
Tupistra chinensis BAKER (Liliaceae) is endemic to south-
western regions of the People’s Republic of China.1) As a
Chinese folk medicine, this species has usually been used for
treatment of rheumatic diseases and snake-bite.1) In previous
investigations,2—4) we have reported the isolation and struc-
tural elucidation of several steroidal sapogenins, flavans, and
a pregnane genin from this species. Our current phytochemi-
cal study for new efficient agents has led to the isolation of a
new pregnane glycoside, namely tupichinin A (1) and a first
naturally-occurring lignan possessing a hydroxyl group at 
the benzyl position, 5-hydroxymatairesinol dimethyl ether,
namely tupichilignan A (2), three new flavonoids, tupichinol
D (3), tupichinol E (4), and tupichinol F (5), together with
five known flavonoids, 3-hydroxy-2-(4-hydroxyphenyl)-7-
methoxychromen-4-one (6),5) rhamnocitrin (7),6) 3,7-dihy-
droxy-2-(4-hydroxyphenyl)-chromen-4-one (8),7) 2-(4-hy-
droxyphenyl)-4H-chromen-7-ol (9),8) and 3,5,7,8-tetrame-
thoxy-2-(4-methoxyphenyl)-chromen-4-one (10),9,10) and two
known alkaloids, oxoglaucine (11)11) and oxopurpureine
(12).11) The characterization and structure elucidation of 1—
5 are reported herein.

Tupichinin A (1) was obtained as colorless oil, [a]D
24

�12.6° (c�2.30, MeOH), showed in the HR-FAB-MS (posi-
tive mode) a pseudomolecular [M�Na]� peak at m/z
515.2832 (Calcd 515.2829), consistent with the molecular
formula C27H40O8, suggesting a pregnane glycoside skeleton
with eight degrees of unsaturation.

Unambiguous full assignments for the 1H- and 13C-NMR
signals were listed in Table 1 based on an analysis of the
combination of distortionless enhancement by polarization
transfer (DEPT), 1H–1H correlated spectroscopy (1H–1H
COSY), heteronuclear chemical shift correlation (HET-
COR), long range-heteronuclear chemical shift correlation

(LR-HETCOR), and nuclear Overhauser and exchange spec-
troscopy (NOESY) spectra data. In the 1H-NMR spectrum in
CD3OD of 1, signals that are characteristic of the pregnane
glycoside skeleton were observed. The 1H-NMR spectrum
showed the presence of two methyl groups at d 0.93 (3H, s,
Me-18) and 1.06 (3H, s, Me-19) and an anomeric proton at d
4.33 (1H, d, J�8.0 Hz). Evidence for the presence of a
methyl ketone and two double bonds at C-5 and C-16 came
from a three-proton singlet at d 2.26 and two vinylic proton
signals at d 5.49 (1H, d, J�5.6 Hz) and 6.90 (1H, dd, J�3.2,
1.6 Hz), respectively. Two oxymethine proton resonances at d
3.78 (1H, dd, J�12.0, 4.4 Hz) and 4.05 (1H, br s) were as-
signed to H-1 and H-3, respectively. The fully decoupled 13C-
and DEPT NMR spectra of 1 exhibited 27 carbon signals,
which consisted of three methyls, seven methylenes, 12 me-
thines, and five quaternary carbons. One carbonyl carbon at d
199.5 (C-20); two vinylic carbons at d 140.2 (C-5) and 125.3
(C-6); an anomeric carbon at d 102.9 (C-1� of glucose); and
two methyl groups at d 16.2 (C-18) and 13.2 (C-19) were
also confirmed in 13C-NMR spectra. In the ring D of 1, two
vinylic carbon signals at d 147.2 (CH) and 156.7 (C) were
assigned to the C-16 and C-17, respectively. The two signals
at d 27.1 (Me) and 199.5 (C) arose from the methyl ketone,
which was attached to ring D. In the NOESY spectrum (Fig.
1), the three-proton signal at d 2.26 (Me-21) showed correla-
tions with the proton signals at d 6.90 (H-16) and 0.93 (Me-
18). Moreover, in the LR-HETCOR spectrum (Fig. 2), one
carbonyl carbon at d 199.5 (C-20) exhibited correlation with
the proton signal at d 6.90 (H-16), and the 13C signal at d
156.7 (C-17) showed correlation with the proton signal at d
0.93 (Me-18). These findings further support the methyl ke-
tone was attached to the C-17 position. The methylene pro-
tons at d 2.00 (1H, m, H-2a) and d 2.71 (1H, m, H-2b) were
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determined, and were coupled to both of the two oxygenated
methine protons at d 3.78 (H-1) and d 4.05 (H-3) in the
1H–1H COSY spectrum. The methylene protons at d 2.28 (H-
4a) and d 2.51 (H-4b) were in turn coupled with the oxy-
genated methine proton at d 4.05 (H-3). These findings sup-

