Cucurbitacin B 2-Sulfate and Cucurbitacin Glucosides from the Root Bark of *Helicteres angustifolia*

Zong-Tsi CHEN,*,^a Shwu-Woan LEE,^a and Chiu-Ming CHEN*,^b

^a Department of Applied Chemistry, Chia-Nan University of Pharmacy and Science; Tainan 717, Taiwan. R.O.C.: and ^b Department of Chemistry, National Tsing Hua University; Hsinchu 300, Taiwan, R.O.C. Received July 13, 2006; accepted August 25, 2006

A new sulfated cucurbitacin, cucurbitacin B 2-sulfate (1) and a new cucurbitacin glucoside, cucurbitacin G 2-O- β -D-glucopyranoside (2) together with two known cucurbitacin glucosides, arvenin I and arvenin III were isolated from the root bark of *Helicteres angustifolia*. The structures of these compounds were established on the basis of spectroscopic and chemical evidence. These four compounds taste of strong bitterness. Compound 1 is a first sulfated cucurbitacin found in plants.

Key words Helicteres angustifolia; Sterculiaceae; cucurbitacin; sulfate; bitter

Helicteres angustifolia L., known as one of the tumor inhibitory plants,¹⁾ is a common folk medicine possessing analgesic, anti-inflammatory and anti-bacterial effects²⁾ in Taiwan. The methanol extract³⁾ and cucurbitacin derivatives⁴⁾ of the roots of this plant were found to have potent cytotoxic activities. To date, phytochemical studies of this plant have described the isolation of triterpenoids,⁵⁾ pregnane, coumarin and lupane derivatives.⁴⁾

Our previous studies on the constituents of this plant have led to the isolation of sesquiterpenoid quinones,⁶⁾ flavonoid glycosides.⁷⁾ The present paper describes the isolation and characterization of a new sulfated cucurbitacin, cucurbitacin B 2-sulfate (1) and a new cucurbitacin glucoside, cucurbitacin G 2-O- β -D-glucopyranoside (2) together with two known compounds, arvenin I and III⁸⁾ from the *n*-BuOH extract of the root bark of this plant. These four compounds taste of strong bitterness. Compound 1 is a first sulfated cucurbitacin found in plants.

Results and Discussion

As in the previously reported procedure,⁷⁾ the fractions 5-6 (3.8 g) was chromatographed on silica gel column and preparative TLC to afford **1**, **2**, arvenin I and III.

Cucurbitacin B 2-sulfate (1), colorless amorphous powder, showed IR absorption of hydroxyl (3450 cm^{-1}), carbonyl ($1720, 1700 \text{ cm}^{-1}$) and a strong broad band due to S=O group (1250 cm^{-1}). The UV spectrum showed absorption at

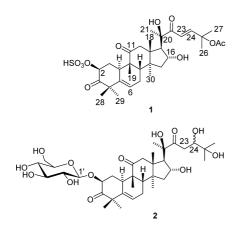


Fig. 1. Structures of Compounds 1 and 2

* To whom correspondence should be addressed. e-mail: ztc19530612@mail.chna.edu.tw

 $\lambda_{\rm max}$ (MeOH) 230 nm. The molecular formula was assigned as $C_{32}H_{46}O_{11}S$, indicated by a quasimolecular ion peak at m/z637.2643 ([M-H]⁻, C₃₂H₄₅O₁₁S) in high-resolution (HR)-FAB-MS (negative ion) of 1. The ¹H- and ¹³C-NMR spectral data (Table 1) showed characteristic signals of cucurbitacin due to eight methyl groups, an olefinic proton (H-6), transcoupled olefinic protons (H-23, H-24), three carbonyl carbons (C-3, C-11, C-22), four oxygenated carbons (C-2, C-16, C-20, C-25) and an acetyl group. The above data indicated 1 is a sulfated derivative of cucurbitacin. Solvolysis⁹⁾ of **1** with 1.4-dioxane in pyridine afforded a desulfated product 1a which showed a quasimolecular ion peak at m/z 557 [M-H]⁻ in FAB-MS. Compound 1a was identified as cucurbitacin B by comparison the spectroscopic data of 1a with the reported data.^{10,11} These facts confirmed that 1 was a sulfated derivative of cucurbitacin B. The sulfate group of 1 was linked to 2-OH on the basis of following sulfation shifts. The signals at δ 5.98 due to H-2 of **1** showed downfield shift by 1.11 ppm in comparison with the signals at δ 4.87 due to H-2 of **1a**. The ¹³C-NMR spectral data of **1** showed that the signal at δ 77.5 due to C-2 carbon atom showed downfield shift by 5.1 ppm, while the signals at δ 34.9 and δ 210.5 due to C-1 and C-3 carbon atoms showed upfield shift by 2.0 and 2.9 ppm, respectively, in comparison with those of 1a. Therefore, the structure of compound 1 was determined as cucurbitacin B 2-sulfate.

