Structures of New Cucurbitane-Type Triterpenes and Glycosides, Karavilagenins and Karavilosides, from the Dried Fruit of *Momordica charantia* **L. in Sri Lanka**

Seikou NAKAMURA, Toshiyuki MURAKAMI, Junko NAKAMURA, Hisanori KOBAYASHI, Hisashi MATSUDA, and Masayuki YOSHIKAWA*

Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8412, Japan. Received June 19, 2006; accepted August 25, 2006; published online August 29, 2006

> **Three new cucurbitane-type triterpene called karavilagenins A, B, and C and five new cucurbitane-type triterpene glycosides called karavilosides I, II, III, IV, and V were isolated from the dried fruit of Sri Lanka** *Momordica charantia* **L. (Cucurbitaceae) together with two known cucurbitane-type triterpenes, 19(***R***)-methoxy-5**b**,19-epoxycucurbita-6,23-dien-3**b**,25-diol and 5,19-epoxycucurbita-6,23-diene-3,25-diol, and nine known cucur**bitane-type triterpene glycosides, goyaglycosides-b, -c, and -d, and momordicosides F₁, F₂, G, I, K, and L. The **structures of karavilagenins and karavilosides were elucidated on the basis of chemical and physicochemical evidence.**

Key words *Momordica charantia*; karavilagenin; karaviloside; Sri Lanka; cucurbitane-type triterpene; medicinal foodstuff

The Cucurbitaceae plant *Momordica* (*M.*) *charantia* L. is cultivated in Asian countries and the fruit of this plant has been used as a bitter stomachic, a laxative, an antidiabetic, and an anthelmintic for children in Chinese, Indian Ayurvedic, and Indonesian Jamu traditional medicines. The alcoholic extract from the fruit of *M. charantia* originated in Sri Lanka was reported to inhibit the increase in serum glucose levels after glucose-loaded rats.¹⁾ In addition, Several cucurbitane-type triterpene glycosides were reported as chemical constituents of the fruit.^{5—10)} However, chemical and pharmacological studies^{1—4)} on the fruit of *M. charantia* were yet left uncharacterised. During the course of characterization studies on the bioactive constituents of medicinal foodstuffs, $11-21$) we reported the isolation and structure elucidation of eight cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and three oleanane-type triterpene glycosides, goyasaponins I, II, and III, from the fresh fruit of Japanese *M. charantia*. 22) In a continuing study of the *Momordica* plant, we have examined the constituents from the dried fruit of *M. charantia* [Sri Lankan name (Singhalese): Kariwila], which is widely cultivated in Sri Lanka and used as vegetable. From the methanol extract, three new cucurbitane-type triterpene called karavilagenins

19(R)-methoxy-5 β ,19-epoxycucurbita-6,23-dien-3 β ,25-diol (9) 5 β ,19-epoxycucurbita-6,23-diene-3 β ,25-diol (10)

Chart 2

cucurbitane-type triterpenes and nine known cucurbitanetype triterpene glycosides. This paper deals with the isolation and structure elucidation of karavilagenins A (**1**), B (**2**), and C (**3**) and karavilosides I (**4**), II (**5**), III (**6**), IV (**7**), and V (**8**).

The methanolic extract obtained from the dried fruit of *M. charantia*, which was cultivated in Nuwara Eliya, Sri Lanka, was subjected to normal-phase and reversed-phase silica gel column chromatography and repeated HPLC to afford karavilagenins A (**1**, 0.0030%), B (**2**, 0.0076%), and C (**3**, 0.0024%) and karavilosides I (**4**, 0.0067%), II (**5**, 0.0138%), III (**6**, 0.0033%), IV (**7**, 0.0006%), and V (**8**) together with 19(*R*)-methoxy-5 β ,19-epoxycucurbita-6,23-dien-3 β ,25-diol $(9, 0.0019\%)$,²³ 5 β ,19-epoxycucurbita-6,23-diene-3 β ,25-diol $(10, 0.0036\%)$,²³⁾ goyaglycosides-b $(11, 0.0003\%)$,²²⁾ -c $(12, 0.0003\%)$ 0.0007%),²²⁾ and -d $(13, 0.0026\%)$,²²⁾ and momordicosides F_1 (14, 0.0083%),⁷⁾ F_2 (15, 0.0005%),⁷⁾ G (16, 0.0043%),²³⁾ I $(17, 0.0012\%)$,²³⁾ K $(18, 0.0015\%)$,⁸⁾ and L $(19, 0.0011\%)$ ⁸⁾ (Charts 1, 2).

Table 1. 13C-NMR Data for Karavilagenins A (**1**), B (**2**), and C (**3**) and Karavilosides I (**4**), II (**5**), III (**6**), IV (**7**), and V (**8**)

