Chemical Constituents of *Tupistra chinensis* Rhizomes Wen-Bin Pan, Li-Mei Wei, Li-Lan Wei, and Yang-Chang Wu*,b ^a Department of Applied Chemistry, Fooyin University; Kaohsiung County 831, Taiwan: and ^b Graduate Institute of Natural Products, Kaohsiung Medical University; Kaohsiung 807, Taiwan. Received December 7, 2005; accepted April 4, 2006 A new pregnane glycoside, a dibenzylbutyrolactone lignan, 5-hydroxymatairesinol dimethyl ether, and three new flavonoids, including one 8-methylflavan-3-ol, and two 8-methylflavones, together with five known flavonoids and two known alkaloids were isolated from the rhizomes of *Tupistra chinensis*. The structures of all compounds were elucidated by spectral studies. Key words Tupistra chinensis; Liliaceae; pregnane glycoside; lignan; flavonoid; alkaloid Tupistra chinensis BAKER (Liliaceae) is endemic to southwestern regions of the People's Republic of China. 1) As a Chinese folk medicine, this species has usually been used for treatment of rheumatic diseases and snake-bite. 1) In previous investigations, 2-4) we have reported the isolation and structural elucidation of several steroidal sapogenins, flavans, and a pregnane genin from this species. Our current phytochemical study for new efficient agents has led to the isolation of a new pregnane glycoside, namely tupichinin A (1) and a first naturally-occurring lignan possessing a hydroxyl group at the benzyl position, 5-hydroxymatairesinol dimethyl ether, namely tupichilignan A (2), three new flavonoids, tupichinol D (3), tupichinol E (4), and tupichinol F (5), together with five known flavonoids, 3-hydroxy-2-(4-hydroxyphenyl)-7methoxychromen-4-one (6),5) rhamnocitrin (7),6) 3,7-dihydroxy-2-(4-hydroxyphenyl)-chromen-4-one (8), (8droxyphenyl)-4H-chromen-7-ol (9),8 and 3,5,7,8-tetramethoxy-2-(4-methoxyphenyl)-chromen-4-one (10), 9,10) and two known alkaloids, oxoglaucine (11)111 and oxopurpureine (12). 11) The characterization and structure elucidation of 1-5 are reported herein. Tupichinin A (1) was obtained as colorless oil, $[\alpha]_D^{24}$ –12.6° (c=2.30, MeOH), showed in the HR-FAB-MS (positive mode) a pseudomolecular $[M+Na]^+$ peak at m/z 515.2832 (Calcd 515.2829), consistent with the molecular formula $C_{27}H_{40}O_8$, suggesting a pregnane glycoside skeleton with eight degrees of unsaturation. Unambiguous full assignments for the ¹H- and ¹³C-NMR signals were listed in Table 1 based on an analysis of the combination of distortionless enhancement by polarization transfer (DEPT), ¹H-¹H correlated spectroscopy (¹H-¹H COSY), heteronuclear chemical shift correlation (HET-COR), long range-heteronuclear chemical shift correlation (LR-HETCOR), and nuclear Overhauser and exchange spectroscopy (NOESY) spectra data. In the ¹H-NMR spectrum in CD₃OD of 1, signals that are characteristic of the pregnane glycoside skeleton were observed. The ¹H-NMR spectrum showed the presence of two methyl groups at δ 0.93 (3H, s, Me-18) and 1.06 (3H, s, Me-19) and an anomeric proton at δ 4.33 (1H, d, $J=8.0\,\mathrm{Hz}$). Evidence for the presence of a methyl ketone and two double bonds at C-5 and C-16 came from a three-proton singlet at δ 2.26 and two vinylic proton signals at δ 5.49 (1H, d, J=5.6 Hz) and 6.90 (1H, dd, J=3.2, 1.6 Hz), respectively. Two oxymethine proton resonances at δ 3.78 (1H, dd, J=12.0, 4.4 Hz) and 4.05 (1H, br s) were assigned to H-1 and H-3, respectively. The fully decoupled ¹³Cand DEPT NMR spectra of 1 exhibited 27 carbon signals, which consisted of three