C-24 Stereochemistry of Marine Sterols: (22*E*)-24-(Isopropenyl)-22dehydrocholesterol and 24-Isopropenylcholesterol

Shizue Echigo,^{*a*} Noriyuki Hara,^{*a*} Gladys Jeanette Carderon,^{*b*} Carmenza Duque,^{*b*} and Yoshinori Fujimoto^{*,*a*}

^a Department of Chemistry and Materials Science, Tokyo Institute of Technology; O-okayama, Meguro-ku, Tokyo 152–8551, Japan: and ^b Departamento de Química, Universidad Nacional de Colombia; AA 14490, Bogotá, Colombia. Received June 22, 2006; accepted July 20, 2006; published online July 31, 2006

The C-24 configuration of $(22E,24\xi)$ -24-isopropenyl-22-dehydrocholesterol (1), which was recently isolated from the Colombian Caribbean sponge, *Topsentia ophiraphidites*, was investigated. Synthesis of the stereodefined (24*R*)- and (24*S*)-(22*E*)-24-isopropenyl-22-dehydrocholesterols (1a, 1b) followed by ¹H- and ¹³C-NMR data comparison of these sterols established the (24*R*)-configuration of 1. In addition, (24*R*)- and (24*S*)-24-isopropenylcholesterols (2a and 2b) were also synthesized and their NMR data are provided. The C-24 configurations of the samples of 24-isopropenylcholesterol reported previously are discussed.

Key words marine sterol; 24-isopropenyl-22-dehydrocholesterol; Topsentia ophiraphidites; 24-isopropenylcholesterol; nerve-sterol

We have recently isolated a series of multiply alkylated sterols, including a new C31-sterol, ophirasterol [(22E)-24-(1buten-2-yl)cholesta-5,22-dien-3 β -ol], from the Caribbean sponge, Topsentia ophiraphidites.¹⁾ Among these sterols, the C-24 configurations of ophirasterol,¹⁾ (22E)-24-ethyl-24methyl-22-dehydrocholesterol and 24-ethyl-24-methylcholesterol were determined to be R, R and S, respectively, through synthetic and X-ray studies.²⁾ We have now investigated the C-24 configuration of $(22E, 24\xi)$ -24-isopropenyl-22-dehydrocholesterol 1 (Fig. 1). The isolation of 1 was reported also from other marine sources and a terrestrial plant (vide infra). NMR comparison of the natural 1 and synthetic, stereodefined (24R)- and (24S)-samples led to the stereochemical assignment of 1. Stereochemically defined (24R)and (24S)-24-isopropenylcholesterols (2a, b) were also synthesized and the C-24 configurations of the samples of (24ξ) -24-isopropenylcholesterol 2 reported previously are discussed.

(24*R*)- and (24*S*)-(22*E*)- Δ^{22} -24-isopropenylcholesterols (**1a**, **b**) and (24*S*)- and (24*R*)-24-isopropenylcholesterols (**2a**, **b**) were synthesized stereoselectively in a route involving orthoester Claisen rearrangement (Chart 1). The known starting materials, (22*R*)- and (22*S*)-allylic alcohols **3a** and **3b**,³⁾ were used in our recent synthesis of ophirasterol and its C-24 epimer.¹⁾ Exposure of **3a** to a condition of orthoester Claisen rearrangement (triethyl orthopropionate and a catalytic amount of propionic acid in refluxing xylene) gave the (24*R*)-rearranged ester **4a** as a *ca*. 1:1 mixture at the C-28 position, as revealed by ¹³C-NMR analysis of **4a**. The config-

Fig. 1. Structures of $(22E,24\xi)$ -24-Isopropenyl-22-dehydrocholesterol (1) and (24ξ) -24-Isopropenylcholesterol (2)

The C-24 configuration of 1 isolated from *Topsentia ophiraphidites* was established to be R in the present study.

uration at C-24 of **4a** was assigned as *R* from the previous examples of orthoester Claisen rearrangements of steroidal (23E)-23-en-22-ols.³⁻⁵⁾ The rearranged product **4a** was reduced with LiAlH₄ to give the primary alcohol **5a**, dehydration of which gave the (24*R*)-exomethylene **6a**. Acidic treatment of **6a** furnished the (24*R*)-sterol **1a**. The (24*S*)-epimer **1b** was synthesized in the same manner from the (22*S*)-allylic alcohol **3b** via the intermediates, the rearranged ester **4b**, the primary alcohol **5b**, and the exomethylene **6b**.