Cucurbitacin G 2-O- β -D-glucopyranoside (2), colorless amorphous powder, showed IR absorption of hydroxyl (3400 cm⁻¹), carbonyl (1720, 1700 cm⁻¹). High-resolution (HR)-FAB-MS (negative ion) of 2 showed a quasimolecular ion peak at m/z 695.3677 ([M-H]⁻, C₃₆H₅₅O₁₃) which confirmed the molecular formula as $C_{36}H_{56}O_{13}$. The ¹H- and ¹³C-NMR spectra of 2 showed a glucose moiety. The signals at δ 5.17 (d, J=7.6 Hz) due to anomeric proton indicated the β configuration of the glucosyl moiety. On acid hydrolysis of 2, D-glucose was obtained as the sugar moiety. The ¹H- and ¹³C-NMR spectra of 2, bearing same glycosylation at position 2-OH, showed almost the same spectral data (Table 1) as those of arvenin I and III, except the signals due to side chains. These facts revealed that 2 is a cucurbitacin 2-O- β -D-glucopyranoside. A substructure, -CH2CHOH-, was confirmed in side chain through a ¹H-¹H COSY experiment, by the correlation of cross peaks due to signals δ 3.62 (dd, J=15.5, 9.6

Table 1. ¹³C- and ¹H-NMR Data for Compounds 1 and 2 in C_5D_5N

Position	1		2	
	$\delta_{ m C}$	$\delta_{\rm H}$ (mult; <i>J</i> , Hz)	$\delta_{ m c}$	$\delta_{_{ m H}}$ (mult; J, Hz)
1	34.9	2.86 m, 1.63 ^{c)}	35.2	2.58 m, 1.65 ^c)
2	77.5	5.98 dd (13.0, 5.6)	77.9	5.49 dd (13.0, 5.6)
3	210.5		211.6	
4	51.1		51.1	
5	140.7		140.8	
6	120.5	5.63 br d (5.3)	120.4	5.64 br d (5.3)
7	24.2	2.26 m, 1.94 ^{c)}	24.2	2.25 m, 1.88 ^{c)}
8	42.9	1.90^{c}	42.8	1.90 ^{c)}
9 ^{<i>a</i>)}	49.0		48.83	
10	34.5	3.11 br d (12.4)	34.2	3.06 br s
11	212.8		212.8	
12	49.2	3.23, 2.79, d (14.6)	49.1	2.90, 2.62, d (14.6)
13	51.8		51.7	
14 ^{a)}	48.9		48.79	
15	46.3	1.90^{c} , 1.57^{c}	46.1	1.90^{c} , 1.57^{c}
16	70.6	5.03 brt (7.6)	70.7	5.02 br t (7.6)
17	59.4	2.99 d (7.0)	57.4	2.98 d (7.0)
18	20.5	1.16 s	20.2	1.16 s
19	19.8	0.99 s	19.9	1.05 s
20	79.7		80.4	
21	25.4	1.56 s	25.1	1.58 s
22	204.3		215.9	
23	122.5	7.36 d (15.7)	41.3	3.62 dd (15.5, 9.6)
				3.36 br d (15.5)
24	150.0	7.41 d (15.7)	76.0	4.57 dd (9.6, 1.8)
25	79.9		72.0	
26^{b}	26.2	1.60 s	24.6	1.47 s
27^{b}	26.7	1.69 s	27.6	1.51 s
28	21.8	1.33 s	21.8	1.35 s
29	28.8	1.52 s	28.9	1.53 s
30	18.8	1.35 s	18.8	1.37 s
OAc	170.0			
	21.9	1.93 s		
1'			104.2	5.17 d (7.6)
2'			76.0	4.10 br t (8.0)
3'			78.5	4.35 m
4'			71.3	3.84 m
5'			78.8	4.43 dd (12.0, 2.0)
6'			62.6	4.28 m

a, b) Assignments in each column may be interchangeable. c) Signal pattern unclear due to overlapping.