	$\mathbf{1}$	$\overline{\mathbf{c}}$	3	4	5	6	7	8
$C-1$	21.0	21.0	21.0	22.6	22.6	22.5	21.8	22.6
$C-2$	28.4	28.5	28.6	28.9	28.8	28.7	30.1	28.8
$C-3$	76.8	76.5	76.6	87.8	87.8	87.5	76.1	87.7
$C-4$	41.6	41.6	41.6	42.1	42.0	41.9	42.0	42.0
$C-5$	146.7	146.8	146.7	148.0	148.0	148.0	148.1	148.0
$C-6$	120.7	120.6	120.8	119.2	119.1	119.0	119.7	119.2
$C-7$	77.1	77.1	77.1	77.7	77.6	77.6	77.6	77.7
$C-8$	47.8	47.7	47.8	48.9	48.8	48.8	49.0	48.9
$C-9$	33.9	33.8	33.9	34.4	34.4	34.3	34.3	34.4
$C-10$	38.5	38.6	38.6	39.4	39.4	39.3	39.3	39.3
$C-11$	32.5	32.6	32.6	32.8	32.8	32.8	33.0	32.9
$C-12$	29.9	29.9	30.1	30.4	30.4	30.3	30.7	30.6
$C-13$	46.0	46.1	46.1	46.3	46.3	46.2	46.6	46.6
$C-14$	47.7	47.7	47.8	48.3	48.3	48.2	48.0	48.0
$C-15$	34.6	34.6	34.5	35.0	35.0	34.9	35.3	35.3
$C-16$	27.5	27.5	27.8	27.9	27.8	27.8	27.9	27.8
$C-17$	49.8	49.8	50.7	50.3	50.3	50.1	46.5	46.6
$C-18$	15.3	15.3	15.3	15.6	15.6	15.5	15.1	15.1
$C-19$	28.5	28.8	28.8	29.2	29.2	29.1	29.2	29.2
$C-20$	36.1	36.1	32.6	36.5	36.5	36.5	40.8	40.9
$C-21$	18.0	18.6	18.7	19.1	19.0	18.9	15.1	15.0
$C-22$	39.5	39.0	44.4	39.8	39.8	39.5	77.1	76.9
$C-23$	128.4	125.0	65.8	128.5	128.5	124.3	81.4	81.2
$C-24$	136.6	139.4	129.0	137.7	137.6	141.5	124.6	124.8
$C-25$	74.7	70.5	133.6	74.9	74.8	69.7	135.6	135.4
$C-26$	26.0	29.8	18.0	26.1	26.1	30.7	26.2	26.2
$C-27$	25.7	29.7	25.6	26.5	26.5	30.7	18.7	18.6
$C-28$	27.7	27.6	27.7	28.9	28.9	28.8	28.2	28.8
$C-29$	25.3	25.3	25.3	25.9	25.9	25.7	26.2	25.9
$C-30$	17.8	17.9	17.9	18.1	18.1	18.1	18.1	18.1
7-OMe	56.1	56.1	56.2	56.3	56.2	56.1		56.2
25-OMe	50.1			50.2	50.1			
$C-1'$				107.6	105.0	104.6	106.1	104.8
$C-2'$				75.2	72.1	72.0	75.9	72.1
$C-3'$				78.7	73.4	73.2	78.8	73.3
$C-4'$				71.8	69.2	69.2	71.8	69.3
$C-5'$				78.2	75.7	75.4	78.4	75.9
$C-6'$				63.2	63.3	63.3	62.8	63.4
$C-1$ " $C-2$ "								103.6
$C-3''$								73.1
$C-4"$								73.0 69.1
$C-5''$								
$C-6''$								75.6
								63.1

Structure Elucidation of Karavilagenins A, B, and C and Karavilosides I, II, III, IV, and V Karavilagenin A (**1**) was obtained as a white powder with positive optical rotation ($[\alpha]_D^{26}$ +71.5°). The IR spectrum of **1** showed absorption bands at 3475 and 1655 cm^{-1} suggestive of hydroxy and olefin functions. In the EI-MS of **1**, a molecular ion peak was observed at m/z 486 [M⁺], and the molecular formula $C_{32}H_{54}O_3$ was determined by high-resolution MS measurement. The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra of **1**, which was assigned by various NMR experiments,²⁴⁾ showed signals due to eight methyls [δ 0.70, 0.93, 0.99, 1.04, 1.21 (3H each, all s, 30, 18, 19, 28, 29-H₃), 0.90 $(3H, d-like, 21-H₃), 1.25 (6H, s, 26, 27-H₃)],$ two methoxyl [3.14 (3H, s, 25-OCH₃), 3.34 (3H, s, 7-OCH₃)], two methines bearing an oxygen function [3.43 (1H, m, 7-H), 3.51 (1H, m, 3-H)], three olefinic protons [5.38 (1H, d, J=15.8 Hz, 24-H), 5.49 (1H, m, 23-H), 5.83 (1H, d, J=5.3 Hz, 6-H)]. The plane structure in **1** was determined by a detailed heteronuclear multiple bond correlation (HMBC) experiment. Namely, long-range correlations were observed between the following protons and carbons: $18-H_3$ and 12, 13, 14, 17-C; 21-H₃ and 17, 20, 22-C; 23-H and 20, 22, 24, 25-C; 24-H and 22, 23, 25, 26, 27-C; 26, 27-H₃ and 24, 25-C; 28, 29-H₃ and 3, 4, 5-C; 30-H₃ and 8, 13, 14, 15-C; 7-OCH₃ and 7-C; 25-OCH₃ and 25-C (Fig. 1). The stereostructure of **1** was characterized by nuclear Overhauser enhancement spectroscopy (NOESY) experiment, which showed NOE correlations between the following protons and protons: 8-H and $18-H_3$; $28-H_3$ and 3-H, 10-H; 30-H₃ and 7-H, 10-H, 17-H (Fig. 1).²⁵⁾ These findings and comparisons of ¹ H- and 13C-NMR spectra of **1** with those of known goyaglycosides^{7,8,22,23)} led us to formulate the structure of karavilagenin A (**1**) as 7,25-dimethoxycucurbita-5,23-dien-3 β -ol.

Karavilagenin B (**2**) was obtained as a white powder with positive optical rotation ($[\alpha]_D^{26} + 117.1^{\circ}$). The IR spectrum of 2 showed absorption bands at 3432 and 1655 cm⁻¹ suggestive of hydroxy and olefin functions. In the EI-MS of **2**, a molecular ion peak was observed at m/z 472 [M⁺], and the

125 MHz, pyridine- d_5 . **Fig. 1.** Selected HMBC and NOE Correlations

molecular formula $C_{31}H_{52}O_3$ was determined by high-resolution MS measurement. The ¹H- (pyridine- d_5) and ¹³C-NMR (Table 1) spectra of **2**, which were assigned by various NMR experiments,²⁴⁾ showed signals due to eight methyls $\lceil \delta 0.70 \rceil$, 0.92, 0.99, 1.03, 1.21 (3H each, all s, 30, 18, 19, 28, 29-H₃), 0.89 (3H, d, J=4.6 Hz, 21-H₃), 1.30 (6H, s, 26, 27-H₃)], a methoxyl [3.34 (3H, s, 7-OCH₃)], two methines bearing an oxygen function [3.43 (1H, m, 7-H), 3.51 (1H, m, 3-H)], three olefinic protons [5.59 (2H, m, 23, 24-H), 5.83 (1H, d, $J=4.6$ Hz, 6-H)]. The ¹H- and ¹³C-NMR signals due to the tetracyclic carbon skeleton structure (C-1—21, C-28—30) in **2** were superimporsable on those of **1**, whereas the signals of side chain part (C-22—27) were very similar to those of **9**— **11**, **15**, **17**, and **19** having the 25-hydroxy group. In the HMBC experiment on **2**, long-range correlations were observed between the following protons and carbons: $18-H₃$ and 12, 13, 14, 17-C; 21-H₃ and 17, 20, 22-C; 23-H and 20, 22, 24, 25-C; 24-H and 22, 23, 25, 26, 27-C; 26, 27-H₃ and 24, 25-C; 28, 29-H₂ and 3, 4, 5-C; 30-H₂ and 8, 13, 14, 15-C; 7 -OCH₃ and 7 -C. Consequently, the structures of karavilagenin B (**2**) was determined to be 7-methoxycucurbita-5,23 dien-3 β ,25-diol.

