
Diabetes is the root cause of several chronic and progres-
sive diseases, which has direct relationship with complica-
tions such as neuropathy, nephropathy, retinopathy, athero-
sclerosis and coronary artery disease.1) More than 90% of 
diabetic patients suffer from type 2 diabetes (NIDDM),
which is characterized by insulin resistance and hyper-
glycemia.2) The search for effective therapies is earnest along
several mechanistic strategies.3) The search found that
Glucagon a 29-aminoacid peptide produced in the a-cells of
the pancreas is a major counter regulatory hormone to 
insulin, stimulating glycogenolysis and gluconeogenesis.4)

Binding of glucagons to its receptor, which signals via-G-
proteins stimulates adenylcyclase and increases free Ca2�

resulting in increased glucose output. The bihormonal 
hypothesis proposed that glucagon contribute to elevated lev-
els of glucose in diabetics.5)

A strong body of evidence has prompted the pursuit of
glucagons receptor antagonist for the treatment of type II 
diabetes lowers fasting plasma glucose levels and improves
glucose tolerance in diabetics. Several peptidyl antagonists
of glucagon receptor are known. However the clinical utility
of peptidyl antagonists is seriously limited by facile meta-
bolic cleavage. Efforts directed to circumvent this problem
led to the development of non-peptide antagonist such as 
diaminostyryl-dichloroquinoxaline, substituted benzimida-
zoles, pyridylphenyls and biphenyl derivatives. In further de-
velopment of this class of potent antidiabetics, Chang et al.6)

synthesized and studied structure activity relationships of 
triaryl imidazole derivatives for human glucagon receptor 
antagonistic activity and p38 mitogen activated protein 
kinase (MAP Kinase) inhibitory activity. Although, Chang 
et al. pointed out certain structural features important for 
inhibition of the glucagon receptor on the basis of structure
activity relationship (SAR) studies, information derived from
SAR is qualitative and can be fortuitous. Therefore, a quanti-
tative structure activity relationship (QSAR) study was pro-
posed for the abovementioned series of compounds to ration-

alize structural requirements for increasing binding affinity
of triaryl imidazole derivatives to glucagons receptor. A
QSAR study sought to explain and predict activities of series
of congeners by utilizing empirical descriptors. Further,
QSAR enables the investigators to establish in silico quanti-
tative models to predict the activity of novel molecules prior
to their synthesis and simultaneously provide deeper insight
into the mechanism of drug–receptor interaction.

A dataset of 30 compounds out of 41 compounds reported
by Chang et al.6) was adopted for the present study after ex-
cluding 11 molecules without a well defined biological activ-
ity. The experimentally obtained Glucagon receptor antago-
nistic activity values (IC50) in micromolar units of 30 con-
generic triaryl imidazoles were transformed into molar units
and subsequently converted to negative logarithmic values
prior to the statistical analysis. Table 1 lists the compounds
used for the study along with its activity parameter values.

The computing tools used for the present study were mo-
lecular operating environment7) (MOE 2002.03), statistical
software SYSTAT8) (Version 10.2) and inhouse validation
program VALSTAT.9) All the computations were carried out
on Compaq PIV workstation. Structures of triaryl imidazole
derivatives were sketched by using builder module of MOE
software and sketched structures were subsequently energy
minimized up to root mean square gradient of 0.01 kcal/
mol Å using MMFF9410) force field. Conformational search
of each energy-minimized structure was performed employ-
ing stochastic search routine. All the conformers generated
for each structure were carefully scrutinized in conforma-
tional geometry panel and only the lowest energy conformer
of each structure was stored in MOE database for descriptor
calculation.

Molecular descriptors were calculated for the lowest 
energy conformers of the compounds in the series using the
QuaSAR module of the molecular modeling software
MOE.11)

Over 180 descriptors programmed into MOE were calcu-
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lated for each molecule in the series. The calculated descrip-
tors were initially screened for invariant nature, insignifi-
cance using QuaSAR Contingency module of MOE.
QuaSAR-Contingency is a statistical application designed to
assist in the selection of descriptors for QSAR. Further, 
interrelation study was also performed to limit the number of
descriptors considered for the study. A final set of 72 molec-
ular descriptors identified by the aforementioned screening
procedures was used in the formulation of QSARs (Table 2).