ported the placement of two hydroxyl groups on C-1 and C-3
positions. Furthermore, two signals at d 76.0 (CH), and 75.4
(CH) were assigned to the C-1 and C-3 positions, respec-
tively, from the HETCOR spectrum. The coupling patterns of
H-1 at d 3.78 (1H, dd, J1a ,2b�12.0, J1a ,2a�4.4 Hz) and H-3
at d 4.05 (1H, br s) indicated that H-1 and H-3 are a-axial
and b-equatorial, respectively. The structure of the saccha-
ride moiety of 1 and its linkage position to the aglycone moi-
ety were determined by the following data. On comparison of
the 13C signals of 1 with those of pregnane 1a,4) a set of addi-
tional six signals, corresponding to a b-D-glucopyranosyl
unit appeared. The signal due to the C-3 carbon, which was
observed at d 66.5 in 1a, downfield shift to d 75.4, accompa-
nied by upfield shifts of the signal due to C-2 and C-4 by 4.1
and 2.0 ppm, respectively, indicating the sugar moiety was
linked at C-3 position. The assignments of the 1H and 13C
signals due to the saccharide moiety were as shown in Table
1. In the LR-HETCOR spectrum, the anomeric proton signal
at d 4.33 exhibited correlations with the 13C signals at d 75.4
(C-3 of aglycone) and 102.9 (C-1� of glucose). In the
NOESY spectrum, the anomeric proton signal at d 4.33 ex-
hibited correlations with the proton signals at d 4.05 (H-3 of
aglycone) and 2.00 (H-2a of aglycone). The a-configuration
of the anomeric carbon of glucopyranosyl unit was deter-
mined by JH1–H2 value (�7.0 Hz).
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Table 1. 13C- and 1H-NMR Data for 1a) and 1ab) (100, 400 MHz)

1 1a
Position

dC dH, J (Hz) dC dH, J (Hz)

1 76.0, d 3.78, dd (12.0, 4.0) 75.1, d 4.51, dd (11.6, 4.4)
2 36.7, t 2.00, m, Ha 40.8, t 2.39, dd (14.8, 4.4), Ha

1.71, m, Hb 2.16, dd (4.8, 11.6), Hb
3 75.4, d 4.05, br s 66.5, d 4.37, br s
4 39.1, t 2.28, m, Ha 41.1, t 2.40, br d (14.4), Ha

2.51, d (14.4), Hb 2.73, br d (14.4), Hb
5 140.2, s 140.5, s
6 125.3, d 5.49, d (5.6) 124.3, d 5.69, d (6.0)
7 32.5, t 1.78, m, Ha 31.9, t 1.70, m, Ha

1.95, m, Hb 1.96, m, Hb
8 32.4, d 1.65, m, Hb 31.5, d 1.65, m, Hb
9 52.1, d 1.35, td, (12.0, 8.0), Ha 51.8, d 1.62, m, Ha