Karavilagenin C (**3**) was obtained as a white powder with positive optical rotation ($[\alpha]_D^{26}$ +98.1°). The IR spectrum of **3** showed absorption bands at 3475 and 1655 cm⁻¹ suggestive of hydroxy and olefin functions. In the EI-MS of **3**, a molecular ion peak was observed at m/z 472 [M⁺], and the molecular formula $C_{31}H_{52}O_3$ was determined by high-resolution MS measurement. The ¹H- (pyridine- d_5) and ¹³C-NMR (Table 1) spectra of **3**, which were assigned by various NMR experiments,²⁴⁾ showed signals due to eight methyls [δ 0.70, 0.95, 0.98, 1.04, 1.21, 1.68, 1.70 (3H each, all s, 30, 18, 19, 28, 29, 26, 27-H₃), 0.97 (3H, d-like, 21-H₃)], a methoxyl [3.34 (3H, s, 7 -OCH₃)], three methines bearing an oxygen function [3.42 (1H, br d, *Jca.* 5 Hz, 7-H), 3.51 (1H, br s, 3- H), 4.46 (1H, ddd-like, 23-H)], two olefinic protons [5.20 $(1H, d, J=8.3 \text{ Hz}, 24-H), 5.83 (1H, d, J=5.0 \text{ Hz}, 6-H)$]. The 1 H- and 13 C-NMR signals due to the tetracyclic carbon skeleton structure (C-1—21, C-28—30) were superimporsable on those of **1**. In the HMBC experiment on **3**, long-range correlations were observed between the following protons and carbons: $18-H_3$ and 12, 13, 14, 17-C; 21-H₃ and 17, 20, 22-C; 23-H and 20, 22, 24, 25-C; 24-H and 22, 23, 25, 26, 27-C; 26, 27-H3 and 24, 25-C; 28, 29-H3 and 3, 4, 5-C; 30-H3 and 8, 13, 14, 15-C; 7-OCH₃ and 7-C. The stereostructure of 3 was characterized by NOESY experiment, in which NOE correlations were observed between the following protons and protons: 8-H and $18-H_3$; 28-H₃ and 3-H, 10-H; 30-H₃ and 7-H, 10-H, 17-H (Fig. 1).²⁵⁾ Consequently, the structure of karavilagenin C (**3**) was determined to be 7-methoxycucurbita-5,24-dien-3 β ,23 ξ -diol.

Kalavilosides I (**4**) and II (**5**) were obtained as a white powder with positive optical rotation $(4: [\alpha]_D^{29} +41.1^{\circ}; 5)$: $[\alpha]_D^{27}$ +39.3°). **4** and **5** were found to have the same molecular formula, $C_{38}H_{64}O_8$, which was determined from the quasimolecular ion peaks in their negative-ion FAB-MS [*m*/*z* 647 $(M-H)^{-}$] and positive-ion FAB-MS [m/z 671 $(M+Na)^{+}$, 693 $(M+2Na-H)^+$] and by high-resolution MS measurement. The IR spectra of **4** and **5** showed absorption bands suggestive of a glycosidic function $(4: 3432, 1078, 1047 \text{ cm}^{-1}; 5)$: 3432, 1080, 1036 cm-1). Acid hydrolysis of **4** with 5% aque-

ous sulfuric acid $(H_2SO_4)-1,4$ -dioxane $(1:1, v/v)$ furnished D-glucose, which was identified by GLC analysis of the thiazolidine derivative.^{26,27)} On the other hand, 5 furnished D-allose upon acid hydrolysis.^{26,27)} The ¹H- and ¹³C-NMR signals due to the aglycone part of **4** and **5** were superimporsable on those of **1**. Namely, the ¹H- (pyridine- d_5) and ¹³C-NMR (Table 1) spectra²⁴⁾ of 4 showed signals assignable to a β -Dglucopyranosyl moiety $\lceil \delta 4.90 \rceil$ (1H, d, J=7.6 Hz, 1'-H)] together with a karavilagenin A moiety $[\delta 0.73, 0.94, 1.63$ (3H each, all s, 30, 18, 29-H₃), 1.00 (3H, d, J=6.1 Hz, 21-H₃), 1.12, 1.34 (6H each, both s, 19, 28, 26, 27-H3), 3.23, 3.32 $(3H$ each, both s, 25-OCH₃, 7-OCH₃), 3.45 (1H, dd-like, 7-H), 3.71 (1H, br s, 3-H), 5.58 (1H, d, J=15.6 Hz, 24-H), 5.67 (1H, ddd-like, 23-H), 5.95 (1H, d, J=4.9 Hz, 6-H)]. The ¹H-(pyridine- d_5) and ¹³C-NMR (Table 1) spectra²⁴⁾ of **5** showed signals assignable to a β -D-allopyranosyl moiety [δ 5.32 (1H, d, $J=7.6$ Hz, 1'-H)] together with a karavilagenin A part [δ 0.73, 0.93, 1.09, 1.14, 1.55 (3H each, all s, 30, 18, 28, 19, 29-H₃), 1.01 (3H, d, J=6.1 Hz, 21-H₃), 1.34 (6H, s, 26, 27-H₃), 3.22, 3.32 (3H each, both s, 25-OCH₃, 7-OCH₃), 3.44 (1H, dd-like, 7-H), 3.65 (1H, br s, 3-H), 5.57 (1H, d, *J*15.8 Hz, 24-H), 5.67 (1H, ddd-like, 23-H), 5.93 (1H, d, $J=4.3$ Hz, 6-H)]. In the HMBC experiments on 4 and 5, long-range correlations were observed between the following protons and carbons: $18-H_3$ and 12, 13, 14, 17-C; 21-H₃ and 17, 20, 22-C; 23-H and 20, 22, 24, 25-C; 24-H and 22, 23, 25, 26, 27-C; 26, 27-H₃ and 24, 25-C; 28, 29-H₃ and 3, 4, 5-C; 30-H₃ and 8, 13, 14, 15-C; 7-OCH₃ and 7-C; 25-OCH₃ and 25-C; 1'-H and 3-C (Fig. 1). The stereostructure of the aglycone moiety in **4** was characterized by NOESY experiment, which showed NOE correlations between the following protons and protons: 8-H and $18-H_3$; $28-H_3$ and $3-H$, $10-H$; $30-H_3$ and 7-H, 10-H, 17-H (Fig. 1).²⁵⁾ Consequently, the structures of kalavilosides I (**4**) and II (**5**) were determined to be 7,25-dimethoxycucurbita-5,23-dien-3 β -ol 3- O - β -D-glucopyranoside and 7,25-methoxycucurbita-5,23-dien-3b-ol 3-*O*- β -D-allopyranoside, respectively.