QSAR models were constructed using the reduced de-
scriptor pool as independent variable and the glucagon antag-
onistic activity parameters as dependent variable by forward
stepwise regression analysis employing statistical program
SYSTAT 10.2 version.8) The generated regressions were then
refined by a standard regression method with due considera-
tion to the significance of the individual descriptors, the 
intercorrelation between them and the number of data points.
The relationships derived were tested according to the 
requirements of a meaningful correlation analysis and
QSARs were considered only if the multiple correlation 
coefficient R is above 0.80 or higher variance (R2>0.70),
minimum intercorrelation between the descriptors found in
the same model (<0.5), Fischer ratio values and P values of

95% level of significance. A final set of QSARs was identi-
fied by applying cross-validation procedure following a
“leave-one-out” technique with its predicting ability being
evaluated and confirmed by cross validation coefficient Q2

based on predictive error sum of squares (SPRESS).
In the first step of regression analysis, correlation between

each individual parameter and biological activity was calcu-
lated. The preliminary statistical treatment of the data re-
vealed that multiparametric QSAR equations can be pre-
vailed upon to account for the variance in the receptor antag-
onistic activity of triaryl imidazoles. Ample care was taken
to avoid use of collinear variables in the same equation as it
leads to spurious correlations. To confirm the absence of
multicollinearity in the selected correlations, variance infla-
tion factor (VIF) values were calculated for each parameter
in the regression. VIF value was calculated from 1/1�R2,
where R2 is the squared multiple correlation coefficient of
one parameter’s effect regressed on the remaining parameter.
VIF values greater than five indicate presence of unaccept-
ably large multicollinearity between parameters in the corre-
lation. The best models generated are summarized below
alongwith the statistical parameters.

pIC50�[2.046 (�0.899)]�log P(o/w)[0.725 (�0.176)]

�glob[5.687 (�2.994)]

N�29, R�0.92, R2�0.85, SEE�0.38, F�76.9, P<0.001, Q2�0.82,

SPRESS�0.42, SDEP�0.39 (1)

pIC50�[4.466 (�1.214)]�KierA2[0.415 (�0.136)]�PEOE_VSA_

FNEG[�0.048 (�0.024)] [9.709 (�6.373)]E_OOP

N�29, R�0.92, R2�0.85, SEE�0.39, F�46.4, P<0.001, Q2�0.77,

SPRESS�0.49, SDEP�0.46 (2)

pIC50�[5.404 (�0.836)]�std_dim3[1.813 (�0.674)]

�a_nF[�0.746 (�0.365)]�DASA[�0.005 (�0.004)]

N�30, R�0.91, R2�0.83, SEE�0.43, F�41.5, P<0.001, Q2�0.76,

SPRESS�0.50, SDEP�0.174 (3)

In the above QSAR models N is the number of data points,
R is multiple correlation coefficient, R2 is squared correla-
tion coefficient, SEE is standard error of estimate, F repre-
sents Fischer ratio between the variances of calculated and
observed activities, figures given in the parentheses with �
sign in the model 95% confidence limits, P-value is the sig-
nificance level of the regression, q2 is cross validated squared
correlation coefficient, SPRESS and SDEP correspond to stan-
dard deviation based on predicted residual sum of squares
and standard deviation of error of prediction respectively.
The Z-score method was adopted for the detection of out-
liers. Z-Score can be defined as absolute difference between
the value of the model and the activity field, divided by the
square root of the mean square error of the data set. Any
compound which shows a value of Z-score higher than 2.5,
during generation of a particular QSAR model was defined
as an outlier.