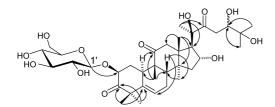


Fig. 2. Significant ${}^{3}J$ Correlations in HMBC Spectrum of 2

Hz) and δ 3.36 (br d, J=15.5 Hz), signals δ 4.57 (dd, J=9.6, 1.8 Hz) and δ 3.62, δ 3.36. The ¹³C-NMR spectrum of **2** showed signals at δ 41.3, 76.0 due to -CH₂CHOH- moiety. These facts revealed the presence of a hydroxyl group at C-23 or C-24 in the side chain of **2**. Detailed analysis of ¹H–¹H COSY and DEPT experiments and comparing the ¹H- and ¹³C-NMR data due to the side chain of **2** with those of cucurbitacin G, 3-*epi*-isocucurbitacin G¹² and cucurbitacin J 2-*O*- β -glucopyranoside¹³ confirmed the hydroxyl group to be linked to C-24. The location of the hydroxyl group on C-24 was further confirmed by ³J correlation HMBC experiment (Fig. 2). The ¹³C-NMR signal at δ 76.0 (C-24) showed cross peaks with the ¹H-NMR signals at δ 1.47 (H-26) and 1.51 (H-27), and ¹³C-NMR signal at δ 24.6 (C-26) showed crosspeak with the ¹H-NMR signal at δ 4.57 (H-24). The stereochemistry of hydroxylation at C-24 could not be determined. Consequently, the structure of **2** was determined as cucurbitacin G 2-*O*- β -D-glucopyranoside.

Experimental

General Experimental Procedures Optical Rotations were measured on a JASCO DIP-360 digital polarimeter. UV spectra were measured on a Hitachi 200 spectrophotometer. IR spectra were taken on a Perkin Elmer 781 infrared spectrophotometer. NMR spectra were recorded on a Bruker AM-400 and AV-500 spectrometers. FAB-MS and HR-FAB-MS were recorded on a JMS-HX-110 spectrometer. Gas liquid chromatography was done on a Hewlett-Packard 5890 gas chromatography. Column chromatography was performed on silica gel 60 (Merck, 70—230 mesh), TLC and preparative TLC were performed on precoated silica gel plates (Merck, kieselgel 60 F_{254} , 0.25, 1.00 mm respectively).

Plant Material The entire fresh plants of *Helicteres angustifolia* were collected in Puli, Nantou County, Taiwan and authentified by Prof. Chang-Sheng Kuoh, Department of Biology, National Cheng Kung University. A voucher specimen (CNACNP0512) was deposited in the natural product laboratory of Department of Applied Chemistry, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan.

Extraction and Isolation Dried powdered root bark of *H. angustifolia* (3.8 kg) was extracted with CHCl₃ (3×51) under reflux. The residue was extracted with MeOH (5×51) under reflux. The concentrated MeOH extract (201 g) was suspended in water. The suspension was extracted with EtOAc and *n*-butanol, successively. The *n*-butanol soluble fraction (35 g) was chromatographed on a silica gel column with CHCl₃/MeOH/H₂O (65:35:10, lower layer) as eluent and 250 ml were collected for each fraction. Fractions 5—6 (3.8 g) were collected and chromatographed on a silica gel column with EtOAc/MeOH mixture of increasing polarity as eluent. Elution was monitored by TLC with CHCl₃/MeOH/H₂O (10:2:0.1). The fractions containing cucurbitacins were collected and further purified by silica gel column chromatography, eluting with EtOAc/MeOH (20:1) and preparative TLC, developing with CHCl₃/MeOH/H₂O (8:2:0.2) to give 1 (38 mg), **2** (6 mg), arvenin I (58 mg) and III (213 mg).

Cucurbitacin B 2-Sulfate (1): Colorless amorphous powder; $[\alpha]_{2}^{25}+30.9^{\circ}$ (*c*=1.37 MeOH); UV (MeOH) λ_{max} (log ε) 230 (4.25) nm; IR (KBr) v_{max} 3450, 2990, 2960, 1720, 1700, 1660, 1630, 1580, 1460, 1410, 1370, 1250, 1060, 1020, 980 cm⁻¹. ¹H-NMR (C₅D₅N, 400 MHz): see Table 1; ¹³C-NMR (C₅D₅N, 100 MHz): see Table 1; HR-FAB-MS (negative ion) *m/z* 637.2643 (Calcd 637.2638 for C₃₂H₄₅O₁₁S [M-H]⁻).