Karaviloside III (**6**) was obtained as a white powder with positive optical rotation ($[\alpha]_D^{28}$ +81.8°). The IR spectrum of 6 showed absorption bands at 3453, 1082, and 1036 cm^{-1} suggestive of glycosidic functions. In the negative- and positive-ion FAB-MS of **6**, quasimolecular ion peaks were observed at m/z 633 (M-H)⁻, m/z 657 (M+Na)⁺, and m/z 679 $(M+2Na-H)^+$ and the molecular formula $C_{37}H_{62}O_8$ was determined by high-resolution MS measurement. Acid hydrolysis of 6 with 5% aqueous $H_2SO_4-1,4$ -dioxane (1 : 1, v/v) furnished D -allose.^{26,27)} The ¹H- and ¹³C-NMR data due to the aglycone part in **6** were superimporsable on those of karavilagenin B (2). The ¹H- (pyridine- d_5) and ¹³C-NMR (Table 1) spectra²⁴⁾ of 6 showed signals assignable to a β -D-allopyranosyl moiety $[\delta 5.28$ (1H, d, J=7.9 Hz, 1'-H)] together with a karavilagenin B moiety $\lceil \delta \ 0.70, 0.91, 1.08, 1.12 \ (3H each,$ all s, 30, 18, 28, 19-H₃), 1.00 (3H, d, J=4.6 Hz, 21-H₃), 1.54 $(9H, s, 26, 27, 29-H₃), 3.32 (3H, s, 7-OCH₃), 3.44 (1H, brd,$ *Jca.* 5 Hz, 7-H), 3.65 (1H, br s, 3-H), 5.94 (3H, m, 6, 23, 24-H)]. Furthermore, in the HMBC experiment on **6**, longrange correlations were observed between the following protons and carbons: $18-H_3$ and $12, 13, 14, 17-C$; $21-H_3$ and 17 , 20, 22-C; 23-H and 20, 22, 24, 25-C; 24-H and 22, 23, 25, 26, 27-C; 26, 27-H₃ and 24, 25-C; 28, 29-H₃ and 3, 4, 5-C; 30-H₃ and 8, 13, 14, 15-C; 7-OCH₃ and 7-C; 1'-H and 3-C. Consequently, the structures of karaviloside III (**6**) was determined to be 7-methoxycucurbita-5,23-dien-3 β ,25-diol 3-O- β -D-allopyranoside.

Karaviloside IV (**7**) was obtained as a white powder with positive optical rotation ($\left[\alpha\right]_D^{28}$ +29.8°). The IR spectrum of 7 showed absorption bands at 3432, 1078, and 1028 cm^{-1} suggestive of a glycosidic function. In the positive-ion FAB-MS of **7**, quasimolecular ion peaks were observed at *m*/*z* 673 $(M+Na)^+$ and the molecular formula $C_{37}H_{62}O_9$ was determined by high-resolution MS measurement. Acid hydrolysis of 7 with 5% aqueous $H_2SO_4-1,4$ -dioxane $(1:1, v/v)$ furnished D-glucose.^{26,27)} The ¹H- (pyridine- d_5) and ¹³C-NMR (Table 1) spectra of 7^{24} , showed signals due to a β -D-glucopyranosyl moieties $\left[\delta \right]$ 5.20 (1H, d, J=7.9 Hz, 1'-H)] and an aglycone moiety $\lceil \delta \ 0.79, 0.94, 1.13, 1.20, 1.44, 1.66, 1.92 \rceil$ (3H each, all s, 30, 18, 28, 19, 29, 26, 27-H3), 1.26 (3H, d, *J*=6.9 Hz, 21-H₃), 3.38 (3H, s, 7-OCH₃), 3.50 (1H, brd, *Jca.* 5 Hz, 7-H), 3.75 (1H, br s, 3-H), 4.12 (1H, dd-like, 22- H), 4.73 (1H, t-like, 23-H), 5.56 (1H, d, J=9.9 Hz, 24-H), 6.02 (1H, d, $J=5.3$ Hz, 6-H)]. In the HMBC experiment on 7, long-range correlations were observed between the following protons and carbons: $18-H_3$ and 12, 13, 14, 17-C; 21-H₃ and 17, 20, 22-C; 24-H and 22, 23, 25, 26, 27-C; 26, 27-H₃ and 24, 25-C; 28, 29-H₃ and 3, 4, 5-C; 30-H₃ and 8, 13, 14, 15-C; 7 -OCH₃ and 7 -C; 1'-H and 23-C. The stereostructure of the aglycone moiety was characterized by NOESY experiment, in which NOE correlations were observed between the following protons and protons: 8-H and $18-H_3$; 28-H₃ and 3-H, 10-H; 30-H₃ and 10-H, 17-H (Fig. 1).²⁵⁾ Consequently, the structures of karaviloside IV (**7**) was determined to be 7 methoxycucurbita-5,24-dien-3β,22ξ,23ξ-triol 23-O-β-D-glucopyranoside.