As it can be seen, all the QSARs manifest good statistics
and accounts for about 85% of the total variance in the
glucagon antagonistic activity of triaryl imidazoles. The Fis-
cher ratio values obtained for the QSARs exceed the tabu-
lated value by a large margin as desired for a meaningful cor-
relation. Cross-correlation analysis (Table 4) of the descrip-
tors in the QSAR equations showed that all pair wise correla-
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Table 1. Structure of the Compounds Selected for QSAR Study

S. No R1 R2 R3
hGLUR IC50 p38 IC50

(–Mg, mM) (mM)

1 (4-Br)Ph (4-F)Ph 4-Pyridyl 0.27 0.16
2 (3-Br)Ph (4-F)Ph 4-Pyridyl 1.4 0.15
3 (4-Cl)Ph (4-F)Ph 4-Pyridyl 0.4 0.08
4 (4-F)Ph (4-F)Ph 4-Pyridyl 2 0.1
5 (4-I)Ph (4-F)Ph 4-Pyridyl 0.51 0.1
6 (4-Me)Ph (4-F)Ph 4-Pyridyl 1.3 0.09
7 (4-iPr)Ph (4-F)Ph 4-Pyridyl 0.7 0.28
8 (4-Ph)Ph (4-F)Ph 4-Pyridyl 10 0.3
9 (4-NH2)Ph (4-F)Ph 4-Pyridyl 2 0.07

10 (4-OMe)Ph (4-F)Ph 4-Pyridyl 13 0.1
11 (4-CN)Ph (4-F)Ph 4-Pyridyl 8 0.21
12 (4-COOMe)Ph (4-F)Ph 4-Pyridyl 8.7 0.3
13 (5-Br)-2-thienyl (4-F)Ph 4-Pyridyl 2.2 0.11
14 (4-Br)-2-thienyl (4-F)Ph 4-Pyridyl 2.8 0.1
15 a-Napthyl (4-F)Ph 4-Pyridyl 1.5 0.34
16 (4-SMe)Ph (4-F)Ph 4-Pyridyl 0.49 0.12
17 (4-Br)Ph Ph 4-Pyridyl 0.782 0.04

18 (4-Cl)Ph (4-F)Ph
3-Me(4-

1.1 0.02
pyridyl)

19 (4-Cl)Ph (4-Cl)Ph 4-Pyridyl 0.19 0.023
20 (4-Cl)Ph (4-I)Ph 4-Pyridyl 0.13 0.14
21 (4-Cl)Ph (4-Ph)Ph 4-Pyridyl 0.14 3.3
22 (4-Cl)Ph (4-t-Bu)Ph 4-Pyridyl 0.13 NA
23 (4-Cl)Ph (4-n-Bu)Ph 4-Pyridyl 0.074 NA
24 (4-Cl)Ph (3-Ph)Ph 4-Pyridyl 0.061 0.59
25 (4-Cl)Ph (2-OPh)Ph 4-Pyridyl 0.0065 0.15
26 (4-Cl)Ph (3-OPh)Ph 4-Pyridyl 0.013 0.22
27 (4-Cl)Ph (4-OPh)Ph 4-Pyridyl 0.027 0.25
28 (4-Cl)Ph (2-O-n-Bu)Ph 4-Pyridyl 0.0085 NA

29 (4-Cl)Ph
(2,4-(O-n-

4-Pyridyl 0.013 2.4
Pr)2)Ph

30 (4-Cl)Ph
(2,4-(O-n-

4-Pyridyl 0.0065 NA
Bu)2)Ph



tions are �0.5 indicating low collinearity and non-depend-
ency of the descriptors on each other. Equation 3 refers to the
entire data set of 30 compounds whereas Eqs. 1 and 2 de-
scribe the same set without the compound 8. Compound 8
behaved as an outlier in Eqs. 1 and 2 with Z-Score value of
2.6 and 2.8 respectively and therefore excluded during the
formulation of corresponding QSARs.

Equation 1 was found to be the most important two-vari-
able correlation for modeling the glucagons receptor antago-
nistic activity of triaryl imidazoles. The molecular descrip-
tors incorporated into the model are logarithm of the oc-
tanol/water partition coefficient (logP(o/w)) and Globularity
(glob). The descriptor logP(o/w) is a measure of overall hy-
drophobicity of the molecule and therefore the positive coef-
ficient associated with this term implies that increase in the
lipophilicity of the molecule will cause a corresponding in-
crease in the glucagon receptor antagonistic activity of triaryl
imidazoles. The second term glob10) in the correlation is a
3D molecular descriptor that characterizes the shape of a
molecule. The large positive coefficient of this descriptor in
the equation highlights the significance of molecular shape in
drug–receptor interaction.