Solvolysis of 1 Compound **1** (9.2 mg) was dissolved in pyridine (1.0 ml)/1,4-dioxane (1.0 ml), heated at 90 °C for 8 h and then evaporated to dryness. The dried mixture was dissolved in EtOAc/H₂O (1:1). The EtOAc soluble fraction was concentrated and then chromatographed on preparative TLC with CHCl₃/MeOH (12:1) as eluent to afford desulfated product **1a** (4.5 mg). Compound **1a** was identified as cucurbacin B by comparison the spectroscopic data of **1a** with the reported data.^{10,11}

Cucurbitacin G 2-*O*- β -D-Glucopyranoside (**2**): Colorless amorphous powder; $[\alpha]_D^{25}+12.3^{\circ}$ (c=0.2 MeOH); IR (KBr) v_{max} 3400, 2980, 2930, 1720, 1700, 1650, 1580, 1460, 1430, 1390, 1370, 1340, 1220, 1080, 1050 cm⁻¹. ¹H-NMR (C_5D_5N , 400 MHz): see Table 1; ¹³C-NMR (C_5D_5N , 100 MHz): see Table 1; HR-FAB-MS (negative ion) m/z 695.3711 (Calcd 695.3718 for $C_{36}H_{55}O_{13}$ [M-H]⁻).

Acid Hydrolysis of 2 A solution of 2 (1.5 mg) in 3% HCl (3 ml) was heated on a boiling water bath for 4 h. The mixture was evaporated *in vacuo*. The residue was dissolved in dry pyridine (1.0 ml) and the trimethylsilyl ethers were prepared by addition of hexamethyldisilazane (0.6 ml) and trimethylchlorosilane (0.3 ml) successively. The mixture was evaporated *in vacuo*; 0.5 ml of *n*-heptane was added. The insoluble material was filtered off. The filtrate was shown to contain TMS-ethers of D-glucose by GLC¹⁴) [packed glass column, 3% OV-101 on Chromosorb W-HP 80—100 mesh, 2 mm×2 m; column temperature, 150—250 °C at 10 °C/min; carrier gas, N₂; $t_{\rm R}$ 6.19, 6.76 min].

Acknowledgment We thank the National Science Council and Chin-Nan University of Pharmacy and Science R.O.C., for financial support of this work and Prof. Chang-Sheng Kuoh, Department of Biology, National Cheng Kung University, for authentification of plant material.

References

- Hsu H. Y., "Illustrations of Chinese Herb Medicine of Taiwan," Chinese Herb Medicine Committee, National Health Administration, Taipei, 1972, p. 135.
- Chiu N. Y., Chang K. S., "The Illustrated Medicinal Plants of Taiwan," Vol. I, Sounthern Materials Center, Inc., Taipei, 1995, p. 104.
- Lu K. L., Wang J. P., Ho L. K., Chang Y. S., J. Chin. Med., 1, 143– 151 (2000).
- Chen W., Tang W., Lou L., Zhao W., Phytochemistry, 67, 1041–1047 (2006).
- Chang Y. S., Ku Y. R., Lin J. H., Lu K. L., Ho L. K., J. Pharm. Biomed. Anal., 26, 849–855 (2001).
- Chen C. M., Chen Z. T., Hong Y. L., *Phytochemistry*, 29, 980–982 (1990).

- Chen Z. T., Lee S. W., Chen C. M., *Heterocycles*, 38, 1399–1406 (1994).
- Yamada Y., Hagiwara K., Iguchi K., Suzuki S., Hsu H. Y., Chem. Pharm. Bull., 26, 3107–3112 (1978).
- D'Auria M. V., Iorizzi M., Minale L., Riccio R., Uriarte E., J. Nat. Prod., 53, 94–99 (1990).
- Che C. T., Fang X., Phoebe C. H., Jr., Kinghorn A. D., Farnsworth N. R., Yellin B., Hecht S. M., *J. Nat. Prod.*, 48, 429–434 (1985).
- Jacobs H., Singh T., Reynolds W. F., McLean S., J. Nat. Prod., 53, 1600—1605 (1990).
- 12) Farias M. R., Schenkel E. P., Mayer R., Bücker G., *Planta Med.*, 59, 272–275 (1993).
- Kanchanapoom T., Kasai R., Yamasaki K., *Phytochemistry*, **59**, 215– 228 (2002).
- 14) Jankowski K., Gaudin D., *Biomed. Mass Spectrom.*, **5**, 371–372 (1978).