10 46.9, s 46.0, s
11 24.8, t 2.38, m, Ha 24.3, t 2.98, ddd (14.4, 4.8, 4.0), Ha

1.62, m, Hb 1.90, m, Hb
12 36.5, t 1.35, m, Ha 35.8, t 1.52, td, (14.4, 4.0), Ha

2.28, m, Hb 2.67, ddd, (14.4, 4.8, 2.8), Hb
13 44.9, s 44.7, s
14 58.0, d 1.47, m, Ha 56.8, d 1.43, m, Ha
15 33.5, t 2.30, m 32.5, t 2.13, m, Ha

1.94, dd, (12.0, 1.6), Hb
16 147.2, d 6.90, dd, (3.2, 1.6) 144.5, d 6.57, dd, (3.2, 1.6)
17 156.7, s 155.6, s
18 16.2, q 0.93, s 16.2, q 1.03, s
19 13.2, q 1.06, s 13.2, q 1.35, s
20 199.5, s 196.3, s
21 27.1, q 2.26, s 27.0, q 2.21, s

1� 102.9, d 4.33, d, (8.0), Ha
2� 74.9, d 3.16, t, (8.0)
3� 78.2, d 3.35, m
4� 71.7, d 3.30, m
5� 77.9, d 3.27, m
6� 62.8, t 3.66, dd (11.6, 5.2)

3.86, dd (11.6, 2.0)

a) Spectra were measured in CD3OD. b) Spectra were measured in C5D5N.4)

Fig. 1. NOESY Correlations of 1

Fig. 2. LR-HETCOR Correlations (C to H) of 1



To confirm the nature of the sugar unit and to determine its
absolute configuration, compound 1 was subjected to acid
hydrolysis (4 N HCl), followed by HPLC analysis on a chiral
column in comparison with D-(�)-glucose. By this procedure
the sugar was identified to belong to the common D-series.

The relative stereochemistry of 1 was also established
from the NOESY spectrum. NOESY correlations between
H-1a and H-9a , and between H-6 and H-4a indicated a-
axial and b-equatorial configurations of H-1 and H-3, respec-
tively. Based on the above spectroscopic evidence, the struc-
ture of 1 was established as 1b-hydroxypregna-5,16-dien-3-
b-ol-20-one 3-O-b-D-glucopyranoside, namely tupichinin A.

Tupichilignan A (2) was isolated as colorless oil, [a]D
24

�2.8° (c�1.45, acetone). Its molecular formula C22H26O7

was established by EI-MS ([M]�, m/z 402) and HR-EI-MS
(m/z 402.1683). The 1H-NMR spectrum of 2 displayed sig-
nals for two methine protons at d 2.97 (1H, m, H-2) and 2.62
(1H, quint., J�7.2 Hz, H-3), an oxygenated methylene at d
3.92 (1H, m, H-4b) and 3.83 (1H, m, H-4a), two set of ABX
systems of the phenyl protons at d 6.63—6.81 (6H), an
oxymethine proton at d 4.64 (1H, d, J�7.2 Hz, H-5), and two
benzylic protons at d 2.92 (1H, dd, J�14.2, 5.2 Hz, H-6) and
3.07 (1H, dd, J�14.2, 5.2 Hz, H-6). Furthermore, the 1H-
NMR spectrum showed strong singlets at d 3.82, 3.85, 3.87,
and 3.88 associated with aromatic methoxy groups. Lopes et
al.12) reported that trans-dibenzylbutyrolactone tented to
show the distinct nonequivalence of the protons of the C-4
methylene group (d 3.9, 4.2) in the 1H-NMR spectrum. In
contrast, the cis-derivative, the hydrogens of the C-methylene
group were almost equivalent in the d 4.0—4.1 range. The
1H-NMR spectrum of 2 showed the characteristic signals (H-
4; d 3.83, 3.92) of a trans-2,3-dibenzylbutyrolactone lignan.
The presence of a g-lactone was suggested by a 13C-NMR
shift at d 179.1. The chemical shift of the signal due to the
H-5 indicates that the configuration at C-5 is R, according to
Nishibe et al.13) The 1H- and 13C-NMR spectra of 2 were
quite similar to those of 5-hydroxymatairesinol dimethyl