Equations 2 and 3 are the best triparametric correlations
generated for modeling glucagon antagonistic activity of tri-
aryl imidazoles. Although these QSARs exhibit marginally
inferior statistics than Eq. 1, they merit attention since they
provide some interesting information regarding glucagon an-
tagonistic activity of triaryl imidazoles.

Equation 2 comprises of three descriptors, topological de-
scriptor Kier’s alpha modified shape index of second order,
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Table 2. Descriptor Used for Modeling Glucagons Receptor Antagonistic Activity of Triaryl Imidazole

Compound 
�logIC50 a_nF KierA2 logP(o/w) E_oop DASA std_dim3 glob

PEOE_VSA_
number FNEG

1 6.568636 1 6.035568 5.195 0.011552 13.26309 0.814417 0.054222 0.582677
2 5.853872 1 6.035568 5.232 0.01172 11.21578 0.820955 0.055952 0.582677
3 6.39794 1 5.760028 4.989 0.011612 37.33833 0.812918 0.054323 0.559775
4 5.69897 2 5.339163 4.55 0.011272 77.59695 0.813942 0.055101 0.525491
5 6.29243 1 6.280489 5.587 0.012453 0.282032 0.815381 0.054019 0.585545
6 5.886057 1 5.386189 4.695 0.027473 119.6537 0.816299 0.043368 0.532863
7 6.154902 1 6.168563 5.54 0.012278 102.9825 0.971066 0.046828 0.531907
8 5 1 6.560019 6.357 0.013911 126.0271 0.965787 0.038894 0.577478
9 5.69897 1 5.386189 3.725 0.010425 154.9307 0.803094 0.044838 0.492166

10 4.886057 1 5.920859 4.353 0.009805 130.4915 0.808057 0.038956 0.452291
11 5.09691 1 5.526891 4.057 0.014274 87.47182 0.806225 0.047926 0.511982
12 5.060481 1 6.460624 4.338 0.014522 115.1589 0.772062 0.029483 0.462583
13 5.657577 1 6.008662 4.937 0.013828 25.18064 0.832248 0.064083 0.548941
14 5.552842 1 6.008662 4.761 0.012516 31.09436 0.833341 0.064746 0.541815
15 5.823909 1 5.730389 5.617 0.014633 104.7471 1.201693 0.104857 0.561196
16 6.309804 1 6.350695 4.989 0.016565 89.28497 0.897208 0.047717 0.553318
17 6.106793 0 5.991556 5.042 0.012113 39.82599 0.804789 0.053187 0.59176
18 5.958607 1 6.150714 5.285 0.011271 28.06132 0.987042 0.074336 0.587287
19 6.721246 0 6.353393 5.428 0.011807 3.276122 0.813298 0.054064 0.591296
20 6.886057 0 6.908483 6.026 0.012602 35.83029 0.808814 0.053168 0.61461
21 6.853872 0 7.1285 6.796 0.013319 82.26358 1.008218 0.05165 0.603991
22 6.886057 0 6.694915 6.335 0.012772 53.63269 0.953897 0.052265 0.570173
23 7.130768 0 7.685489 6.493 0.012624 61.50308 0.99248 0.052586 0.557224
24 7.21467 0 7.1285 6.833 0.011604 56.70727 1.144189 0.074881 0.603991
25 8.187087 0 7.685819 6.444 0.129999 82.55631 1.675607 0.205301 0.576183
26 7.886057 0 7.685819 6.483 0.055925 69.71398 1.337133 0.115404 0.576183
27 7.568636 0 7.685819 6.446 0.073715 84.38068 1.108043 0.061471 0.576183
28 8.070581 0 8.29409 6.187 0.017877 48.47052 1.78578 0.290207 0.514574
29 7.886057 0 9.773677 6.693 0.01451 53.87344 1.643086 0.157266 0.477387
30 8.187087 0 11.07249 7.577 0.019523 48.26671 1.592539 0.128549 0.479378