Hydrogenation of the primary alcohol **5a** followed by dehydration gave the 22-saturated exomethylene **7a**. Compound **7a** furnished (24*S*)-24-isopropenylcholesterol **2a** by regeneration of the Δ^5 -3 β -hydroxy system. Similarly, (24*S*)-alcohol **5b** was converted to (24*R*)-epimer **2b** via (24*R*)-exomethylene **7b**.

With stereodefined (24*R*)- and (24*S*)-(22*E*)- Δ^{22} -24-isopropenylcholesterols (**1a**, **b**) in hand, their NMR data were compared with those of natural sample **1**. The ¹H and ¹³C signals were assigned by 2D-NMR studies including heteronuclear multiple-bond correlation (HMBC) spectra. The high-resolution ¹H-NMR data (Table 1) were useful for distinguishing the epimers and considerable chemical shift difference ($\Delta\delta$ 0.021) was observed in the 21-H₃ signals (δ 1.025 for **1a**, δ 1.004 for **1b**). The olefinic protons, H-22 and H-23, also showed diagnostic difference as illustrated in Fig. 2. The H-22 and H-23 signals of (24*S*)-compound **1b** showed a larger chemical shift difference than those of (24*R*)-epimer **1a**. The H-22 and H-23 signals of ophirasterol and its C-24 epimer displayed an essentially identical pattern.¹

The ¹³C-NMR data (Table 2) of **1a** and **1b** are reported for the first time. The C-16 signal showed the largest chemical shift difference (0.47 ppm) with the C-16 of **1a** being more shielded, as shown in a graphic representation of ¹³C comparison of the epimers (Fig. 3). The C-17 resonance showed the second largest difference (0.22 ppm) with the C-17 of **1b** being more shielded. This aptitude is the same as that observed for ophirasterol and its C-24 epimer.¹⁾ Analogously, the C-16 signals of stigmasterol and crinosterol resonated at lower field than the corresponding C-24 epimers, poliferasterol and brassicasterol.⁶⁾

Reagents: i) EtC(OEt)₃, propionic acid , ii) LiAlH₄, iii) 2-NO₂C₆H₄SeCN, nBu₃P; H₂O₂, iv) *p*-TsOH/aq. dioxane, v) H₂, Pd/C

Chart 1. Synthesis of 24-Isopropenylsterols 1a, 1b, 2a and 2b

Table 1. 1 H-NMR Data (500 MHz, in CDCl₃) for Compounds 1, 1a and 1b

No.	1	1a (24 <i>R</i>)	1b (24 <i>S</i>)
3	3.52 (m)	3.52 (m)	3.52 (m)
6	5.35 (br d, 5.2)	5.35 (br d, 5.2)	5.35 (br d, 5.3)
18	0.689 (s)	0.690 (s)	0.697 (s)
19	1.008 (s)	1.008 (s)	1.010 (s)
21	1.025 (d, 6.6)	1.025 (d, 6.6)	1.004 (d, 5.8)
22	5.229 (m)	5.229 (m)	5.203 (dd, 15.1, 8.1)
23	5.229 (m)	5.229 (m)	5.263 (dd, 15.1, 8.4)
26	0.820 (d, 7.2)	0.821 (d, 7.1)	0.823 (d, 6.7)
27	0.835 (d, 6.9)	0.835 (d, 6.9)	0.837 (d, 6.7)
29	4.66 (br s), 4.68 (br s)	4.66 (br s), 4.68 (br s)	4.66 (br s), 4.69 (br s)
30	1.646 (s)	1.645 (s)	1.651 (s)

The ¹H- and ¹³C-NMR data of the marine sterol **1** were in excellent agreement with those of **1a** (Tables 1, 2), thus establishing the C-24 configuration of the natural sterol **1** as *R*. Melting point of **1** (149—151 °C, measured after the sample (143—146 °C) described in our previous paper¹) was recrystallized from MeOH once more) further confirmed this assignment (mp: 150—152 °C for **1a**; 174—176 °C for **1b**). Kikuchi *et al.* reported the isolation of (22*E*,24 ξ)-24-isopropenyl-22-dehydrocholesterol (nervisterol) from the Orchidaceous plant, *Nervilia purpurea*.⁷) The C-24 configuration of nervisterol was now assigned as *S* on the basis of the ¹H-NMR data comparison and the reported mp (175—177 °C). (22*E*)-24-Isopropenyl-22-dehydrocholesterol isolated from