methyls, seven methylenes, 12 methines, and five quaternary carbons. One carbonyl carbon at δ 199.5 (C-20); two vinylic carbons at d 140.2 (C-5) and 125.3 (C-6); an anomeric carbon at δ 102.9 (C-1' of glucose); and two methyl groups at d 16.2 (C-18) and 13.2 (C-19) were also confirmed in ¹³C-NMR spectra. In the ring D of 1, two vinylic carbon signals at δ 147.2 (CH) and 156.7 (C) were assigned to the C-16 and C-17, respectively. The two signals at δ 27.1 (Me) and 199.5 (C) arose from the methyl ketone, which was attached to ring D. In the NOESY spectrum (Fig. 1), the three-proton signal at δ 2.26 (Me-21) showed correlations with the proton signals at δ 6.90 (H-16) and 0.93 (Me-18). Moreover, in the LR-HETCOR spectrum (Fig. 2), one carbonyl carbon at δ 199.5 (C-20) exhibited correlation with the proton signal at δ 6.90 (H-16), and the ¹³C signal at δ 156.7 (C-17) showed correlation with the proton signal at δ 0.93 (Me-18). These findings further support the methyl ketone was attached to the C-17 position. The methylene protons at δ 2.00 (1H, m, H-2 α) and δ 2.71 (1H, m, H-2 β) were July 2006 955 Table 1. ${}^{13}\text{C-}$ and ${}^{1}\text{H-NMR}$ Data for $\mathbf{1}^{a)}$ and $\mathbf{1a}^{b)}$ (100, 400 MHz) | D ''' | 1 | | 1a | | | |----------|--------------------|---|------------------------------------|---------------------------------------|--| | Position | $\delta_{ ext{C}}$ | $\delta_{\mathrm{H}}, J \left(\mathrm{Hz} \right)$ | $\delta_{\scriptscriptstyle m C}$ | $\delta_{\mathrm{H}}, J(\mathrm{Hz})$ | | | 1 | 76.0, d | 3.78, dd (12.0, 4.0) | 75.1, d | 4.51, dd (11.6, 4.4) | | | 2 | 36.7, t | 2.00 , m, $H\alpha$ | 40.8, t | 2.39, dd (14.8, 4.4), $H\alpha$ | | | | | 1.71, m, H $oldsymbol{eta}$ | | 2.16, dd (4.8, 11.6), H β | | | 3 | 75.4, d | 4.05, br s | 66.5, d | 4.37, br s | | | 4 | 39.1, t | 2.28 , m, H α | 41.1, t | 2.40, br d (14.4), H α | | | | | 2.51 , d (14.4), H β | | 2.73, br d (14.4), H β | | | 5 | 140.2, s | | 140.5, s | | | | 6 | 125.3, d | 5.49, d (5.6) | 124.3, d | 5.69, d (6.0) | | | 7 | 32.5, t | 1.78, m, H α | 31.9, t | 1.70, m, H α | | | | | 1.95, m, H β | | 1.96, m, H β | | | 8 | 32.4, d | 1.65, m, H β | 31.5, d | 1.65, m, H β | | | 9 | 52.1, d | 1.35, td, (12.0, 8.0), $H\alpha$ | 51.8, d | 1.62, m, H α | | | 10 | 46.9, s | | 46.0, s | | | | 11 | 24.8, t | 2.38 , m, H α | 24.3, t | 2.98, ddd (14.4, 4.8, 4.0), Ha | | | | | $1.62, m, H\beta$ | | 1.90, m, H β | | | 12 | 36.5, t | 1.35, m, H α | 35.8, t | 1.52, td, (14.4, 4.0), $H\alpha$ | | | | | 2.28 , m, H β | | 2.67, ddd, (14.4, 4.8, 2.8), H | | | 13 | 44.9, s | , , | 44.7, s | · · · · · · · · · · · · · · · · · · · | | | 14 | 58.0, d | 1.47, m, H α | 56.8, d | 1.43, m, H α | | | 15 | 33.5, t | 2.30, m | 32.5, t | 2.13 , m, H α | | | | , | , | , | 1.94, dd, (12.0, 1.6), H β | | | 16 | 147.2, d | 6.90, dd, (3.2, 1.6) | 144.5, d | 6.57, dd, (3.2, 1.6) | | | 17 | 156.7, s | , (, | 155.6, s | ,, (- · · , · · ·) | | | 18 | 16.2, q | 0.93, s | 16.2, q | 1.03, s | | | 19 | 13.2, q | 1.06, s | 13.2, q | 1.35, s | | | 20 | 199.5, s | ,- | 196.3, s | | | | 21 | 27.1, q | 2.26, s | 27.0, q | 2.21, s | | | 1' | 102.9, d | 4.33, d, (8.0), H α | , 1 | | | | 2' | 74.9, d | 3.16, t, (8.0) | | | | | 3' | 78.2, d | 3.35, m | | | | | 4' | 71.7, d | 3.30, m | | | | | 5' | 77.9, d | 3.27, m | | | | | 6' | 62.8, t | 3.66, dd (11.6, 5.2) | | | | | O | 02.0, t | 3.86, dd (11.6, 2.0) | | | | a) Spectra were measured in CD₃OD. b) Spectra were measured in C₅D₅N.