Table 3. Descriptor Used for Selectivity Study for the Glucagon Receptor
over p38 MAP Kinase

Compound number Selectivity SMR VSA_HYD

1 �0.22724 10.17197 272.1161
2 �0.97004 10.17197 272.1161
3 �0.69897 9.86457 260.3408
4 �1.30103 9.39007 247.1685
5 �0.70757 10.68127 276.2692
6 �1.1597 9.80327 257.8561
7 �0.39794 10.73847 289.473
8 �1.52288 11.87317 309.6986
9 �1.45593 9.77081 226.2391

10 �2.11394 9.98477 261.8975
11 �1.58087 9.80107 248.7471
12 �1.4624 10.46352 264.106
13 �1.30103 9.95967 264.2119
14 �1.44716 9.95967 264.2119
15 �0.64461 11.08017 278.0816
16 �0.61101 10.50777 281.5688
17 �1.29115 10.11147 266.9951
18 �1.74036 10.33827 269.4497
19 �0.91703 10.33907 273.513
20 0.032185 11.15577 289.4414
21 1.372386 12.34767 322.8708
22 0.985522 1 322.8708
23 1.363178 1 318.4537
24 1.228479 0.875 318.4537
25 0.966576 1 318.4537
26 2.266268 0.875 358.1536



partial charge descriptor PEOE_VSA_FNEG, and potential
energy descriptor E_OOP. The contribution of each individ-
ual descriptors to the QSAR as indicated by their correspon-
ding regression coefficients can be given as E_OOP�
KierA2�PEOE_VSA_FNEG. The topological descriptor
KierA212) encodes information related to the degree of star
graph-likeness and linear graph-likeness and takes a large
value for a more linear molecule. Thus, the positive coeffi-
cient of the descriptor suggests that nonbranched molecules
will have enhanced glucagon receptor affinity. The partial
charge descriptor PEOE_VSA_FNEG represents the group
contribution of vander Waals surface area of atoms with frac-
tional negative charge in the molecule11) and partial charge
associated with each atom is calculated partial equalization
of orbital electronegativities (PEOE) method.13) The negative
sign of the coefficient of this descriptor indicates increase in
the fractional negative vander Waals surface area of the mol-
ecule is detrimental to the glucagon receptor antagonistic ac-
tivity of triaryl imidazoles. The last descriptor in the equation
is E_OOP,11) which represent out-of-plane potential energy.
The descriptor bears a positive coefficient in the equation,
thus increase in the magnitude of E_OOP will contribute to
increase the glucagon receptor affinity of the triaryl imida-
zoles.

Equation 3 includes two 3D descriptors std_dim3, DASA
and an atom count descriptor a_nF and the contribution of
the descriptors to the QSAR is given by the order std_dim3�
a_nF�DASA. A standard dimension is equivalent to the
standard deviation along a principal component axis. Stan-
dard dimension 3 is mathematically defined as the square
root of the third largest eigenvalue of the covariance matrix
of the atomic coordinates and is based on the both the struc-
ture connectivity and conformation of the molecule.11) The
positive coefficient of the descriptor suggests that geometric
factors are of importance for the biological activity of triaryl
imidazoles under study. The conformation dependent charge
descriptors DASA represent absolute value of the difference
between water accessible surface area of all atoms with posi-
tive partial charge and water accessible surface area of all
atoms with negative partial charge.11) The regression coeffi-
cient of the descriptor bears a negative sign, which suggest
the minimal the difference in the water accessible surface
area of all atoms with positive partial charge and water ac-
cessible surface area of all atoms with negative partial
charge, the larger the glucagon antagonistic activity. The
term a_nF denotes the fluorine atom in the molecule and
from its negative coefficient in the model it appears that an

increase in the fluorine atoms leads to decreased glucagon
antagonistic activity.

