d_5), see Table 1.

Acid Hydrolysis and Identification of Sugars in 1—4 A solution of the compound (40 mg) in 50 ml of 1 M HCl (MeOH–H₂O, 1 : 1) was heated under reflux for 3 h. After removal of the solvent, the residue was partitioned between CHCl₃ and H₂O. The CHCl₃-soluble portion was evaporated and subjected to ODS column using 80% MeOH as an eluent to yield an aglycone, which was identified as thelictogenin A (**5**) by NMR data and physical properties compared with an authentic sample. $⁷$ </sup>

The aqueous layer was neutralized with Dowex (HCO3-), then filtered. The filtrate was concentrated to 2 ml, then treated with $NabH_4$ (40 mg) at room temperature for 3 h. Excessive NaBH₄ was removed with 30% AcOH. After evaporation at 60 °C and washing with 0.1% hydrochloric acid (in MeOH) repeatedly until the BO_3^{3-} was removed, the reaction mixture was heated to dryness at 105 °C for 15 min, followed by the addition of pyridine (0.5 ml) and Ac₂O (0.5 ml) . The mixture was incubated in a water bath at

100 °C for 1 h and partitioned between CHCl₃ and H₂O. The CHCl₃ layer was concentrated for GC analysis. The peaks of each monosaccharide were observed at t_R (min): **1**. D-fucose 27.830, D-glucose 33.052; **2**. D-quinovose 26.907, D-fucose 27.826, D-glucose 33.070; **3**. D-fucose 27.835, D-xylose 28.775, D-glucose 33.073; **4**. D-fucose 27.838, L-arabinose 28.290, D-glucose 33.075 (reference D-quinovose 26.910, D-fucose 27.833, L-arabinose 28.291, D-xylose 28.780, D-glucose 33.077, L-quinovose 28.012, L-fucose 29.363, Darabinose 29.862, L-xylose 30.695, L-glucose 34.463).

Acknowledgments The authors thank Dr. Wen-Bin Shen (China Pharmaceutical University, Nanjing) for measurement of NMR. They are also grateful to Prof. Xiao-Long Liu and Dr. Ming-Jian Qin for their skillful assistance in the collection and identification of the plant material.

References

- 1) Ma Z. Q., Xin S. M., Shen X. C., *Chin. Tradit. Herb Drugs*, **11**, 217— 219 (1980).
- 2) Ye W. C., Zhang Q. W., Che C. T., Ye T., Zhao S. X., *Planta Medica*, **65**, 770—772 (1999).
- 3) Zhang Q. W., Ye W. C., Hsiao W. L., Zhao S. X., Che C. T., *Chem. Pharm. Bull.*, **49**, 1468—1470 (2001).
- 4) Ye W. C., Zhang Q. W., Zhao S. X., Che C. T., *Chem. Pharm. Bull.*, **49**, 632—634 (2001).
- 5) Ye W. C., Pan G. S., Zhang Q. W., Che C. T., Wu H. M., Zhao S. X., *J. Nat. Prod.*, **62**, 233—237 (1999).
- 6) Ye W. C., Ji N. N., Zhao S. X., Liu J. H., Ye T., McKervey M. A., Stevenson P., *Phytochemistry*, **42**, 799—802 (1996).
- 7) Yoshimitsu H., Hayashi K., Shingu K., Kinjo J., Yahara S., Nakano K., Murakami K., Tomimatsu T., Nohara T., *Chem. Pharm. Bull.*, **40**, 2465—2468 (1992).
- 8) Gromova A. S, Lutsky V. I., Li D., Wood S. G., Owen N. L., Semenov A. A., Grant D. M., *J. Nat. Prod.*, **63**, 911—914 (2000).
- 9) Yoshimitsu H., Nishida M., Qian Z. Z., Lei Z. H., Nohara T., *Chem. Pharm. Bull.*, **48**, 828—831 (2000).
- 10) Khamidullina E. A., Gromova A. S., Lutsky V. I., Li D., Owen N. L., *J. Nat. Prod.*, **62**, 1586—1588 (1999).