⁴⁾ Fig. 1. NOESY Correlations of 1 Fig. 2. LR-HETCOR Correlations (C to H) of 1 determined, and were coupled to both of the two oxygenated methine protons at δ 3.78 (H-1) and δ 4.05 (H-3) in the $^1\text{H}-^1\text{H}$ COSY spectrum. The methylene protons at δ 2.28 (H-4 α) and δ 2.51 (H-4 β) were in turn coupled with the oxygenated methine proton at δ 4.05 (H-3). These findings sup- ported the placement of two hydroxyl groups on C-1 and C-3 positions. Furthermore, two signals at δ 76.0 (CH), and 75.4 (CH) were assigned to the C-1 and C-3 positions, respectively, from the HETCOR spectrum. The coupling patterns of H-1 at δ 3.78 (1H, dd, $J_{1\alpha,2\beta}$ =12.0, $J_{1\alpha,2\alpha}$ =4.4 Hz) and H-3 at δ 4.05 (1H, brs) indicated that H-1 and H-3 are α -axial and β -equatorial, respectively. The structure of the saccharide moiety of 1 and its linkage position to the aglycone moiety were determined by the following data. On comparison of the ¹³C signals of 1 with those of pregnane 1a, ⁴⁾ a set of additional six signals, corresponding to a β -D-glucopyranosyl unit appeared. The signal due to the C-3 carbon, which was observed at δ 66.5 in 1a, downfield shift to δ 75.4, accompanied by upfield shifts of the signal due to C-2 and C-4 by 4.1 and 2.0 ppm, respectively, indicating the sugar moiety was linked at C-3 position. The assignments of the ¹H and ¹³C signals due to the saccharide moiety were as shown in Table 1. In the LR-HETCOR spectrum, the anomeric proton signal at δ 4.33 exhibited correlations with the ¹³C signals at δ 75.4 (C-3 of aglycone) and 102.9 (C-1' of glucose). In the NOESY spectrum, the anomeric proton signal at δ 4.33 exhibited correlations with the proton signals at δ 4.05 (H-3 of aglycone) and 2.00 (H-2 α of aglycone). The α -configuration of the anomeric carbon of glucopyranosyl unit was determined by $J_{\text{H1-H2}}$ value (>7.0 Hz). 956 Vol. 54, No. 7 To confirm the nature of the sugar unit and to determine its absolute configuration, compound 1 was subjected to acid hydrolysis (4 N HCl), followed by HPLC analysis on a chiral column in comparison with D-(+)-glucose. By this procedure the sugar was identified to belong to the common D-series. The relative stereochemistry of **1** was also established from the NOESY spectrum. NOESY correlations between H-1 α and H-9 α , and between H-6 and H-4 α indicated α -axial and β -equatorial configurations of H-1 and H-3, respectively. Based on the above spectroscopic evidence, the structure of **1** was established as 1 β -hydroxypregna-5,16-dien-3- β -ol-20-one 3-O- β -D-glucopyranoside, namely tupichinin A. Tupichilignan A (2) was isolated as colorless oil, $[\alpha]_D^{24}$ -2.8° (c=1.45, acetone). Its molecular formula $C_{22}H_{26}O_7$ was established by EI-MS ([M]⁺, m/z 402) and HR-EI-MS (m/z 402.1683). The ¹H-NMR spectrum of 2 displayed signals for two methine protons at δ 2.97 (1H, m, H-2) an δ 2.62 (1H, quint., $J=7.2\,\mathrm{Hz}$, H-3), an oxygenated methylene at δ 3.92 (1H, m, H-4 β) and 3.83 (1H, m, H-4 α), two set of ABX systems of the phenyl protons at δ 6.63—6.81 (6H), an oxymethine proton at δ 4.64 (1H, d, J=7.2 Hz, H-5), and two benzylic protons at δ 2.92 (1H, dd, J=14.2, 5.2 Hz, H-6) and 3.07 (1H, dd, J=14.2, 5.2 Hz, H-6). Furthermore, the ¹H-NMR spectrum showed strong singlets at δ 3.82, 3.85, 3.87, and 3.88 associated with aromatic methoxy groups. Lopes et al. 12) reported that trans-dibenzylbutyrolactone tented to show the distinct nonequivalence of the protons of the C-4 methylene group (δ 3.9, 4.2) in the ¹H-NMR