ether.13) The signals assigned to C-2 and C-3 were proposed
at d 45.2 and 43.9 by Nishibe et al.13) However, careful ex-
amination of the spectroscopic data revealed the significant
reassignment of 13C-NMR signals at C-2 and C-3 as d 43.8
and 45.1, respectively. In the COSY spectrum, the proton
signal at d 2.97 (H-2) exhibited correlations with the proton
signals at d 2.62 (H-3), 2.92 (H-6), and 3.07 (H-6). The pro-
ton signal at d 2.62 (H-3) exhibited correlations with the pro-
ton signals at d 3.83 (H-4a), 3.92 (H-4b), and 4.64 (H-5). In
the NOESY spectrum, the proton signal at d 2.97 (H-2) ex-
hibited correlations with the proton signals at d 4.64 (H-5),
2.92 (H-6), and 3.07 (H-6). The proton signal at d 2.62 (H-3)
exhibited correlations with the proton signals at d 3.92 (H-
4b), and 4.64 (H-5). These observations support the above
assignment. Thus the previously reported assignment is un-
convincing. Unambiguous assignments for the 1H- and 13C-
NMR signals in 2 were made by combination of the DEPT,
NOESY, 1H–1H COSY, and HETCOR spectra. Thus the
structure of 2 was determined as 5-hydroxymatairesinol di-
methyl ether, which we named tupichilignan A.

Compound 3 was obtained as colorless prisms, [a]D
24

�8.3° (c�1.20, MeOH). The HR-EI-MS showed a [M]� ion
at m/z 272.1053 (Calcd 272.1048), consistent with the mo-
lecular formula, C16H16O4. The 1H-NMR spectrum (Table 2)
of 3 is similar to that of (2R,3R)-3,4�-dihydroxy-7-methoxy-
8-methylflavan (tupichinol A),4) except for the presence of
one additional hydroxyl group signal at d 8.00 (br s) and the
absence of a methoxyl signal at d 3.78 (1H, s). This suggests
that a singlet at d 8.00 for one hydroxyl group should be lo-
cated at C-7, with the oxygenation at C-7 only in ring A. In
the 1H-NMR spectrum (Table 2) of 3, signals that are charac-
teristic of the 8-methylflavan-3-ol skeleton were observed.14)

A signal at d 2.01 (3H, s) was assigned to the methyl group
on C-8 in ring A. The oxymethine protons at d 5.02 (1H, s)
and 4.22 (1H, br s) were assigned to H-2, and H-3, respec-
tively. The methylene protons at d 2.73 (1H, dd, J�16.2,
4.4 Hz) and d 3.14 (1H, dd, J�16.2, 4.4 Hz) were assignable
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Table 2. 1H- and 13C-NMR Data for Compounds 3, 4, and 5 in Acetone-d6

3 4 5
Position

dH, J (Hz) dC dH, J (Hz) dC dH, J (Hz) dC

2 5.02, s 80.2 144.0 155.4
3 4.22, br s 67.7 132.7 139.5
4 2.73, dd (16.2, 4.4), Ha 34.9 177.8 179.9

3.14, dd (16.2, 4.4), Hb
5 6.71, d (8.2) 128.5 160.9 160.7
6 6.32, d (8.2) 109.1 6.49, s 95.7 6.34, s 99.0
7 133.5 164.7 161.1
8 112.0 104.2 102.0
9 131.2 147.9 156.7

