
Quantitative structure–activity relationship (QSAR) repre-
sents an attempt to relate structural descriptors of compounds
with their physicochemical properties and biological activi-
ties. It is widely used for the prediction of physicochemical
properties in chemical, environmental, and pharmaceutical
areas.1,2) The main steps involved in this method include the
following: data collection, molecular descriptor selection and
procurement, correlation model development and finally
model evaluation. At present, many types of molecular de-
scriptors have been proposed to describe the structural fea-
tures of the molecules.3—5)

The main focus of these studies is to search for regularity
in the manner in which molecular properties change as mo-
lecular structure changes.6,7) One such property is the hydrol-
ysis of drug molecules. Double ester prodrugs of penicillins
are more susceptible to enzymatic hydrolysis than their sim-
ple alkyl esters but have the problem of poor aqueous solu-
bility. This problem of carboxylic acid prodrugs was over-
come by the synthesis of benzoglycolamide esters.8) The lit-
erature reveals many reports on QSRR (quantitative structure
reactivity relationship).9—15) Chung et al.16) has shown struc-
ture reactivity relationships in chemical hydrolysis of pro-
drugs of nicotinic acid. Similar studies on QSRR were found
in literature.17—19) In such studies the reactivity, in terms of
rate constants, is determined and then correlated with struc-
tural parameters by use of suitable statistical techniques. The
aim of this study was to establish quantitative relationship(s)
between structure of benzogylcolamide esters8) and their
basic hydrolytic rate constants. Bundgaard et al.8) synthe-
sized benzoglycolamide esters and studied their physico-
chemical properties and stability, which were based on quali-
tative observations, which can be fortuitous also. But the cor-
relation of benzoglycolamide ester structure with hydrolytic
rate constant has not yet been investigated.

In view of above and in continuation of our studies on cor-
relation of molecular properties with activity,20—22) we de-
cided to study the usefulness of QSAR in the prediction of
the basic hydrolytic rate constant of benzoglycolamide esters

synthesized by Bundgaard et al.8) The multiple linear regres-
sion (MLR) model has been developed as a calibration model
for predicting the �log kc of compounds belonging to test
set and investigating their linear characteristics. The present
results are important from a point of accurate prediction of
�log kc. Our model can predict the basic hydrolytic rate
constant of variety of a benzoglycolamide esters and it re-
duces the need for different time consuming experiments.

Methodology
The main aim of the present work was development of a quantitative

model to predict the basic hydrolytic rate constant of different benzoglycol-
amide esters. In the present work, the hydrolytic rate constants of 44 benzo-
glycolamide esters synthesized8) were subjected to MLR with their physico-
chemical properties. The best MLR model was used to predict the basic hy-
drolytic rate constants, based on which 7 outliers were removed from the
model set and a final set of 37 compounds were selected for MLR and their
data is listed in Table 1. In multivariate statistics, it is common to define
three types of outliers.23)

1. X/Y relation outliers are substances for which the relationship between
the descriptors (X variables) and the dependent variables (Y variables)
is not the same as in the (rest of the) training data.

2. X outliers. Briefly, a substance is an X outlier if the molecular descrip-
tors for this substance do not lie in the same range as the (rest of the)
training data.

3. Y outliers are only defined for training or test samples. They are sub-
stances for which the reference value of response is invalid.

In light of the above guidelines, seven benzoglycolamide esters were con-
sidered as outliers because their response values [basic hydrolytic constant]
were outside the range in comparison to the other compounds included in
the present study. One of the main problems in developing MLR models is
choosing the proper inputs (descriptors) for them. There are two different
methods of feature selection techniques: objective and subjective methods.
The former method selects the relation between the descriptors themselves,
whereas the latter method defines the relation between the descriptors and
the dependent variable i.e., basic hydrolytic rate constant.

Pearson Correlation Analysis We have employed Pearson’s correlation
analysis, as an objective feature selection method to classify the descriptors.
This technique was adopted for choosing a suitable set of generated descrip-
tors for developing a multiple linear regression model. The best generated
MLR model was used to prepare a calibration model, which predicts the
basic hydrolytic rate constant of benzoglycolamide esters and illustrates the
extension of the linear characteristics of the hydrolytic behavior of these
compounds.
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Descriptor Generation The next step in developing a model is genera-
tion of the numerical description of the molecular structures. The numerical
descriptors are responsible for encoding important features of the structure
of the molecules and can be categorized as hydrophobic, geometric, elec-
tronic and topological characters. Descriptors were calculated for each com-
pound in the data set, using the software Dragon24) and Hyperchem.25) Since

there was large number of descriptors for each compound, we used Pearson’s
correlation matrix as a qualitative model, in order to select the suitable de-
scriptors for MLR analysis. The values of descriptors selected for MLR
model are presented in Table 2.