spectrum. In contrast, the *cis*-derivative, the hydrogens of the C-methylene group were almost equivalent in the δ 4.0—4.1 range. The ¹H-NMR spectrum of 2 showed the characteristic signals (H-4; δ 3.83, 3.92) of a *trans*-2,3-dibenzylbutyrolactone lignan. The presence of a γ -lactone was suggested by a ¹³C-NMR shift at δ 179.1. The chemical shift of the signal due to the H-5 indicates that the configuration at C-5 is R, according to Nishibe et al. 13) The 1H- and 13C-NMR spectra of 2 were quite similar to those of 5-hydroxymatairesinol dimethyl ether. 13) The signals assigned to C-2 and C-3 were proposed at δ 45.2 and 43.9 by Nishibe et al. 13 However, careful examination of the spectroscopic data revealed the significant reassignment of 13 C-NMR signals at C-2 and C-3 as δ 43.8 and 45.1, respectively. In the COSY spectrum, the proton signal at δ 2.97 (H-2) exhibited correlations with the proton signals at δ 2.62 (H-3), 2.92 (H-6), and 3.07 (H-6). The proton signal at δ 2.62 (H-3) exhibited correlations with the proton signals at δ 3.83 (H-4 α), 3.92 (H-4 β), and 4.64 (H-5). In the NOESY spectrum, the proton signal at δ 2.97 (H-2) exhibited correlations with the proton signals at δ 4.64 (H-5), 2.92 (H-6), and 3.07 (H-6). The proton signal at δ 2.62 (H-3) exhibited correlations with the proton signals at δ 3.92 (H- 4β), and 4.64 (H-5). These observations support the above assignment. Thus the previously reported assignment is unconvincing. Unambiguous assignments for the ¹H- and ¹³C-NMR signals in 2 were made by combination of the DEPT, NOESY, ¹H-¹H COSY, and HETCOR spectra. Thus the structure of 2 was determined as 5-hydroxymatairesinol dimethyl ether, which we named tupichilignan A. Compound 3 was obtained as colorless prisms, $[\alpha]_D^{24}$ -8.3° (c=1.20, MeOH). The HR-EI-MS showed a [M]⁺ ion at m/z 272.1053 (Calcd 272.1048), consistent with the molecular formula, C₁₆H₁₆O₄. The ¹H-NMR spectrum (Table 2) of 3 is similar to that of (2R,3R)-3,4'-dihydroxy-7-methoxy-8-methylflavan (tupichinol A), 4) except for the presence of one additional hydroxyl group signal at δ 8.00 (br s) and the absence of a methoxyl signal at δ 3.78 (1H, s). This suggests that a singlet at δ 8.00 for one hydroxyl group should be located at C-7, with the oxygenation at C-7 only in ring A. In the ¹H-NMR spectrum (Table 2) of 3, signals that are characteristic of the 8-methylflavan-3-ol skeleton were observed. 14) A signal at δ 2.01 (3H, s) was assigned to the methyl group on C-8 in ring A. The oxymethine protons at δ 5.02 (1H, s) and 4.22 (1H, brs) were assigned to H-2, and H-3, respectively. The methylene protons at δ 2.73 (1H, dd, J=16.2, 4.4 Hz) and δ 3.14 (1H, dd, J=16.2, 4.4 Hz) were assignable Table 2. ¹H- and ¹³C-NMR Data for Compounds 3, 4, and 5 in Acetone-d₆ | Position | 3 | | 4 | | 5 | | |----------|---|--------------------|-----------------------------------|------------------------------------|---------------------------------------|------------------------------------| | | $\delta_{ ext{H}}, J(ext{Hz})$ | $\delta_{ ext{C}}$ | $\delta_{ ext{H}}, J ext{ (Hz)}$ | $\delta_{\scriptscriptstyle m C}$ | $\delta_{\mathrm{H}}, J(\mathrm{Hz})$ | $\delta_{\scriptscriptstyle m C}$ | | 2 | 5.02, s | 80.2 | | 144.0 | | 155.4 | | 3 | 4.22, br s | 67.7 | | 132.7 | | 139.5 | | 4 | 2.73, dd (16.2, 4.4), H α