Karaviloside V (**8**) was obtained as a white powder with negative optical rotation ($\left[\alpha\right]_D^{28}$ +18.3°). The IR spectrum of 5 showed absorption bands at 3432, 1080, and 1036 cm^{-1} suggestive of glycosidic functions. In the negative- and positive-ion FAB-MS of **8**, quasimolecular ion peaks were observed at m/z 811 (M-H)⁻ and m/z 835 (M+Na)⁺ together with a fragment ion peak m/z 649 (M-C₆H₁₁O₅)⁻ and the molecular formula $C_{43}H_{72}O_{14}$ was determined by high-resolution MS measurement. Acid hydrolysis of **5** with 5% aqueous H₂SO₄-1,4-dioxane (1 : 1, v/v) furnished D-allose.^{26,27)} The ¹H- (pyridine- d_5) and ¹³C-NMR (Table 1) spectra of $\mathbf{8},^{24}$) showed signals due to two β -D-allopyranosyl moieties [δ 5.26 (1H, d, J=7.9 Hz, 1'-H), 5.54 (1H, d, J=7.9 Hz, 1"-H)] and an aglycone moiety $\lceil \delta \ 0.73, 0.90, 1.08, 1.12, 1.53, 1.64, \ldots \rceil$ 1.84 (3H each, all s, 30, 18, 28, 19, 29, 26, 27-H3), 1.28 (3H, d, $J=6.7$ Hz, $21-H_3$), 3.32 (3H, s, $7-OCH_3$), 3.44 (1H, brd, *J*=ca. 5 Hz, 7-H), 3.62 (1H, br s, 3-H), 4.06 (1H, dd, *J*=7.0, 9.8 Hz, 22-H), 4.65 (1H, m, 23-H), 5.26 (1H, d, J=7.9 Hz, 1'-H), 5.54 (1H, d, *J*=10.6 Hz, 24-H), 5.54 (1H, d, *J*=7.9 Hz, $1''$ -H), 5.93 (1H, d, $J=6.9$ Hz, 6-H)]. The ¹H- and ¹³C-NMR signals of the aglycone moiety in **8** were superimporsable on those of **7**, except for those around the 3-position. In the HMBC experiment on **8**, long-range correlations were observed between the following protons and carbons: $18-H_3$ and 12, 13, 14, 17-C; 21-H₃ and 17, 20, 22-C; 24-H and 22, 23, 25, 26, 27-C; 26, 27-H₃ and 24, 25-C; 28, 29-H₃ and 3, 4, 5-C; 30-H₃ and 8, 13, 14, 15-C; 7-OCH₃ and 7-C; 1'-H and 3-C; 1"-H and 23-C. Consequently, the structures of karaviloside V (8) was determined to be $23-O$ - β -D-allopyranosyl-7methoxycucurbita-5,24-dien-3 β ,22 ξ ,23 ξ -triol 3-O- β -D-allopyranoside.

Experimental

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter ($l=5$ cm); IR spectra, Shimadzu FTIR-8100 spectrometer; EI-MS and high-resolution MS, JEOL JMS-GCMATE mass spectrometer; FAB-MS and high-resolution MS, JEOL JMS-SX 102A mass spectrometer; ¹H-NMR spectra, JNM-LA500 (500 MHz) spectrometer; 13C-NMR spectra, JNM-LA500 (125 MHz) spectrometer with tetramethylsilane as an internal standard; and HPLC detector, Shimadzu RID-6A refractive index detector.

The following experimental conditions were used for chromatography: ordinary-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150—350 mesh); reverse-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh); TLC, precoated TLC plates with Silica gel $60F_{254}$ (Merck, 0.25 mm) (ordinary phase) and Silica gel RP-18 F_{254S} (Merck, 0.25 mm) (reverse phase); reverse-phase HPTLC, precoated TLC plates with Silica gel RP-18 WF_{254S} (Merck, 0.25 mm); and detection was achieved by spraying with 1% $Ce(SO₄)₂$ –10% aqueous H₂SO₄ followed by heating.

Plant Material The fruit of *M. charantia* L. were cultivated in Nuwara Eliya, Sri Lanka, and identified by one of the authors (Masayuki Yoshikawa). A voucher of this plant material is on file in our laboratory.