10 116.7 105.1 105.0
1� 130.8 124.3 123.1

2�,6� 7.38, d (8.8) 129.5 8.21, d (9.2) 131.2 8.09, d (8.8) 131.3
3�,5� 6.83, d (8.8) 116.2 7.04, d (9.2) 117.1 7.05, d (8.8) 116.6

4� 132.3 148.2 151.8
OH-3 3.65, br s 9.24, br s
OMe-3 3.88, s 60.3
OH-5 12.19, s 12.69, s
OH-7 8.00, br s 9.21, br s
OMe-7 3.97, s 57.4
Me-8 2.01, s 9.3 2.28, s 8.4 2.27, s 7.9
OH-4� 8.35, br s 8.11, br s 8.01, br s



to H-4a and H-4b , respectively.4) The signals at d 3.65 (br s),
8.00 (br s), and 8.35 (br s) which disappeared on addition of
D2O, was assignable to three protons of the hydroxyl groups
attached to C-3, C-7, and C-4�, respectively.4,15) The protons
at d 6.71 (1H, d, J�8.2 Hz) and d 6.32 (1H, d, J�8.2 Hz)
were assigned to H-5 and H-6, respectively.4,15) Furthermore,
the aromatic protons at d 7.38 (2H, d, J�8.8 Hz) and d 6.83
(2H, d, J�8.8 Hz) were assigned to H-2�/6� and H-3�/5�, re-
spectively.14) The heterocyclic coupling constant (J2,3�2 Hz)
confirmed the relative 2,3-cis configuration, while the optical
rotation [a]D

24 �8.3° (c�1.20, MeOH) verified the 2R, 3R
absolute configuration in 3.4) Thus the structure of 3 was de-
termined as (2R,3R)-3,7,4�-trihydroxy-8-methylflavan, which
we have named tupichinol D.

Compound 4 was obtained as yellow oil. The HR-EI-MS
showed the [M]� ion at m/z 314.0795 (Calcd 314.0790), con-
sistent with the molecular formula, C17H14O6. In the 1H-
NMR spectrum (Table 2) of 4, signals that are characteristic
of the 8-methylflavone skeleton were observed.14,15) Two sig-
nals at d 2.28 (3H, s) and 3.97 (3H, s) were assigned to the
methyl group on C-8 and the methoxyl group attached to C-7
in ring A, respectively. The signals at d 8.11 (br s), 9.24
(br s), and 12.19 (br s) which disappeared on addition of D2O,
were assignable to the protons of three hydroxyl groups at-
tached to C-4�, C-3, and C-5, respectively.15) The proton at d
6.49 (1H, s) was assigned to H-6.14) Furthermore, the aro-
matic protons at d 8.21 (2H, d, J�9.2 Hz) and d 7.04 (2H, d,
J�9.2 Hz) were assigned to H-2�/6� and H-3�/5�, respec-
tively.14) The 13C-NMR spectrum (Table 2) showed the char-
acteristic 8-methylflavone signals at d 177.8, 160.9, and
104.2, corresponding to C-4 (CO), C-5, and C-8, respec-
tively.15,16) Moreover, this spectrum also indicated one
methoxyl carbon at d 57.4, and one methyl carbon at d 8.4.
In the NOESY spectrum (Fig. 3), the cross-peaks between H-
6/OMe-7 and Me-8/H-2�/6� were observed, indicating that
the methyl group must be at the C-8 position and the
methoxyl group must be at the C-7 position. These results in-
dicate unambiguously that compound 4 is 3,5,4�-trihydroxy-
7-methoxy-8-methylflavone, which we have named tupichi-
nol E.