3.14, dd (16.2, 4.4), H β | 34.9 | | 177.8 | | 179.9 | | 5 | 6.71, d (8.2) | 128.5 | | 160.9 | | 160.7 | | 6 | 6.32, d (8.2) | 109.1 | 6.49, s | 95.7 | 6.34, s | 99.0 | | 7 | | 133.5 | | 164.7 | | 161.1 | | 8 | | 112.0 | | 104.2 | | 102.0 | | 9 | | 131.2 | | 147.9 | | 156.7 | | 10 | | 116.7 | | 105.1 | | 105.0 | | 1' | | 130.8 | | 124.3 | | 123.1 | | 2',6' | 7.38, d (8.8) | 129.5 | 8.21, d (9.2) | 131.2 | 8.09, d (8.8) | 131.3 | | 3',5' | 6.83, d (8.8) | 116.2 | 7.04, d (9.2) | 117.1 | 7.05, d (8.8) | 116.6 | | 4′ | | 132.3 | | 148.2 | | 151.8 | | OH-3 | 3.65, br s | | 9.24, br s | | | | | OMe-3 | | | | | 3.88, s | 60.3 | | OH-5 | | | 12.19, s | | 12.69, s | | | OH-7 | 8.00, br s | | | | 9.21, br s | | | OMe-7 | | | 3.97, s | 57.4 | | | | Me-8 | 2.01, s | 9.3 | 2.28, s | 8.4 | 2.27, s | 7.9 | | OH-4' | 8.35, br s | | 8.11, br s | | 8.01, br s | | July 2006 957 to H-4 α and H-4 β , respectively.⁴⁾ The signals at δ 3.65 (br s), 8.00 (br s), and 8.35 (br s) which disappeared on addition of D₂O, was assignable to three protons of the hydroxyl groups attached to C-3, C-7, and C-4', respectively.^{4,15)} The protons at δ 6.71 (1H, d, J=8.2 Hz) and δ 6.32 (1H, d, J=8.2 Hz) were assigned to H-5 and H-6, respectively.^{4,15)} Furthermore, the aromatic protons at δ 7.38 (2H, d, J=8.8 Hz) and δ 6.83 (2H, d, J=8.8 Hz) were assigned to H-2'/6' and H-3'/5', respectively.¹⁴⁾ The heterocyclic coupling constant (J_{2,3}<2 Hz) confirmed the relative 2,3-cis configuration, while the optical rotation [α]_D²⁴ -8.3° (c=1.20, MeOH) verified the 2R, 3R absolute configuration in 3.⁴⁾ Thus the structure of 3 was determined as (2R,3R)-3,7,4'-trihydroxy-8-methylflavan, which we have named tupichinol D. Compound 4 was obtained as yellow oil. The HR-EI-MS showed the $[M]^+$ ion at m/z 314.0795 (Calcd 314.0790), consistent with the molecular formula, C₁₇H₁₄O₆. In the ¹H-NMR spectrum (Table 2) of 4, signals that are characteristic of the 8-methylflavone skeleton were observed. 14,15) Two signals at δ 2.28 (3H, s) and 3.97 (3H, s) were assigned to the methyl group on C-8 and the methoxyl group attached to C-7 in ring A, respectively. The signals at δ 8.11 (br s), 9.24 (br s), and 12.19 (br s) which disappeared on addition of D_2O , were assignable to the protons of three hydroxyl groups attached to C-4', C-3, and C-5, respectively. 15) The proton at δ 6.49 (1H, s) was assigned to H-6.141 Furthermore, the aromatic protons at δ 8.21 (2H, d, J=9.2 Hz) and δ 7.04 (2H, d, $J=9.2 \,\mathrm{Hz}$) were assigned to H-2'/6' and H-3'/5', respectively. 14) The 13C-NMR spectrum (Table 2) showed the characteristic 8-methylflavone signals at δ 177.8, 160.9, and 104.2, corresponding to C-4 (CO), C-5, and C-8, respectively. 15,16) Moreover, this spectrum also indicated one methoxyl carbon at δ 57.4, and one methyl carbon at δ 8.4. In the NOESY spectrum (Fig. 3), the cross-peaks between H-6/OMe-7 and Me-8/H-2'/6' were observed, indicating that the methyl group must be at the C-8 position and the methoxyl group must be at the C-7 position. These results indicate unambiguously that compound 4 is 3,5,4'-trihydroxy-7-methoxy-8-methylflavone, which we have named tupichinol E. Compound 5 was obtained as yellow oil. The HR-EI-MS showed the $[M]^+$ ion at m/z 314.0798 (Calcd 314.0795), consistent with the molecular formula, C₁₇H₁₄O₆. In the ¹H-NMR spectrum (Table 2) of 5, signals that are characteristic of the 8-methylflavone skeleton were observed. 14) Two signals at δ 2.27 (3H, s) and 3.88 (3H, s) were assigned to the methyl group on C-8 in ring A and the methoxy group attached to C-3 in ring C, respectively. The signals at δ 8.01 (brs), 12.69 (s), and 9.21 (brs), which disappeared on addition of D₂O, were assignable to the protons of two hydroxyl groups attached to C-4', C-5, and C-7, respectively. 