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Stoichiometry-controlled complexation of o-phenylenebis-
(N,N�-dimethyl-N,N�-ethylene)guanidine (BG) and benzoic acid
(BA), which is forming 1 : 1, 1 : 2, 1 : 3, and 1 : 4 BG�BA sys-
tems, was observed in solution by using cold-spray ionization
mass spectrometry CSI-MS and pulsed field gradient PFG
NMR diffusion and in the solid state by X-ray structure analy-
sis.
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The creation of desired molecular complex by controlling
the cluster formation attracted considerable interest in the
field of supramolecular chemistry.1—3) Recently, some of the
authors reported hydrogen-bonded stoichiometry-controlled
complexation of o-phenylenebis(N,N�-dimethyl-N,N�-ethyl-
ene)-guanidine (BG) and benzoic acid (BA) in the crystalline
state.4) Although the cluster formation remains the most im-
portant step to generate supramolecular systems, detailed ob-
servation of this phenomenon in soluton is generally difficult.

NMR is one of the most effective methods to elucidate the
dynamic nature of organic molecules in solution.5,6) Other in-
strumentational analysis including MS and X-ray help to re-
veal the role of hydrogen bond formation in solution. Re-
cently, we have reported the structure analysis of many
steroid compounds in solution.7) The formation in solution of
large-scale aggregated chain structures or clusters, through
intermolecular hydrogen bonds, was confirmed by cold-spray
ionization CSI-MS and PFG NMR.7—9)

Herein we report the structure analysis of BG�nBA
(n�1—4) in solution by CSI-MS and PFG NMR analysis.
The results obtained in solution are compared with in the
crystal structure of the corresponding molecular-ratio-depen-
dent-complexes.

The X-ray crystal structures of BG�3BA and the previ-
ously reported complex BG�nBA (n�1, 2, 4) are
presented.4) The BG�nBA (n�1—4) crystals, including BG
itself, are prepared by standard procedure.4)

In the cases of BG�BA (1 : 1) (Fig. 1, left) and BG�2BA
(1 : 2) (Fig. 1, right), only one guanidyl groups in BG is in-
volved in hydrogen bonding with BA (red and orange dotted
line for 1 : 1 and 1 : 2, respectively). Additionally in the 1 : 2
system, a second BA (pink), interacts with BA (orange)
through hydrogen bond (pink dotted line). Interestingly,
BG�3BA (1 : 3),10) shown in Fig. 2, exhibits a combined
structure of 1 : 1 and 1 : 2 complexes. The left part (blue BG

and red BA) corresponds to the 1 : 1 system whereas the right
part comes from the 1 : 2 system (light blue BG and two
BAs). Three strong hydrogen bonds are observed in this sys-
tem: C–O· · ·H–N (O· · ·N distance 2.54 Å red dotted line in
the left part), C–O· · ·H–N (O· · ·N distance 2.73 Å orange
dotted line) and C–O–H · · ·O�C (O· · ·O distance 2.50 Å
pink dotted line in the right). The crystal structure of
BG�4BA (1 : 4), which possesses C2 symmetry, is presented
in Fig. 3. Two strong hydrogen bonds (red dotted line) in ad-
dition to T-shaped C-H-p interactions (orange dotted line)
are clearly observed between BG and BA.

The structures of the BG�nBA system in solution are
studied by means of CSI-MS and PFG NMR. Conventional
electrospray ionization ESI-MS shows no ion peak corre-
sponding to the complexes observed in the solid state. The
ion peak of [BA�H]� in the negative mode and [BG�H]� in
the positive mode are detected. However, the molecular-ratio-
dependent-complexes are clearly observed by CSI-MS mea-
surement,11) see Fig. 4. In all system, the negative ion
[BA�H]� is attached the neutral BG�nBA complexes, giv-
ing rise to the ([(BG�nBA)�(BA�H)]� signal. The molec-
ular ion peak of 1 : n systems [(BG�nBA)�(BA�H)]�

(n�1; m/z 543, 2; m/z 665, 3; m/z 787, 4; m/z 909) are unam-
biguously observed.

Fig. 1. Crystal Structure of BG�nBA (n�1, Left and n�2, Right)

Fig. 2. Crystal Structure of BG�3BA

Fig. 3. Crystal Structure of BG�4BA



In the cases of 1 : 2, 1 : 3 and 1 : 4, other ion peak(s) corre-
sponding to lower stoichiometric systems [(BG�nBA�
mBA)�(BA�H)]� (n�2—4, m�1—n�1) are observed.
Therefore, CSI-MS measurements give a direct observation
on the formation of ordered clusters in solution.

To confirm this unprecedented phenomenon in solution,
we performed diffusion study by pulsed field gradient PFG
NMR.12—14) The D values of the complexes BG�nBA
(n�1—4) including BG and BA itself, obtained by PFG
NMR measurements are shown in Table 1. The observed D
value decreases in accordance with the increasing number of

attached BA (n). The pure BG and BA solutions exhibit a
large D value which is dependent of their molecular weight.
This result clearly supports the ordered formation of the
complexes in solution as observed by CSI-MS.

In consequence, stoichiometry-controlled absolute ordered
cluster formation of BG and BA was confirmed by CSI-MS,
PFG NMR and X-ray crystallography. These results give ex-
perimental evidence that desired molecular complex in solu-
tion as well as in the solid state by simple mixing acid and
base components can be obtained. Investigation on the for-
mation of other acid-base systems is in progress.
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Table 1. Diffusion Coefficient of BG�nBA Complexes (10 °C, 1 mM in
CD2Cl2)

Compound Diffusion coefficient (D) (�10�10 m2/s)

BG 13.0
BG�BA (1 : 1) 11.6
BG�2BA (1 : 2) 10.0
BG�3BA (1 : 3) 9.7
BG�4BA (1 : 4) 9.4

BA 22.3

Fig. 4. CSI-MS Spectra of BG�nBA Complexes

(a) n�1, (b) n�2, (c) n�3, (d) n�4.