Fig. 2. Partial ¹H-NMR Spectra (500 MHz, CDCl₃) of the Sample **1** from *Topsentia ophiraphidites* (Top), **1a** (Middle) and **1b** (Bottom)

Table 2. 13 C-NMR Data (125 MHz, in CDCl₃) for Compounds 1, 1a, 1b, 2a and 2b

No.	1	1a (24 <i>R</i>)	1b (24 <i>S</i>)	2a (24 <i>S</i>)	2b (24 <i>R</i>)
1	37.25	37.26	37.26	37.24	37.24
2	31.67	31.66	31.67	31.65	31.65
3	71.81	71.78	71.80	71.79	71.80
4	42.31	42.31	42.31	42.29	42.32
5	140.74	140.75	140.76	140.74	140.74
6	121.69	121.67	121.68	121.71	121.72
7	31.89	31.89	31.90	31.89	31.88
8	31.89	31.89	31.90	31.89	31.90
9	50.15	50.16	50.16	50.11	50.10
10	36.51	36.51	36.51	36.49	36.49
11	21.06	21.06	21.07	21.06	21.08
12	39.65	39.66	39.67	39.72	39.78
13	42.28	42.28	42.26	42.27	42.29
14	56.78	56.79	56.84	56.72	56.76
15	24.30	24.30	24.37	24.27	24.27
16	28.43	28.43	28.90	28.13	28.16
17	56.12	56.13	55.91	55.87	56.18
18	12.03	12.04	12.02	11.82	11.84
19	19.39	19.39	19.38	19.39	19.39
20	40.11	40.11	40.30	36.20	35.47
21	21.19	21.19	21.29	19.06	18.59
22	137.75	137.75	137.80	34.17	33.94
23	128.58	128.59	128.71	26.27	26.20
24	58.44	58.44	58.57	55.49	55.02
25	29.18	29.18	29.33	30.23	30.23
26	20.14	20.14	20.24	20.85	20.85
27	20.75	20.76	20.78	21.50	21.61
28	148.25	148.22	148.35	147.36	147.08
29	110.10	110.10	110.08	111.86	112.03
30	20.34	20.34	20.47	18.91	18.51

Fig. 3. Comparison of the ¹³C-NMR Data of **1a** and **1b**

the sponge *Pseudoaxinyssa* sp. was reportedly a C-24 epimeric mixture.⁸⁾

The ¹H- and ¹³C-NMR data of the 22-saturated 24-isopropenylcholesterols **2a** and **2b** are listed in Tables 3 and 2, respectively. In the ¹H-NMR spectra the 21-H₃ ($\Delta\delta$ 0.013) and 18-H₃ ($\Delta\delta$ 0.008) signals showed small differences and these differences can be used for determination of the C-24 configuration when accurate ¹H-NMR data are available. The ¹³C-NMR data, reported for the first time in this paper, seemed to be more diagnostic than the ¹H-NMR data. The signals of C-20 ($\Delta\delta$ 0.73), C-21, C-24 and C-30 exhibited more than 0.3 ppm chemical shift differences between epimers, as shown in Fig. 4.

Kikuchi *et al.* reported the isolation of (24S)-24-isopropenylcholesterol from *N. purpurea*,^{7,9)} the 24*S* configuration of which was assigned by converting it to clionasterol

Table 3. ¹H-NMR Data (500 MHz, in CDCl₃) for Compounds 2a and 2b¹⁶⁾

No.	2a (24 <i>S</i>)	2b (24 <i>R</i>)
3	3.53 (m)	3.52 (m)
6	5.35 (br d, 5.1)	5.35 (br d, 5.6)
18	0.665 (s)	0.673 (s)
19	1.006 (s)	1.007 (s)
21	0.922 (d, 6.6)	0.909 (d, 6.4)
26	0.802 (d, 6.1)	0.799 (d, 6.4)
27	0.910 (d, 5.9)	0.904 (d, 6.4)
29	4.60 (br s), 4.74 (br s)	4.61 (br s), 4.74 (br s)
30	1.564 (s)	1.561 (s)