14) The proton at δ 6.34 (1H, s) was assigned to H-6. Moreover, the aromatic protons at δ 8.09 (2H, d, J=8.8 Hz) and δ 7.05 (2H, d, $J=8.8 \,\mathrm{Hz}$) were assigned to H-2'/6' and H-3'/5', respectively.¹⁴⁾ The ¹H-NMR spectrum of 5 is similar to that of 4, the only difference being due to the existence of a methoxy group on C-3 in 5 instead of a hydroxy group on C-3 in 4, and the existence of a hydroxy group attached to C-7 in 5 instead of a methoxy group attached to C-7 in 4, which caused some minor shifts of the ¹H data for some protons. The methoxy signal upfield shift from δ 3.97 (s) to δ 3.88 (s), the Fig. 3. NOESY Correlations of 4 Fig. 4. NOESY Correlations of 5 Fig. 5. HMBC Correlations of 5 hydroxyl proton signal (OH-5) downfield shift from δ 12.19 (s) to δ 12.69 (s), the aromatic proton signal (H-6) upfield shift from δ 6.49 (s) to δ 6.34 (s), and the H-2' and H-6' aromatic proton signal upfield shift from δ 8.21 to δ 8.09 were observed. The $^{13}\text{C-NMR}$ spectrum (Table 2) showed the characteristic 8-methylflavone signals at δ 179.9, 102.0, and 7.9, corresponding to C-4 (CO), C-8 (C) and Me-8, respectively. $^{15,16)}$ Moreover, this spectrum also indicated the required twelve aromatic carbons (δ 99.0—161.1), and one methoxy carbon at δ 60.3. Unambiguous assignments for the ¹H- and ¹³C-NMR signals in 5 were made by combination of the DEPT, NOESY, ¹H–¹H COSY, HMQC, and HMBC spectra. The structure of 5 reconciles these data. In the ¹H–¹H COSY spectrum, the aromatic protons at δ 8.09 (H-2', H-6') were coupled to the protons at δ 7.05 (H-3', H-5') observed only. The methoxy protons at δ 3.88 (OMe-3) showed correlations with C-3 signal in the HMBC spectrum (Fig. 5) and showed correlations with aromatic protons at δ 8.09 (H-2', H-6') in the NOESY spectrum (Fig. 4). These findings also supported the methoxy group attachment to the C-3 position. Furthermore, in the HMBC spectrum, there were correlations between H-6 and C-5, C-7 and C-10, and between OH-5 and C-5, C-6, and C-10. From the above evidence, the aromatic proton at δ 6.34 was assigned to be at the C-6 position. Moreover, the methyl protons at δ 2.27 showed correlations with carbon signals C-7, C-8, and C-9 in the HMBC spectrum, and the cross-peaks between the signals of the methyl protons at δ 2.27 and H-2'/H-6' in the NOESY spectrum, indicating that the methyl group must be at the C-8 position. These results indicate unambiguously that compound 5 is 5,7,4'-trihydroxy-3methoxy-8-methylflavone, which we have named tupichinol Seven of the known compounds were identified by comparison their physical and spectral data with the literature values, namely, 3-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-chromen-4-one (6)⁵⁾ and 3,5-dihydroxy-2-(4-hydroxy- 958 Vol. 54, No. 7 phenyl)-7-methoxy-chromen-4-one (7), $^{6)}$ 3,7-dihydroxy-2-(4-hydroxyphenyl)-chromen-4-one (8), $^{7)}$ 2-(4-hydroxyphenyl)-4*H*-chromen-7-ol (9), $^{8)}$ 3,5,7,8-tetramethoxy-2-(4-methoxyphenyl)-chromen-4-one (10), $^{9,10)}$ oxoglaucine (11), $^{11)}$ and oxopurpureine (12). $^{11)}$ ## Experimental Optical rotations were measured with a JASCO DIP-370 digital polarimeter. Melting points were determined using a Yanagimoto micro-melting point apparatus and are uncorrected. 