Compound 5 was obtained as yellow oil. The HR-EI-MS
showed the [M]� ion at m/z 314.0798 (Calcd 314.0795), con-
sistent with the molecular formula, C17H14O6. In the 1H-
NMR spectrum (Table 2) of 5, signals that are characteristic
of the 8-methylflavone skeleton were observed.14) Two sig-
nals at d 2.27 (3H, s) and 3.88 (3H, s) were assigned to the
methyl group on C-8 in ring A and the methoxy group at-
tached to C-3 in ring C, respectively. The signals at d 8.01
(br s), 12.69 (s), and 9.21 (br s), which disappeared on addi-
tion of D2O, were assignable to the protons of two hydroxyl
groups attached to C-4�, C-5, and C-7, respectively.14) The
proton at d 6.34 (1H, s) was assigned to H-6. Moreover, the
aromatic protons at d 8.09 (2H, d, J�8.8 Hz) and d 7.05 (2H,
d, J�8.8 Hz) were assigned to H-2�/6� and H-3�/5�, respec-
tively.14) The 1H-NMR spectrum of 5 is similar to that of 4,
the only difference being due to the existence of a methoxy
group on C-3 in 5 instead of a hydroxy group on C-3 in 4,
and the existence of a hydroxy group attached to C-7 in 5 in-
stead of a methoxy group attached to C-7 in 4, which caused
some minor shifts of the 1H data for some protons. The
methoxy signal upfield shift from d 3.97 (s) to d 3.88 (s), the

hydroxyl proton signal (OH-5) downfield shift from d 12.19
(s) to d 12.69 (s), the aromatic proton signal (H-6) upfield
shift from d 6.49 (s) to d 6.34 (s), and the H-2� and H-6� aro-
matic proton signal upfield shift from d 8.21 to d 8.09 were
observed. The 13C-NMR spectrum (Table 2) showed the
characteristic 8-methylflavone signals at d 179.9, 102.0, and
7.9, corresponding to C-4 (CO), C-8 (C) and Me-8, respec-
tively.15,16) Moreover, this spectrum also indicated the re-
quired twelve aromatic carbons (d 99.0—161.1), and one
methoxy carbon at d 60.3.

Unambiguous assignments for the 1H- and 13C-NMR sig-
nals in 5 were made by combination of the DEPT, NOESY,
1H–1H COSY, HMQC, and HMBC spectra. The structure of
5 reconciles these data. In the 1H–1H COSY spectrum, the
aromatic protons at d 8.09 (H-2�, H-6�) were coupled to the
protons at d 7.05 (H-3�, H-5�) observed only. The methoxy
protons at d 3.88 (OMe-3) showed correlations with C-3 sig-
nal in the HMBC spectrum (Fig. 5) and showed correlations
with aromatic protons at d 8.09 (H-2�, H-6�) in the NOESY
spectrum (Fig. 4). These findings also supported the methoxy
group attachment to the C-3 position. Furthermore, in the
HMBC spectrum, there were correlations between H-6 and
C-5, C-7 and C-10, and between OH-5 and C-5, C-6, and C-
10. From the above evidence, the aromatic proton at d 6.34
was assigned to be at the C-6 position. Moreover, the methyl
protons at d 2.27 showed correlations with carbon signals C-
7, C-8, and C-9 in the HMBC spectrum, and the cross-peaks
between the signals of the methyl protons at d 2.27 and H-
2�/H-6� in the NOESY spectrum, indicating that the methyl
group must be at the C-8 position. These results indicate 
unambiguously that compound 5 is 5,7,4�-trihydroxy-3-
methoxy-8-methylflavone, which we have named tupichinol
F.

Seven of the known compounds were identified by com-
parison their physical and spectral data with the literature
values, namely, 3-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-
chromen-4-one (6)5) and 3,5-dihydroxy-2-(4-hydroxy-
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Fig. 3. NOESY Correlations of 4

Fig. 4. NOESY Correlations of 5

Fig. 5. HMBC Correlations of 5



phenyl)-7-methoxy-chromen-4-one (7),6) 3,7-dihydroxy-2-(4-
hydroxyphenyl)-chromen-4-one (8),7) 2-(4-hydroxy-
phenyl)-4H-chromen-7-ol (9),8) 3,5,7,8-tetramethoxy-2-(4-
methoxyphenyl)-chromen-4-one (10),9,10) oxoglaucine (11),11)

and oxopurpureine (12).11)