Isolation of Karavilagenin (1—3) and Karavilosides (4—8) and Known Compounds (9—19) from the Dried Fruit of *M. charantia* **L. (Karavila)** The dried fruit of *M. charantia* L. (6.6 kg, cultivated in Nuwara Eliya, Sri Lanka) were cut and extracted three times with MeOH under reflux. Evaporation of the solvent under reduced pressure provided the MeOH extract (325 g, 4.9%). The MeOH extract (160 g) was subjected to normalphase silica gel column chromatography [3 kg, CHCl₃-MeOH-H₂O $(30:3:1, \text{ lower layer} \rightarrow 10:3:1, \text{ lower layer, v/v}) \rightarrow \text{MeOH}$ to give eight fractions [Fr. 1 (8.7 g), 2 (37.9 g), 3 (27.6 g), 4 (3.0 g), 5 (4.9 g), 6 (5.7 g), 7 (32.3 g), 8 (37.0 g)]. Normal-phase silica gel column chromatography [600 g, *n*-hexane–AcOEt (1 : 1→1 : 5, v/v)→MeOH] of fraction 2 (33 g) gave five fractions [Fr. 2-1 (9.9 g), 2-2 (2.7 g), 2-3 (2.3 g), 2-4 (1.9 g), 2-5 (14.6 g)]. Fraction 2-2 (2.7 g) was purified by reversed-phase silica gel column chromatography [80 g, MeOH–H₂O (90 : 10, v/v) \rightarrow MeOH] and HPLC [MeOH–H₂O (95 : 5, v/v)] to give 5 β ,19-epoxycucurbita-6,23-diene-3 β ,25diol (**10**, 102 mg, 0.0036%). Fraction 2-3 (2.3 g) was purified by reversedphase silica gel column chromatography $[60 \text{ g}, \text{ MeOH}-\text{H}_2\text{O} \ (80:20,$ $v/v \rightarrow MeOH$] and HPLC [MeOH–H₂O (90 : 10, v/v)] to karavilagenin A (1, 85 mg, 0.0030%), karavilagenin B (**2**, 214 mg, 0.0076%), karavilagenin C (**3**, 67 mg, 0.0024%). Fraction 2-4 (1.9 g) was purified by reversed-phase silica gel column chromatography [60 g, MeOH–H2O (90 : 10, v/v)→MeOH] and HPLC [MeOH–H₂O (90 : 10, v/v)] to give 19(R)-methoxy-5 β ,19-epoxycucurbita-6,23-dien-3*β*,25-diol (9, 53 mg, 0.0019%). Fraction 3 (27.6 g) was separated by normal-phase silica gel column chromatography [500 g, CHCl₃–MeOH (50 : 1→50 : 3, v/v)→MeOH] to give five fractions [Fr. 3-1] (7.6 g), 3-2 (4.4 g), 3-3 (4.0 g), 3-4 (7.2 g), 3-5 (3.6 g)]. Fraction 3-2 (4.4 g) was purified by reversed-phase silica gel column chromatography [130 g, MeOH–H₂O (90 : 10, v/v)–>MeOH] and HPLC [MeOH–H₂O (90 : 10, v/v)] to give karavilaside II (**5**, 448 mg, 0.0138%), goyaglycoside-d (**13**, 84 mg, 0.0026%), and momordicoside G (**16**, 140 mg, 0.0043%). Fraction 3-3 (4.0 g) was separated by reversed-phase silica gel column chromatography [120 g, MeOH–H₂O (80 : 20→90 : 10, v/v)→MeOH] to give four fractions [Fr. 3-3-1 (1.5 g), 3-3-2 (569 mg), 3-3-3 (1.2 g), 3-3-4 (509 mg)]. Fraction 3- 3-2 (569 mg) was purified by HPLC [1) MeOH-H₂O (90:10, v/v); 2) CH₃CN–H₂O (80:20, v/v)] to give karaviloside III (6, 105 mg, 0.0033%), goyaglycoside-b $(11, 8 \text{ mg}, 0.0003\%)$, and momordicoside F₂ $(15, 17 \text{ mg},$ 0.0005%). Fraction 3-3-3 (1.2 g) was purified by HPLC [MeOH-H₂O (90 : 10, v/v)] to give karaviloside I (**4**, 219 mg, 0.0067%), goyaglycoside-c (**12**, 24 mg, 0.0007%), and momordicoside F_1 (**14**, 268 mg, 0.0083%). Fraction 3-4 (7.2 g) was purified by reversed-phase silica gel column chromatography [200 g, MeOH–H2O (70 : 30→80 : 20→90 : 10→95 : 5, v/v)→MeOH] and HPLC [1) MeOH–H₂O (90 : 10, v/v); 2) CH₃CN–H₂O (80 : 20, v/v); 3) CH₃CN–H₂O (45 : 55, v/v)] to give momordicoside I (17, 39 mg, 0.0012%). Fraction 5 (4.9 g) was purified by normal-phase $[150 \text{ g}, CHCl₃–MeOH–H₂O$ $(30:3:1,$ lower layer, v/v] and reversed-phase silica gel column chromatography $[100 \text{ g}, \text{ MeOH-H}_2\text{O} (80:20 \rightarrow 90:10, \text{ v/v}) \rightarrow \text{MeOH}]$ and HPLC [CH₃CN–H₂O (80:20, v/v)] to give karavilaside IV (7, 19 mg, 0.0006%). Fraction 7 (22.3 g) was separated by reversed-phase silica gel column chromatography [600 g, MeOH–H₂O (70 : 30→90 : 10, v/v)→MeOH] to give four fractions [Fr. 7-1 (11.3 g), 7-2 (3.7 g), 7-3 (640 mg), 7-4 (4.6 g)]. Fraction 7-2 (3.7 g) was purified by normal-phase silica gel column chromatography $[100 \text{ g}, \text{CHCl}_3$ -MeOH–H₂O (15 : 3 : 1, lower layer, v/v) \rightarrow MeOH] and HPLC [1) MeOH–H₂O (90:10, v/v); 2) MeOH–H₂O (70:30, v/v); 3) MeOH–H₂O (75:25, v/v)] to give karaviloside V (8, 52 mg, 0.0023%) and momordicoside K (**18**, 33 mg, 0.0015%). Fraction 7-3 (640 mg) was purified by HPLC [MeOH–H₂O (85 : 15, v/v)] to give momordicoside L (19, 24 mg, 0.0011%). The known compounds (**9**—**19**) were identified by comparison of their physical data ($[\alpha]_D$, IR, ¹H-NMR, ¹³C-NMR) with reported values.

Karavilagenin A (1): A white powder, $\lbrack \alpha \rbrack_{D}^{26}$ +71.5° (*c*=0.1, MeOH). IR (KBr): 3475 , 1665 cm^{-1} . High-resolution positive-ion EI-MS: Calcd for $C_{32}H_{54}O_3$ (M⁺): 486.4083. Found: 486.4073. ¹H-NMR (500 MHz, pyridine*d*₅) δ: 0.70, 0.93, 0.99, 1.04, 1.21 (3H each, all s, 30, 18, 19, 28, 29-H₃), 0.90 (3H, d-like, 21-H₃), 1.25 (6H, s, 26, 27-H₃), 3.14 (3H, s, 25-OCH₃), 3.34 (3H, s, 7-OCH3), 3.43 (1H, m, 7-H), 3.51 (1H, m, 3-H), 5.38 (1H, d, *J*=15.8 Hz, 24-H), 5.49 (1H, m, 23-H), 5.83 (1H, d, *J*=5.3 Hz, 6-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_c : given in Table 1. Positive-ion EI-MS: m/z 486 $(M^+).$

Karavilagenin B (2): A white powder, $[\alpha]_D^{26} + 117.1^{\circ}$ (*c*=0.1, MeOH). IR (KBr): 3432 , 1655 cm^{-1} . High-resolution positive-ion EI-MS: Calcd for $C_{31}H_{52}O_3$ (M⁺): 472.3916. Found: 472.3928. ¹H-NMR (500 MHz, pyridine*d*₅) δ: 0.70, 0.92, 0.99, 1.03, 1.21 (3H each, all s, 30, 18, 19, 28, 29-H₃), 0.89 (3H, d, J=4.6 Hz, 21-H₃), 1.30 (6H, s, 26, 27-H₃)], 3.34 (3H, s, 7-OCH3), 3.43 (1H, m, 7-H), 3.51 (1H, m, 3-H), 5.59 (2H, m, 23, 24-H), 5.83 (1H, d, $J=4.6$ Hz, 6-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_c : given in Table 1. Positive-ion EI-MS: m/z 472 (M⁺).