1H- and 13C-NMR spectra were acquired on a Varian Germini 200 MHz FT-NMR running at 400 Mz (1H) or 100 MHz (13 C), respectively. Chemical shifts (δ) were reported in ppm relative to residual solvent signals. The multiplicities of ¹H signals are designated by the following abbreviations: s=singlet; d=doublet; t=triplet; q=quartet; br=broad; m=multiplet. All coupling constants, J, are reported in Hertz. ¹³C-NMR spectra were acquired on a broad band decoupled mode and the multiplicities were obtained using DEPT sequences. LR-EI-MS spectra were obtained with a JEOL JMS-SX/SX 102A mass spectrometer or a Quattro GC/MS spectrometer with a direct inlet system. High-resolution EI-MS was measured on a JEOL JMS-HX 110 mass spectrometer. Silica gel 60 (Macherey-Nagel, 230-400 mesh) was used for column chromatography, precoated silica gel plates (Macherey-Nagel, SIL G-25 UV₂₅₄, 0.25 mm) were used for analytical TLC, and precoated silica gel plates (Macherey-Nagel, SIL G/UV_{254} , 0.25 mm) were used for preparative TLC. The spots were detected by spraying with 50% H2SO4 followed by heating on a hot plate. **Plant Material** *Tupistra chinensis* was purchased in Kaohsiung, Taiwan, in August 1997. A voucher specimen (No. 970808) is deposited in the Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan. **Extraction and Isolation** The air-dried underground parts of *T. chinen*sis (17 kg) were extracted repeatedly with MeOH at room temperature. The combined MeOH extracts were evaporated and partitioned to yield hexane (140 g), CHCl₃ (60 g), EtOAc (100 g), n-BuOH (130 g), and aqueous (280 g) extracts. The CHCl₃ extract was concentrated and chromatographed over silica gel and eluted with hexane-EtOAc mixtures of increasing polarity to yield 11 fractions. Fraction 2, eluted from n-hexane-EtOAc (1:3), was chromatographed on silica gel elution with CHCl3-MeOH (10:1) to afford compound 6 (11 mg), and 4 (8 mg), and 10 (9 mg). Fraction 3, eluted from n-hexane-EtOAc (1:4), was subjected on silica gel elution with CHCl₃-MeOH (100:11) to afford compound 11 (15 mg), and 12 (13 mg). Fraction 4, eluted from n-hexane-EtOAc (1:5), was chromatographed on silica gel elution with CHCl₃-MeOH (100:12) to afford compound 2 (15 mg). The EtOAc extract was concentrated and chromatographed over silica gel and eluted with CHCl3-MeOH mixtures of increasing polarity to yield 10 fractions. Fraction 2 was rechromatographed on silica gel elution with CHCl₃-MeOH (100:3) to afford compound 8 (10 mg). Fraction 2 was rechromatographed on silica gel elution with CHCl3-MeOH (100:5) to afford compound 5 (10 mg), and 9 (8 mg). Fraction 3 was rechromatographed on silica gel elution with CHCl3-MeOH (100:5) to afford compound 3 (13 mg). Fraction 10 was rechromatographed on silica gel elution with CHCl₂-MeOH (6:1) to afford compound 1 (25 mg). Tupichinin A (1): Colorless oil, $[\alpha]_D^{24} - 12.6^\circ$ (c=2.30, MeOH). FAB-MS (positive mode) m/z: 515 [M+Na]⁺. HR-FAB-MS m/z: Found 515.2832 [M+Na]⁺ (Calcd 515.2829). ¹H-NMR (400 MHz, CD₃OD) and ¹³C-NMR (100 MHz, CD₃OD) spectral data see Table 1. Determination of the Absolute Configuration of Sugar Compound 1 (15 mg) was refluxed for 2 h with $4 \,\mathrm{N}$ HCl in MeOH (35 ml). The acid hydrolysate was concentrated, extracted with EtOAc. The acidic mother liquor was neutralized with Na₂CO₃, filtered, and evaporated to dryness for examination of the sugar moiety, which proved to D-(+)-glucose by detection on HPLC (HITACHI L7100) eluted with MeOH, refractive index detector (BISCHOFF), using LiChrospher 60 (5 mm) column with a flow rate of 1.0 ml/min. Peak of the hydrolysate of 1 