Experimental
Optical rotations were measured with a JASCO DIP-370 digital polarime-

ter. Melting points were determined using a Yanagimoto micro-melting point
apparatus and are uncorrected. 1H- and 13C-NMR spectra were acquired on a
Varian Germini 200 MHz FT-NMR running at 400 Mz (1H) or 100 MHz
(13C), respectively. Chemical shifts (d ) were reported in ppm relative to
residual solvent signals. The multiplicities of 1H signals are designated by
the following abbreviations: s�singlet; d�doublet; t�triplet; q�quartet;
br�broad; m�multiplet. All coupling constants, J, are reported in Hertz.
13C-NMR spectra were acquired on a broad band decoupled mode and the
multiplicities were obtained using DEPT sequences. LR-EI-MS spectra were
obtained with a JEOL JMS-SX/SX 102A mass spectrometer or a Quattro
GC/MS spectrometer with a direct inlet system. High-resolution EI-MS was
measured on a JEOL JMS-HX 110 mass spectrometer. Silica gel 60
(Macherey-Nagel, 230—400 mesh) was used for column chromatography,
precoated silica gel plates (Macherey-Nagel, SIL G-25 UV254, 0.25 mm)
were used for analytical TLC, and precoated silica gel plates (Macherey-
Nagel, SIL G/UV254, 0.25 mm) were used for preparative TLC. The spots
were detected by spraying with 50% H2SO4 followed by heating on a hot
plate.

Plant Material Tupistra chinensis was purchased in Kaohsiung, Tai-
wan, in August 1997. A voucher specimen (No. 970808) is deposited in the
Graduate Institute of Natural Products, Kaohsiung Medical University,
Kaohsiung, Taiwan.

Extraction and Isolation The air-dried underground parts of T. chinen-
sis (17 kg) were extracted repeatedly with MeOH at room temperature. The
combined MeOH extracts were evaporated and partitioned to yield hexane
(140 g), CHCl3 (60 g), EtOAc (100 g), n-BuOH (130 g), and aqueous (280 g)
extracts. The CHCl3 extract was concentrated and chromatographed over sil-
ica gel and eluted with hexane–EtOAc mixtures of increasing polarity to
yield 11 fractions. Fraction 2, eluted from n-hexane–EtOAc (1 : 3), was chro-
matographed on silica gel elution with CHCl3–MeOH (10 : 1) to afford com-
pound 6 (11 mg), and 4 (8 mg), and 10 (9 mg). Fraction 3, eluted from 
n-hexane–EtOAc (1 : 4), was subjected on silica gel elution with
CHCl3–MeOH (100 : 11) to afford compound 11 (15 mg), and 12 (13 mg).
Fraction 4, eluted from n-hexane–EtOAc (1 : 5), was chromatographed on
silica gel elution with CHCl3–MeOH (100 : 12) to afford compound 2
(15 mg). The EtOAc extract was concentrated and chromatographed over sil-
ica gel and eluted with CHCl3–MeOH mixtures of increasing polarity to
yield 10 fractions. Fraction 2 was rechromatographed on silica gel elution
with CHCl3–MeOH (100 : 3) to afford compound 8 (10 mg). Fraction 2 was
rechromatographed on silica gel elution with CHCl3–MeOH (100 : 5) to af-
ford compound 5 (10 mg), and 9 (8 mg). Fraction 3 was rechromatographed
on silica gel elution with CHCl3–MeOH (100 : 5) to afford compound 3
(13 mg). Fraction 10 was rechromatographed on silica gel elution with
CHCl3–MeOH (6 : 1) to afford compound 1 (25 mg).