Karavilagenin C (3): A white powder, $[\alpha]_D^{26} + 98.1^{\circ}$ (*c*=0.1, MeOH). IR (KBr): 3475, 1655 cm⁻¹. High-resolution positive-ion EI-MS: Calcd for $C_{31}H_{52}O_3$ (M⁺): 472.3916. Found: 472.3909. ¹H-NMR (500 MHz, pyridine*d*5) d: 0.70, 0.95, 0.98, 1.04, 1.21, 1.68, 1.70 (3H each, all s, 30, 18, 19, 28, 29, 26, 27-H₃), 0.97 (3H, d-like, 21-H₃), 3.34 (3H, s, 7-OCH₃), 3.42 (1H, br d, *Jca.* 5 Hz, 7-H), 3.51 (1H, br s, 3-H), 4.46 (1H, ddd-like, 23-H), 5.20 (1H, d, J = 8.3 Hz, 24-H), 5.83 (1H, d, J = 5.0 Hz, 6-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_c : given in Table 1. Positive-ion EI-MS: m/z 472 (M⁺).

Karavilaside I (4): A white powder, $[\alpha]_D^{29} +41.1^{\circ}$ (*c*=0.1, MeOH). IR $(KBr): 3432, 1078, 1047 cm^{-1}$. High-resolution positive-ion FAB-MS: Calcd for $C_{38}H_{64}O_8$ Na $(M+Na)^+$: 671.4499. Found: 671.4489. ¹H-NMR (500 MHz, pyridine-d₅) δ: 0.73, 0.94, 1.63 (3H each, all s, 30, 18, 29-H₃), 1.00 (3H, d, J=6.1 Hz, 21-H₃), 1.12, 1.36 (6H each, both s, 19, 28, 26, 27-H3), 3.23, 3.32 (3H each, both s, 25, 7-OCH3), 3.45 (1H, dd-like, 7-H), 3.71 (1H, br s, 3-H), 4.90 (1H, d, J=7.6 Hz, 1'-H), 5.58 (1H, d, J=15.6 Hz, 24-H), 5.67 (1H, ddd-like, 23-H), 5.95 (1H, d, J=4.9 Hz, 6-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_c : given in Table 1. Negative-ion FAB-MS: m/z 647 $(M-H)^{-}$. Positive-ion FAB-MS: m/z 671 $(M+Na)^{+}$, 693 $(M+2Na-H)^{+}$.

Karavilaside II (5): A white powder, $[\alpha]_D^{27} + 39.3^\circ$ (*c*=0.1, MeOH). IR (KBr): 3432, 1080, 1036 cm⁻¹. High-resolution positive-ion FAB-MS: Calcd for $C_{38}H_{64}O_8$ Na $(M+Na)^+$: 671.4499. Found: 671.4505. ¹H-NMR $(500 \text{ MHz}, \text{pyridine-}d_5) \delta: 0.73, 0.93, 1.09 1.14, 1.55 (3H each, all s, 30, 18,$ 28, 19, 29-H₃), 1.01 (3H, d, J=6.1 Hz, 21-H₃), 1.34 (6H, s, 26, 27-H₃), 3.22, 3.32 (3H each, both s, 25, 7-OCH₃), 3.44 (1H, dd-like, 7-H), 3.65 (1H, br s, 3-H), 5.32 (1H, d, J=7.6 Hz, 1'-H), 5.57 (1H, d, J=15.8 Hz, 24-H), 5.67 (1H, ddd-like, 23-H), 5.93 (1H, d, J=4.3 Hz, 6-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_c : given in Table 1. Negative-ion FAB-MS: m/z 647 (M-H)⁻. Positive-ion FAB-MS: m/z 671 (M+Na)⁺, 693 (M+2Na-H)⁺.

Karavilaside III (6): A white powder, $[\alpha]_D^{28} + 81.8^\circ$ (*c*=0.1, MeOH). IR $(KBr): 3453, 1082, 1036 cm^{-1}$. High-resolution positive-ion FAB-MS: Calcd for $C_{37}H_{62}O_8$ Na $(M+Na)^+$: 657.4342. Found: 657.4353. ¹H-NMR (500 MHz, pyridine-d₅) δ: 0.70, 0.91, 1.08, 1.12 (3H each, all s, 30, 18, 28, 19-H₃), 1.00 (3H, d, J=4.6 Hz, 21-H₃), 1.54 (9H, s, 26, 27, 29-H₃), 3.32 (3H, s, 7-OCH3), 3.44 (1H, br d, *Jca.* 5 Hz, 7-H), 3.65 (1H, br s, 3-H), 5.28 (1H, d, *J*7.9 Hz, 1-H), 5.94 (3H, m, 6, 23, 24-H). 13C-NMR (125 MHz, pyridine d_5) δ_c : given in Table 1. Negative-ion FAB-MS: m/z 633 (M-H)⁻. Positiveion FAB-MS: m/z 657 (M+Na)⁺, 679 (M+2Na-H)⁺.

Karavilaside IV (7): A white powder, $[\alpha]_D^{28} + 29.8^\circ$ (*c*=0.1, MeOH). IR $(KBr): 3432, 1078, 1028 \text{ cm}^{-1}$. High-resolution positive-ion FAB-MS: Calcd for $C_{37}H_{62}O_9Na$ $(M+Na)^+$: 673.4292. Found: 673.4303. ¹H-NMR (500 MHz, pyridine-*d*5) d: 0.79, 0.94, 1.13, 1.20, 1.44, 1.66, 1.92 (3H each, all s, 30, 18, 28, 19, 29, 26, 27-H₃), 1.26 (3H, d, *J*=6.9 Hz, 21-H₃), 3.38 (3H, s, 7-OCH3), 3.50 (1H, br d, *Jca.* 5 Hz, 7-H), 3.75 (1H, br s, 3-H), 4.12 (1H, dd-like, 22-H), 4.73 (1H, t-like, 23-H), 5.20 (1H, d, J=7.9 Hz, 1'-H), 5.56 (1H, d, J=9.9 Hz, 24-H), 6.02 (1H, d, J=5.3 Hz, 6-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_C : given in Table 1. Positive-ion FAB-MS: m/z 673 (M+Na)⁺.