Fig. 4. Comparison of the ¹³C-NMR Data of **2a** and **2b**

((24S)-24-ethylcholesterol). The reported ¹H-NMR values of the plant sterol are in good agreement with those of 2a, thus confirming the previous stereochemical assignment. Catalan et al. reported the isolation of a stereochemically pure (24S)-24-isopropenylcholesterol 2a from the sponge, Aplysina fistularis, the C-24 configuration of which was assigned on the basis of the ¹H-NMR data described above.^{10,11} (24S)-24-Isopropenylcholesterol was also isolated from the sponge, Pseudoaxinyssa sp.¹⁰⁾ In contrast, 24-isopropenylcholesterol isolated from a marine Chrysophyte¹²⁾ could be assigned as (24R)-compound **2b**, because the reported ¹H-NMR data were in excellent agreement with those of 2b. Isolation of (24ξ) -24-isopropenylcholesterol **2** from higher plants, Anoectochilus koshunensis (Orchidaceae)¹³⁾ and Azadirachta indica (Meliacea),¹⁴⁾ was recorded without relevant data to assign the C-24 configuration.

In conclusion, we have synthesized and provided detailed ¹H- and ¹³C-NMR data for 24*R*- and 24*S*-epimers of **1** and **2**, which allowed us to establish the C-24 configuration of 1 isolated from T. ophiraphidites. The same 24β orientation (with regard to the 1-buten-2-yl and isopropenyl substituents) of ophirasterol and (22E,24R)-24-isopropenyl-22-dehydrocholesterol found in T. ophiraphidites would support the view that **1a** is a biosynthetic precursor of ophirasterol in the sponge.1) The present study also determined the 24S configuration of nervisterol. It is notable that (24S)-24-isopropenylcholesterol 2a cannot be a precursor of nervisterol 1b in spite of their co-occurrence in the N. purpurea plant, since their C-24 orientations are different from each other. Stoilov et al. reported experimental evidence that fucosterol/isofucosterol is a biosynthetic precursor of the 24-isopropenylcholesterol in the sponge, Pseudoaxinissa sp.¹⁵) Neither 2a nor 2b was detected in GLC and HPLC analysis of the sterol mixture ob-

tained from T. ophiraphidites.

Experimental

General Melting points were determined by a Yazawa BY-1 hot-stage apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-360 polarimeter. ¹H- and ¹³C-NMR spectra were recorded on a Bruker DRX500 (500 MHz for ¹H and 125 MHz for ¹³C) or JEOL JNM-LA400 (400 MHz for ¹H and 100 MHz for ¹³C) spectrometer in DCl₃ solution. CDCl₃ signal was used as a reference (δ 77.0) for ¹³C-chemical shifts. EI-MS (70 eV) and HR-EI-MS spectra were obtained on a JEOL JMS-700 spectrometer. A part of ¹H-NMR data, δ : 0.44 (dd, *J*=8.0, 5.1 Hz, 4 α -H), 0.65 (t, *J*=4.4 Hz, 4 β -H), 2.78 (brt, *J*=2.7 Hz, 6-H), 3.32 (s, OMe), for compounds with a 6 β -methoxy-3 α ,5-cyclo structure are not described, since they were common to all such compounds.

(22*E*,24*R*)-24-IsopropenyI-6 β -methoxy-3 α ,5-cyclo-5 α -cholest-22-ene (6a) A solution of 22*R*-alcohol 3a^{1,3)} (70 mg, 169 mmol) (¹H-NMR δ : 4.12 (dd, *J*=7.4, 3.4 Hz, 22-H)), triethyl orthopropionate (100 μ l, 507 μ mol) and propionic acid (7.5 μ l, 101 μ mol) in xylene (2.1 ml) was heated at reflux under N₂ for 1 h. After removal of most of the solvent on a rotary evaporator, the residue was chromatographed on silica gel with hexane–ether (20:1) to give the rearranged product 4a (71 mg) as oil. ¹H-NMR δ : 0.707/0.718 (s, 18-H₃), 1.224/1.243 (t, *J*=7.1 Hz, OCH₂CH₃), 4.02—4.16 (m, OCH₂CH₃), 4.94—5.29 (m, 22-H, 23-H). ¹³C-NMR δ : 59.91/59.98 (C-29), 124.53/125.20 (C-23), 140.31/141.17 (C-22), 176.21/176.74 (C=O).