was detected at 2.53 min. Retention time for authentic sample D-(+)-glucose was 2.53 min. Tupichilignan A (2): Colorless oil, $[\alpha]_D^{24} - 2.8^\circ$ (c=1.45, acetone). EI-MS m/z: 402 [M]⁺ (21), 167 (100), 151 (79), 139 (57). HR-EI-MS m/z: Found 402.1683 [M]⁺ (Calcd for $C_{22}H_{26}O_7$ 402.1678). IR (neat) v_{max} cm⁻¹: 3350 (OH), 1750 (CO), 1600, 1580, 1500. UV (EtOH) λ_{max} (log ε) 233 (4.24), 280 (3.80) nm. ¹H-NMR (400 MHz, CDCl₃) δ : 6.81—6.63 (6H, aromatic protons), 4.64 (1H, d, J=6.8 Hz, H-5), 3.92 (1H, m, H-4 β), 3.88 (3H, s, -OCH₃), 3.87 (3H, s, -OCH₃), 3.85 (3H, s, -OCH₃), 3.83 (1H, m, H-4 α), 3.82 (3H, s, -OCH₃), 3.07, 2.92 (each 1H, dd, J=14.2, 5.2 Hz, H₂-6), 2.97 (1H, m, H-2), 2.62 (H, quintet, J=7.2 Hz, H-3). ¹³C-NMR (100 MHz, CDCl₃) δ : 179.1 (C-1, s), 43.8 (C-2, d), 45.1 (C-3, d), 68.3 (C-4, t), 75.3 (C-5, d), 34.9 (C-6, t), 149.3 (d), 149.1 (d), 148.9 (d), 147.8 (d), 134.0 (d), 130.1 (d), 121.7 (d), 118.2 (d), 112.8 (d), 111.1 (d), 111.0 (d), 109.0 (d), 55.9 (q), Tupichinol D (3): Colorless needles, $[\alpha]_{\rm D}^{24}-8.3^{\circ}$ (c=1.20, MeOH). EI-MS m/z: 257 [M-CH₃]⁺ (100), 222 (65), 207 (92), 179 (34). HR-EI-MS m/z: Found 272.1053 [M]⁺ (Calcd for $\rm C_{16}H_{16}O_4$ 272.1048). $^1\rm H\text{-}NMR$ (400 MHz, acetone- d_6) and $^{13}\rm C\text{-}NMR$ (100 MHz, acetone- d_6) spectral data see Table 2. Tupichinol E (4): Yellow oil. EI-MS m/z: 314 [M]⁺ (69), 271 (19), 121 (44), 105 (100). HR-EI-MS m/z: Found 314.0795 [M]⁺ (Calcd for $C_{17}H_{14}O_6$ 314.0790). ¹H-NMR (400 MHz, acetone- d_6) and ¹³C-NMR (100 MHz, acetone- d_6) spectral data see Table 2. Tupichinol F (5): Yellow oil. EI-MS m/z: 314 [M]⁺ (45), 313 (47), 285 (18), 271 (28), 121 (59), 57 (100). HR-EI-MS m/z: Found 314.0798 [M]⁺ (Calcd for $C_{17}H_{14}O_6$ 314.0795). ¹H-NMR (400 MHz, acetone- d_6) and ¹³C-NMR (100 MHz, acetone- d_6) spectral data see Table 2. **Acknowledgments** This work was supported by a grant from the National Science Council of the Republic of China. ## References - Jiang Su New Medical College (ed.), "Dictionary of Traditional Chinese Crude Drugs," Shanghai Scientific Technologic, Shanghai, 1979, p. 907. - 2) Pan W. B., Chang F. R., Wu Y. C., J. Nat. Prod., 63, 861—863 (2000). - Pan W. B., Chang F. R., Wu Y. C., Chem. Pharm. Bull., 48, 1350— 1353 (2000). - 4) Pan W. B., Chang F. R., Wei L. M., Wu Y. C., J. Nat. Prod., 66, 161—168 (2003). - 5) Camarda L., Merlini L., Nasini G., Heterocycles, 20, 39—43 (1983). - 6) Gonnet J., Phytochemistry, 11, 2313—2314 (1972). - 7) Jurd L., Tetrahedron, 23, 1057—1064 (1967). - Iinuma M., Kakuto Y., Camarda L., Merlini L., Nasini G., Heterocycles, 20, 39—43 (1983). - Iinuma M., Kakuto Y., Tanida N., Tanaka T., Lang F. A., *Phytochemistry*, 44, 705—710 (1997). - Rashid M. A., Armstrong J. A., Gray A. I., Waterman P. G., *Phytochemistry*, 31, 1265—1270 (1992). - Chang F. R., Chen C. Y., Wu P. H., Kuo R. Y., Chang Y. C., Wu Y. C., J. Nat. Prod., 63, 746—748 (2000). - Lopes L. M. X., Yoshida M., Gottlieb O. R., Phytochemistry, 22, 1516—1518 (1983). - Nishibe S., Chiba M., Sakushima A., Hisada S., Yamanouchi S., Takido M., Sankawa U., Sakakibara A., Chem. Pharm. Bull., 28, 850—860 (1980). - Coxon D. T., O'Neill T. M., Mansfield J. W., Porter A. E. A., *Phyto-chemistry*, 19, 889—891 (1980). - Takasugi M., Niino N., Nagao S., Anetai M., Masamune T., Shirata A., Takahashi K., Chem. Lett., 1984, 689—692 (1984). - Morimoto S., Nonaka G. I., Nishioka I., Ezaki N., Takizawa N., Chem. Pharm. Bull., 33, 2281—2286 (1985).