Karavilaside V (8): A white powder, $[\alpha]_D^{28}$ +18.3° (*c*=0.1, MeOH). IR $(KBr): 3432, 1080, 1036 cm^{-1}$. High-resolution positive-ion FAB-MS: Calcd

for $C_{43}H_{72}O_{14}Na$ $(M+Na)^+$: 835.4820. Found: 835.4818. ¹H-NMR (500 MHz, pyridine-d₅) δ: 0.73, 0.90, 1.08, 1.12, 1.53, 1.64, 1.84 (3H each, all s, 30, 18, 28, 19, 29, 26, 27-H₃), 1.28 (3H, d, *J*=6.7 Hz, 21-H₃), 3.32 (3H, s, 7-OCH3), 3.44 (1H, br d, *Jca.* 5 Hz, 7-H), 3.62 (1H, br s, 3-H), 4.06 (1H, dd, $J=7.0$, 9.8 Hz, 22-H), 4.65 (1H, m, 23-H), 5.26 (1H, d, $J=7.9$ Hz, 1'-H), 5.54 (1H, d, J=10.6 Hz, 24-H), 5.54 (1H, d, J=7.9 Hz, 1"-H), 5.93 (1H, d, $J=6.9$ Hz, 6-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_c : given in Table 1. Negative-ion FAB-MS: m/z 811 (M-H)⁻, 649 (M-C₆H₁₁O₅)⁻. Positive-ion FAB-MS: m/z 835 (M+Na)⁺.

Acid Hydrolysis of Kalavilosides (4—8) A solution of **4**—**8** (3 mg each) in 5% aqueous $H_2SO_4-1,4$ -dioxane was heated under reflux for 1 h. After cooling, the reaction mixture was neutralized with Amberlite IRA-400 (OH⁻ form) and residue was removed by filtration. After removal of the solvent from the filtrate *in vacuo*, the residue was transferred to a Sep-Pak C18 cartridge with H₂O and MeOH. The H₂O eluate was concentrated and the residue was treated with L-cysteine methyl ester hydrochloride (4 mg) in pyridine (0.5 ml) at 60 °C for 1 h. After reaction, the solution was treated with *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (0.2 ml) at 60 °C for 1 h. The supernatant was then subjected to GLC analysis to identify the derivatives of D-glucose (i) from **4** and **7**; D-allose (ii) from **5**, **6**, and **8**; GLC conditions: column, Supeluco STB^{TM} -1, 30 m×0.25 mm (i.d.) capillary column; column temperature, 230 °C; carrier gas, N₂; t_R , (i) 17.7 min (ii) 23.2 min (iii) 24.1 min (L-allose).

Acknowledgements This research was supported by the 21st COE Program, Academic Frontier Project, and a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and Notes

- 1) Karunanayake E. H., Welihinda J., Sirimanne S. R., Sinnadarai G., *J. Ethnopharmacol.*, **11**, 223—231 (1984).
- 2) Jayasooriya A. P., Sakono M., Yukizaki C., Kawano M., Yamamoto K., Fukuda N., *J. Ethnopharmacol.*, **72**, 331—336 (2000).
- 3) Senanayake G. V. K., Maruyama M., Shibuya K., Sakono M., Fukuda N., Morishita T., Yukizaki C., Kawano M., Ohta H., *J. Ethnopharmacol.*, **91**, 257—262 (2004).
- 4) Senanayake G. V. K., Maruyama M., Sakono M., Fukuda N., Morishita T., Yukizaki C., Kawano M., Ohta H., *J. Nutr. Sci. Vitaminol.*, **50**, 253—257 (2004).
- 5) Okabe H., Miyahara Y., Yamauchi T., Miyahara K., Kawasaki T., *Chem. Pharm. Bull.*, **28**, 2753—2762 (1980).
- 6) Miyahara Y., Okabe H., Yamauchi T., *Chem. Pharm. Bull.*, **29**, 1561— 1566 (1981).
- 7) Okabe H., Miyahara Y., Yamauchi T., *Chem. Pharm. Bull.*, **30**, 3977— 3986 (1982).
- 8) Okabe H., Miyahara Y., Yamauchi T., *Chem. Pharm. Bull.*, **30**, 4334— 4340 (1982).
- 9) Yasuda M., Iwamoto M., Okabe H., Yamauchi T., *Chem. Pharm. Bull.*, **32**, 2044—2047 (1984).
- 10) Fatope M. O., Takeda Y., Yamashita H., Okabe H., Yamauchi T., *J. Nat. Prod.*, **53**, 1491—1497 (1990).
- 11) Murakami T., Kohno K., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 73—77 (2001).
- 12) Murakami T., Hirano K., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 776—779 (2001).
- 13) Murakami T., Kishi A., Matsuda H., Hattori M., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 845—848 (2001).
- 14) Murakami T., Kohno K., Ninomiya K., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 1003—1008 (2001).
- 15) Matsuda H., Morikawa T., Ueda H., Yoshikawa M., *Heterocycles*, **55**, 1499—1504 (2001).
- 16) Matsuda H., Morikawa T., Ueda H., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 1368—1371 (2001).
- 17) Matsuda H., Morikawa T., Toguchida I., Ninomiya K., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 1558—1566 (2001).
- 18) Morikawa T., Matsuda H., Ninomiya K., Yoshikawa M., *Biol. Pharm. Bull.*, **25**, 627—631 (2002).
- 19) Matsuda H., Morikawa T., Toguchida I., Yoshikawa M., *Chem. Pharm. Bull.*, **50**, 788—795 (2002).
- 20) Morikawa T., Tao J., Ueda K., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **51**, 62—67 (2003).
- 21) Morikawa T., Xu F., Ninomiya K., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **52**, 494—497 (2004).
- 22) Murakami T., Emoto A., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 54—63 (2001).
- 23) Mulholland D. A., Sewram V., Osborne R., Pegel K. H., Connolly J. D., *Phytochemistry*, **45**, 391—395 (1997).
- 24) The ¹ H- and 13C-NMR spectra of for **1**—**8** were assigned with the aid of homo- and hetero-correlation spectroscopy $(^1H-^1H, ^1H-^{13}C$ COSY), distortionless enhancement by polarization transfer (DEPT), and heteonuclear multiple bond correlation (HMBC) experiments.
- 25) As shown Fig. 1, CS Chem 3D (ver. 5.0, Cambridge Soft Corporation, Cambridge, MA, U.S.A.) was used to build and optimize the conformation of **1**, **3**, **4**, and **7** using MOPAC (AM1) program.
- 26) Hara S., Okabe H., Mihashi K., *Chem. Pharm. Bull.*, **34**, 1843—1845 (1986).
- 27) Zhang D., Miyase T., Kuroyanagi M., Umehara K., Ueno A., *Chem. Pharm. Bull.*, **43**, 966—970 (1995).