LiAlH₄ (16 mg, 142 μ mol) was added to a solution of **4a** (71 mg) at 0 °C under N₂ and the mixture was stirred for 30 min. The solution was diluted with moist ether and then a small amount of water. The supernatant solution was filtered through a pad of Celite and concentrated *in vacuo*. The residue was chromatographed on silica gel with hexane–AcOEt (10:1) to give **5a** (48 mg, 105 mmol) as oil. ¹H-NMR δ : 0.73 (s, 18-H₃), 3.33–3.65 (m, 29-H₂), 5.05–5.27 (m, 22-H, 23-H). ¹³C-NMR δ : 67.17/67.57 (C-29), 126.56/126.70 (C-23), 139.70/140.16 (C-22).

2-Nitrophenyl selenocyanate (71.5 mg, 315 μ mol) and tri-*n*-butylphosphine (79 μ l, 315 mmol) were added to a solution of **5a** (48 mg, 105 μ mol) in THF (2.5 ml) and the mixture was stirred for 1 h under N₂. 30% H₂O₂ (1.0 ml) was added and the mixture was stirred for another 1.5 h. The mixture was diluted with ether and brine, and the organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was chromatographed on silica gel with hexane–ether (20:1) to give **6a** (38 mg, 51%, 3 steps) as oil. ¹H-NMR δ : 0.73 (s, 18-H₃), 0.82 (d, *J*=6.6 Hz, 26-H₃), 0.83 (d, *J*=6.6 Hz, 27-H₃), 1.02 (d, *J*=6.4 Hz, 21-H₃), 1.05 (s, 30-H₃), 2.19 (m, 25-H), 4.66 (br s, 29-Ha), 4.68 (br s, 29-Hb), 5.24 (m, 22-H, 23-H). ¹³C-NMR δ : 12.42, 13.06, 19.29, 20.13, 20.34, 20.74, 21.19, 21.44, 22.74, 24.19, 24.95, 28.55, 29.15, 30.46, 33.33, 35.05, 35.23, 40.14, 40.19, 42.71, 43.37, 48.04, 56.26, 56.54, 58.43, 82.39, 110.09, 128.48, 137.82, 148.24. *Anal.* Calcd for C₃₁H₅₀O: C, 84.87; H, 11.49. Found: C, 84.58; H, 11.51.

(22*E*,24*R*)-24-Isopropenylcholesta-5,22-dien-3 β -ol (1a) A solution of **6a** (37 mg, 84 μ mol) in dioxane (1.2 ml) and H₂O (0.40 ml) containing *p*-TsOH·H₂O (64 μ g, 3.4 μ mol) was heated at 105 °C for 3 h. Extractive (ether) work-up gave a crude product which was chromatographed on silica gel with hexane–AcOEt (7 : 1) to give **1a** as a solid. Recrystallization from MeOH afforded **1a** (24 mg, 67%) as white plates, mp 150–152 °C. [α]_D²⁵ –41.7° (*c*=2.59, CHCl₃). ¹H-NMR data: see Table 1. ¹³C-NMR data: see Table 2. *Anal.* Calcd for C₃₀H₄₈O: C, 84.84; H, 11.39. Found: C, 84.76; H, 11.41.

(22E, 24S)-24-Isopropenyl-6 β -methoxy-3 α , 5-cyclo-5 α -cholest-22-ene (6b) (22S)-Alcohol $3b^{1,3}$ (131 mg, 316 μ mol) (¹H-NMR δ : 4.21 (brt, J=5.2 Hz, 22-H)) was converted to **6b** (59 mg, 42%, 3 steps) according to the procedure described for 3a. The intermediate 4b: oil, ¹H-NMR δ : 0.710/0.717 (s, 18-H₃), 1.232/1.244 (t, J=7.1 Hz, OCH₂CH₃), 3.99-4.15 (m, OCH₂CH₃), 4.96—5.25 (m, 22-H, 23-H). ¹³C-NMR δ: 59.80/59.97 (C-29), 124.80/125.17 (C-22), 140.35/141.03 (C-23), 176.18/176.61 (C=O). **5b**: oil, ¹H-NMR δ : 0.72 (s, 18-H₃), 3.36—3.63 (m, 29-H₂), 5.04—5.26 (m, 22-H, 23-H), ¹³C-NMR δ : 67.16/67.47 (C-29), 126.78/126.90 (C-23), 139.65/140.00 (C-22). 6b: mp 116-117 °C (recrystallized from MeOH), ¹H-NMR δ : 0.73 (s, 18-H₃), 0.82 (d, J=6.6 Hz, 26-H₃), 0.84 (d, J=6.6 Hz, 27-H₃), 1.00 (d, J=6.6 Hz, 21-H₃), 1.02 (s, 19-H₃), 1.65 (s, 30-H₃), 2.18 (m, 25-H), 4.66 (br s, 29-Ha), 4.68 (br s, 29-Hb), 5.23 (m, 22-H, 23-H), ¹³C-NMR δ: 12.41, 13.07, 19.28, 20.20, 20.50, 20.78, 21.29, 21.43, 22.74, 24.28, 24.95, 29.02, 29.29, 30.46, 33.33, 35.06, 35.22, 40.15, 40.38, 42.68, 43.37, 48.03, 56.04, 56.55, 56.59, 58.59, 82.39, 110.06, 128.64, 137.86, 148.36. Anal. Calcd for C31H50O: C, 84.87; H, 11.49. Found: C, 84.58; H, 11.51.