Tupichinin A (1): Colorless oil, [a]D
24 �12.6° (c�2.30, MeOH). FAB-MS

(positive mode) m/z: 515 [M�Na]�. HR-FAB-MS m/z: Found 515.2832
[M�Na]� (Calcd 515.2829). 1H-NMR (400 MHz, CD3OD) and 13C-NMR
(100 MHz, CD3OD) spectral data see Table 1.

Determination of the Absolute Configuration of Sugar Compound 1
(15 mg) was refluxed for 2 h with 4 N HCl in MeOH (35 ml). The acid hy-
drolysate was concentrated, extracted with EtOAc. The acidic mother liquor
was neutralized with Na2CO3, filtered, and evaporated to dryness for exami-
nation of the sugar moiety, which proved to D-(�)-glucose by detection on
HPLC (HITACHI L7100) eluted with MeOH, refractive index detector
(BISCHOFF), using LiChrospher 60 (5 mm) column with a flow rate of

1.0 ml/min. Peak of the hydrolysate of 1 was detected at 2.53 min. Retention
time for authentic sample D-(�)-glucose was 2.53 min.

Tupichilignan A (2): Colorless oil, [a]D
24 �2.8° (c�1.45, acetone). EI-MS

m/z: 402 [M]� (21), 167 (100), 151 (79), 139 (57). HR-EI-MS m/z: Found
402.1683 [M]� (Calcd for C22H26O7 402.1678). IR (neat) nmax cm�1: 3350
(OH), 1750 (CO), 1600, 1580, 1500. UV (EtOH) lmax (log e) 233 (4.24),
280 (3.80) nm. 1H-NMR (400 MHz, CDCl3) d : 6.81—6.63 (6H, aromatic
protons), 4.64 (1H, d, J�6.8 Hz, H-5), 3.92 (1H, m, H-4b), 3.88 (3H, s,
–OCH3), 3.87 (3H, s, –OCH3), 3.85 (3H, s, –OCH3), 3.83 (1H, m, H-4a),
3.82 (3H, s, –OCH3), 3.07, 2.92 (each 1H, dd, J�14.2, 5.2 Hz, H2-6), 2.97
(1H, m, H-2), 2.62 (1H, quintet, J�7.2 Hz, H-3). 13C-NMR (100 MHz,
CDCl3) d : 179.1 (C-1, s), 43.8 (C-2, d), 45.1 (C-3, d), 68.3 (C-4, t), 75.3 (C-
5, d), 34.9 (C-6, t), 149.3 (d), 149.1 (d), 148.9 (d), 147.8 (d), 134.0 (d),
130.1 (d), 121.7 (d), 118.2 (d), 112.8 (d), 111.1 (d), 111.0 (d), 109.0 (d),
55.9 (q), 55.9 (q), 55.9 (q), 55.8 (q).

Tupichinol D (3): Colorless needles, [a]D
24 �8.3° (c�1.20, MeOH). EI-

MS m/z: 257 [M�CH3]
� (100), 222 (65), 207 (92), 179 (34). HR-EI-MS

m/z: Found 272.1053 [M]� (Calcd for C16H16O4 272.1048). 1H-NMR
(400 MHz, acetone-d6) and 13C-NMR (100 MHz, acetone-d6) spectral data
see Table 2.

Tupichinol E (4): Yellow oil. EI-MS m/z: 314 [M]� (69), 271 (19), 121
(44), 105 (100). HR-EI-MS m/z: Found 314.0795 [M]� (Calcd for C17H14O6

314.0790). 1H-NMR (400 MHz, acetone-d6) and 13C-NMR (100 MHz, ace-
tone-d6) spectral data see Table 2.

Tupichinol F (5): Yellow oil. EI-MS m/z: 314 [M]� (45), 313 (47), 285
(18), 271 (28), 121 (59), 57 (100). HR-EI-MS m/z: Found 314.0798 [M]�

(Calcd for C17H14O6 314.0795). 1H-NMR (400 MHz, acetone-d6) and 13C-
NMR (100 MHz, acetone-d6) spectral data see Table 2.
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