From the regressions discussed so far, one may conjecture
that hydrophobic and geometric factors predominantly gov-
ern the glucagon receptor affinity of the triaryl imidazoles
under study. Furthermore, the correlations also indicates no
definite role for electrostatic factors in the molecule–receptor
interaction, a fact reflected in the negative contribution of
partial charge descriptor PEOE_VSA_FNEG and positive
contribution of the descriptor DASA which advocates for
minimal difference in the water accessible surface area of all
atoms with positive partial charge and water accessible sur-
face area of all atoms with negative partial charge for im-
proved glucagon receptor inhibitory potency. Additionally,
the preponderance of descriptors representing molecular
geometry emphasize on the likelihood of shape specific
steric interactions between the triaryl imidazole derivatives
and receptor. Surprisingly, compound number 8, which was
found to be a statistical outlier in case of models 1 and 2 qui-
etly, fits into the dataset for model 3. The phenomenon indi-
cates that the 3D geometry descriptors are better placed in
describing the variance in the glucagon receptor antagonistic
activity of triaryl imidazoles.

It is worth mentioning that all the generated regressions
exhibits good predictive ability as established by high q2 val-
ues (�0.7) and the best being recorded for Eq. 1 (q2�0.8).
Further confirmation on the predictive ability is availed form
the PRESS statistics of the QSARs, the uncertainty in the
prediction (SPRESS) and standard error due to prediction
(SDEP), which was less than 0.6. Besides the validation made
by the leave-one-out procedure, the generated correlations
were also tested for the ability to reproduce �logIC50 values
of the compounds in the series and a comparison was made
with observed values (Table 5). A good agreement between
experimental data and model computation is achieved using
the models 1—3 as shown in Figs. 1—3.

In addition to potent glucagon antagonistic activity, it is
still desirable for triaryl imidazoles to maintain a good de-
gree of selectivity for glucagon receptor over p38 mitogen
activated protein kinase (MAP Kinase). In the view of above,
the present study was extended for finding structural fea-
tures contributing to the selectivity for the glucagon receptor 
over p38 MAP kinase. QSARs were constructed using se-
lectivity ratio Y [where Y�log(1/IC50(glucagon receptor)
�log(1/IC50(p38 MAP kinase))] as dependent variable and
the calculated parameters as predictor variables (Table 3).
Only 26 compounds were employed for the deduction of
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Table 4. Correlation Matrix for Glucagons Receptor Antagonistic Activity of Triaryl Imidazole

�logIC50 a_nF KierA2 logP(o/w) E_oop DASA std_dim3 glob
PEOE_

VSA_FNEG

�logIC50 1
a_nF �0.776 1
KierA2 0.79 �0.68 1
logP(o/w) 0.789 �0.736 0.804 1
E_oop 0.493 �0.337 0.267 0.304 1
DASA �0.312 0.222 �0.157 �0.236 0.139 1
Std_dim3 0.783 �0.551 0.804 0.685 0.491 �0.001 1
glob 0.677 �0.426 0.588 0.446 0.434 �0.132 0.905 1
PEOE_VSA_FNEG �0.709 0.894 �0.495 �0.724 �0.26 0.37 �0.425 �0.341 1



QSARs as the remaining 4 compounds did not exhibit a 
well defined activity against p38 MAP kinase. Compound 8
behaved as an outlier because the Z-Score value greater 
than 2.5 therefore excluded during the formulation of cor-
responding QSARs. The best linear regressions generated 
are summarized below.

Y�[�10.686 (�1.753)]�VSA_HYD[0.036 (�0.006)]

N�25, R�0.93, R2�0.86, SEE�0.44, F�147.5, p�0.00, Q2�0.83,

SPRESS�0.48, SDEP�0.46 (4)

Y�[�11.470 (�1.839)]�SMR[1.021 (�0.169)]

N�25, R�0.93, R2�0.87, SEE�0.43, F�155.2, p�0.00, Q2�0.85,

SPRESS�0.46, SDEP�0.45 (5)

The statistical measures of the equations summarized above
portray their statistical significance and the validation param-
eters given alongwith strongly supports predictive potential
of the selected QSARs. Equation 3 shows that the most
prominent descriptor contributing for selectivity of 
triaryl imidazole for glucagon receptor is pharmacophore
feature descriptor VSA_HYD.11) VSA_HYD represents the
approximate sum of vander Waals surface area of hydropho-
bic atoms hence the positive coefficient of the descriptor 
indicates that increase in the hydrophobic molecular surface
area will render the molecules selective for glucagon receptor.