(22*E*,24*S*)-24-Isopropenylcholesta-5,22-dien-3 β -ol (1b) Compound 6b (52 mg, 118 μ mol) was converted to 1b (43 mg, 87%) according to the procedure described above for the conversion of 6a to 1a. 1b: white needles, mp 174—176 °C. [α]_D²⁵ –46.3° (*c*=2.07, CHCl₃). ¹H-NMR data: see Table 1. ¹³C-NMR data: see Table 2. *Anal.* Calcd for C₃₀H₄₈O: C, 84.84; H, 11.39. Found: C, 84.92; H, 11.69.

(24S)-24-Isopropenyl-6 β -methoxy-3 α ,5 α -cyclocholestane (7a) A solution of 5a (37.5 mg, 82.1 μ mol) in AcOEt (1.0 ml) was hydrogenated in the presence of 10% Pd/C (15 mg) overnight. The catalyst was filtered off through a pad of Celite and the filtrate was concentrated *in vacuo*. The residue was chromatographed on silica gel with hexane–ether (20:1) to give the hydrogenated product (37 mg, 81.3 μ mol) as an oil.

2-Nitrophenyl selenocyanate (55 mg, 244 μ mol) and *n*-tributylphosphine (61 μ l, 244 μ mol) were added to a solution of the hydrogenated product (37 mg, 81.3 μ mol) in THF (2.0 ml) and the mixture was stirred for 1 h under N₂. 30% H₂O₂ (1.0 ml) was added and the mixture was stirred for another 1 h. The mixture was diluted with ether and brine. The organic phase was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was chromatographed on silica gel with hexane–ether (20:1) to give **7a** (22 mg, 60%, 2 steps) as oil. ¹H-NMR δ : 0.70 (s, 18-H₃), 0.80 (d, *J*=6.1 Hz, 26-H₃), 0.91 (d, *J*=6.1 Hz, 27-H₃), 0.92 (d, *J*=6.6 Hz, 21-H₃), 1.02 (s, 19-H₃), 1.56 (s, 30-H₃), 4.60 (br s, 29-Hb), 4.74 (br s, 29-Hb). ¹³C-NMR δ : 12.20, 13.05, 18.88, 18.90, 19.29, 20.85, 21.48, 21.52, 22.77, 24.17, 24.96, 26.30, 28.24, 30.23, 30.46, 33.34, 34.15, 35.04, 35.28, 36.24, 40.24, 42.73, 43.37, 48.02, 55.50, 56.06, 56.50, 56.55, 82.43, 111.86, 147.37. HR-EI-MS *m*/*z* 440.4062 [M⁺]; C₃₁H₅₂O requires 440.4018.

(24*S*)-24-Isopropenylcholest-5-en-3*β*-ol (2a) A solution of 7a (22 mg, 49.2 μ mol) in dioxane (0.60 ml) and H₂O (0.20 ml) containing *p*-TsOH · H₂O (374 mg, 1.97 μ mol) was heated at 105 °C for 2 h. Extractive (ether) work-up gave a crude product which was chromatographed on silica gel with hexane–AcOEt (7:1) to give 2a as a solid. Recrystallization from MeOH afforded 2a (12 mg, 67%) as white plates, mp 134–135 °C. [α]_D²⁵ – 37.6° (*c*=1.29, CHCl₃). ¹H-NMR data: see Table 3. ¹³C-NMR data: see Table 2. *Anal.* Calcd for C₃₀H₅₀O: C, 84.44; H, 11.81. Found: C, 84.36; H, 12.01.

(24*R*)-24-Isopropenyl-6β-methoxy-3 α,5-cyclo-5α-cholestane (7b) Compound 5b (26 mg, 56.7 μmol) was converted to 7b (14 mg, 58%, 2 steps) according to the procedure described for 5a. 7b: oil. ¹H-NMR δ: 0.71 (s, 18-H₃), 0.80 (d, J=6.3 Hz, 26-H₃), 0.90 (d, J=6.6 Hz, 27-H₃), 0.91 (d, J=6.5 Hz, 21-H₃), 1.02 (s, 19-H₃), 1.56 (s, 30-H₃), 4.61 (br s, 29-Ha), 4.74 (br s, 29-Hb). ¹³C-NMR δ: 12.23, 13.04, 18.51, 18.56, 19.30, 20.85, 21.51, 21.62, 22.77, 24.17, 24.96, 26.26, 28.27, 30.23, 30.46, 33.33, 33.92, 35.00, 35.29, 35.54, 40.28, 42.77, 43.37, 47.99, 55.04, 56.35, 56.50, 56.55, 82.42, 112.30, 147.10. HR-EI-MS *m/z* 440.4038 [M⁺]; C₃₁H₅₂O requires 440.4018.

(24*R*)-24-Isopropenylcholest-5-en-3 β -ol (2b) Compound 7b (14 mg, 31.8 mmol) was converted to 2b (10 mg, 74%) in the same manner as described for the conversion of 6a to 1a. 2b: white needles; mp 139—140 °C. [α]₂₅²⁵ - 37.8° (c=0.98, CHCl₃). ¹H-NMR data: see Table 3. ¹³C-NMR data: see Table 2. *Anal.* Calcd for C₃₀H₅₀O: C, 84.44; H, 11.81. Found: C, 84.18; H, 11.86.

Acknowledgments This work was supported in part by a Grant from Colciencias to C. D.

References and Notes

- Calderon G. J., Castellanos L., Duque C., Echigo S., Hara N., Fujimoto Y., *Steroids*, 69, 93–100 (2004).
- Echigo S., Calderon G. J., Castellanos L., Duque C., Hara N., Fujimoto Y., *Steroids*, 72 (2007), in press.
- Wiersig J. R., Waespe-Sarcevic N., Djerassi C., J. Org. Chem., 44, 3374–3382 (1979).
- Sucrow W., Schubert B., Richter W., Slopianka M., Chem. Ber., 104, 3689–3703 (1971).
- Khripach V. A., Zhabinskii V. N., Konstantinova O. V., Khripach N. B., Antonchick A. P., Schneider B., *Steroids*, 67, 597–603 (2002).
- Wright J. L. C., McInnes A. G., Shimizu S., Smith D. G., Walter J. A., Idler D., Khalil W., *Can. J. Chem.*, 56, 1898–1903 (1978).
- Kikuchi T., Kadota S., Suehara H., Namba T., *Chem. Pharm. Bull.*, 33, 2235–2242 (1985).
- Tam Ha T. B., Kokke W. C. M. C., Proudfoot J. R., Djerassi C., Steroids, 45, 263—276 (1985).
- Kadota S., Sima T., Kikuchi T., Chem. Pharm. Bull., 35, 200–210 (1987).
- 10) Catalan C. A. N., Thompson J. E., Kokke W. C. M. C., Djerassi C.,

Tetrahedron, 41, 1073—1085 (1985).

- The sterol was originally reported as a C-24 epimeric mixture, but later revised as a stereochemically pure material. Kokke W. C. M. C., Pak C. S., Fenical W., Djerassi C., *Helv. Chim. Acta*, **62**, 1310–1318 (1979).
- 12) Kokke W. C. M. C., Shoolery J. N., Fenical W., Djerassi C., J. Org. Chem., 49, 3742—3752 (1984).
- Ito A., Yasumoto K., Kasai R., Yamasaki K., *Phytochemistry*, 36, 1465—1467 (1994).
- 14) Selvi S. T., Mohan P. S., Indian J. Chem., 36B, 1082-1083 (1997).
- 15) Stoilov I., Thompson J. E., Djerassi C., *Tetrahedron*, **42**, 4147–4160 (1986).
- 16) The spectra (higher field region) are reported in ref. 10.