Another correlation with physicochemical descriptor SMR
was also derived for the abovementioned dataset. SMR de-
notes molecular refractivity as defined by atomic contribu-
tion model of Crippen et al.14) The term SMR is a crude

measure of the bulk and polarizability of the molecule. The
regression coefficient of the descriptor SMR bears a positive
sign, which suggest that molecular bulk and polarizabili-
ty are important determinants of selective inhibition of
glucagon receptor by triaryl imidazoles. It becomes very
much evident from generated QSARs that the structural
properties of triaryl imidazole congeners such as hydropho-
bicity and steric properties which influence their glucagon
receptor inhibitory activity also contribute to the selectivity
for the inhibition glucagon receptor over p38 MAP kinase.

Conclusion
In conclusion, the present study gives rise to QSARs with

good predictive capacity for glucagon antagonistic activity of
triaryl imidazoles. For the dataset of 30 triaryl imidazole de-
rivatives with well-defined glucagon receptor antagonistic ac-
tivity, hydrophobic and steric property of the molecules ap-
pears to be the governing factor for glucagon receptor in-
hibitory potency. Though electrostatic forces seem to be of
less importance, its role in the ligand–receptor binding is
detrimental as suggested by their negative contribution in the
QSARs. Further, the results of the study also indicate that the
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Fig. 1. Graphical Representation of Experimentally Observed vs. Compu-
tationally Predicted Activity of Model 1

Observed activity: biological activity, which was determined experimentally by se-
lective inhibition of glucagon receptor. Predicted activity: biological activity, which was
determined computationally from the selected regression models.

Fig. 2. Graphical Representation of Experimentally Observed vs. Compu-
tationally Predicted Activity of Model 2

Fig. 3. Graphical Representation of Experimentally Observed vs. Compu-
tationally Predicted Activity of Model 3

Table 5. Predicted Glucagons Receptor Antagonistic Activity of Triaryl
Imidazole by QSAR Models

Compound 
�logIC50 Model 1 Model 2 Model 3

number

1 6.568636 6.10142 5.93314 5.99038
2 5.853872 6.17031 5.97058 6.12279
3 6.39794 5.95106 5.81761 5.89531
4 5.69897 5.65505 4.96474 4.70522
5 6.29243 6.40892 6.06386 6.10308
6 5.886057 5.68375 5.84478 5.46217
7 6.154902 6.33765 6.01961 5.85493
8 5 — — 5.84274
9 5.69897 4.86105 5.32455 5.18732

10 4.886057 5.47662 5.83619 5.52454
11 5.09691 5.28281 5.82494 5.69685
12 5.060481 5.38969 5.568 5.49904
13 5.657577 6.00698 5.98994 6.07582
14 5.552842 5.88588 5.98201 6.04884
15 5.823909 6.75621 5.86899 6.34646
16 6.309804 5.91515 6.13571 5.78477
17 6.106793 5.99915 6.5938 6.75466
18 5.958607 6.31376 6.01093 6.33886
19 6.721246 6.27055 6.66159 6.89481
20 6.886057 6.70575 6.90982 6.64383
21 6.853872 7.33946 7.02201 6.79219
22 6.886057 6.94123 6.81238 6.84706
23 7.130768 7.04309 7.24159 6.85289
24 7.21467 7.45496 6.96418 7.1771
25 8.187087 7.79959 8.40779 7.95959
26 7.886057 7.36541 7.48608 7.4208
27 7.568636 7.01907 7.73623 6.90477
28 8.070581 8.35549 7.34282 8.5102
29 7.886057 7.78019 7.87263 8.14953
30 8.187087 8.29092 8.76524 8.0061



nature of interaction between the glucagon receptor and tri-
aryl imidazoles is shape specific. Additionally, selectivity
studies based on the QSARs generated with logarithm of
ratio between the IC50 values triaryl imidazoles p38 MAP ki-
nase and glucagon receptor suggest that the same structural
features which influence the glucagon receptor affinity might
also contribute to the selective inhibition of glucagon recep-
tor over p38 MAP kinase by triaryl imidazoles.
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