Regression Analysis The stepwise multiple linear regression procedure
was used for model generation. The stepwise addition method implemented
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Table 1. Training Set and Corresponding Observed, Predicted (MLR), and Residual Basic Hydrolytic Rate Constant

Compounds (1—37)

No. R1 R2 log koa) log kcb) log ko–log kc

1 H H �1.84 �2.14 0.30
2 CH3 H �1.93 �1.78 �0.15
3 C2H5 H �1.82 �1.66 �0.16
4 n-C3H7 H �1.72 �1.61 �0.11
5 i-C3H7 H �1.76 �1.63 �0.13
6 t-C4H9 H �1.71 �1.60 �0.11
7 CH2CONH2 H �1.98 �1.71 �0.27
8 CH(CH3)CONH2 H �1.81 �1.77 �0.04
9 C(CH2OH)3 H �2.00 �1.91 �0.09

10 CH3 C2H5 �1.28 �1.43 0.15
11 C2H5 C2H5 �1.21 �1.14 �0.07
12 n-C3H7 n-C3H7 �1.15 �1.11 �0.04
13 CH2CH�CH2 CH2CH�CH2 �1.26 �1.25 �0.01
14 C4H9 C4H9 �1.05 �0.96 �0.09
15 i-C4H9 i-C4H9 �1.01 �0.97 �0.04
16 CH3 CH2CONH2 �1.37 �1.56 0.19
17 CH3 CH2CH2OH �1.21 �1.40 0.19
18 C2H5 CH2CH2OH �1.21 �1.25 0.04
19 CH2CH(OH)CH3 CH2CH(OH)CH3 �1.13 �1.27 0.14
20 CH2CH2OCH3 CH2CH2OCH3 �1.13 �1.14 0.01
21 CH3 CH2COOC2H5 �1.19 �1.32 0.13
22 CH3 C6H11 �1.20 �1.22 0.02
23 C6H11 C6H11 �1.06 �1.06 0.00
24 CH3 CH2CH2N(CH3)2 �1.25 �1.35 0.10

NR1R2

25 — �1.24 �1.35 0.11

26 — �1.25 �1.18 �0.07

27 — �1.09 �1.22 0.13

28 — �1.27 �1.29 0.02

29 — �1.08 �1.11 0.03

30 — �1.00 �1.11 0.11

31 — �1.23 �1.33 0.10

32 — �1.33 �1.20 �0.13

33 — �1.35 �1.36 0.01

34 — �1.39 �1.18 �0.21

35 — �1.29 �1.35 0.06

36 — �1.21 �1.22 0.01

37 — �1.41 �1.31 �0.10

a) log ko�log k (observed); as reported by Bundgaard et al.8) b) log kc�log k (calculated).



in the SPSS software package25) was used for choosing the descriptors con-
tributing to the hydrolytic rate constant. As a first step, a correlation matrix
was performed for all descriptors with �log kc. The eight descriptors,
charge on amide nitrogen (AN), lipophilic parameter, (log P), molar Volume
(MV), molar refractivity (MR), parachor (Pr), molecular weight (MW), nu-
cleophilic frontal density (NUFD) and nonpolar solvent accessible surface
area (NPSSA) which were showing maximum correlation with �log kc
were chosen for further evaluation. The best MLR model consists of three
descriptors.

The three descriptors appearing in this model are AN, log P, and NUFD.
The main goal of the MLR analysis was developing a model for the predic-
tion of basic hydrolytic rate constant.

Calculation of Statistical Parameters The selected models were vali-
dated by the calculation of following statistical parameters26,27): probable
error of the coefficient of correlation (PE), least square error (LSE), Fried-
man’s lack of fit measure (LOF), standard error of prediction (SEP), quality
value (Q). These parameters were calculated from the following equations.

PE�2(1�r 2)/3√�n

Where, r, correlation coefficient and n, number of compounds used.

Where, Yobs and Ycalc are the observed and calculated values.

LOF�LSE/{1�(C�d ·p/n)}2

Where, LSE, least square error; C, number of descriptors �1; p, number of
independent parameters; n, number of compounds used; d, smoothing pa-

rameter which controls the bias in the scoring factor between equations with
different number of terms and was kept 1.0.

SEP�√�LSE/n

The Quality value, Q is given by

Q�r/Se

Where, Q, Quality value; r, correlation coefficient and Se, standard error.
The predictive ability of MLR models was also quantified in terms of Q2,

which is defined as

The low value of PE, LSE, LOF and SEP and high value of Q and Q2 are
the essential criteria for qualifying the model as the best one.

Results and Discussion
The main goals of the present work were as follows: (1) to

accurately predict the basic hydrolytic rate constant of benzo-
glycolamide esters, (2) to assess the ability of MLR tech-
nique in predicting the hydrolytic behavior of a set of benzo-
glycolamide esters. As can be seen in Table 1, a data set con-
sisting of 37 benzoglycolamide esters with different struc-
tures were chosen to develop the model.

Pearson Correlation Matrix Developing a general
model requires a diverse set of data, and, thereby a large
number of descriptors have to be considered. Descriptors are
numerical values that encode different structural features of
the molecules. Selection of a set of appropriate descriptors
from a large number of them requires a method, which is able
to discriminate between the parameters. We have performed
Pearson correlation matrix by using SPSS on all descriptors
calculated for each molecule. The analysis of the matrix re-
vealed 8 descriptors for the development of MLR model. It is
noteworthy that the three descriptors appearing in the MLR
model show the largest variance in the Pearson correlation
matrix (Table 3). The interrelationship among these parame-
ters are very poor, r�0.430, 0.416 and �0.269 between AN
and log P, AN and NUFD and NUFD and log P, respectively.
Therefore, the Pearson correlation matrix confirms the selec-
tion of these descriptors using MLR technique.

Multiple Linear Regression Analysis as Feature Selec-
tion and Calibration Model A correlation matrix of
�log kc with selected parameters of MLR model was con-
structed and is presented in Table 3. A high interrelationship
was observed only between PR and MR (r�0.996), and PR
and MV (r�0.806) while interrelationship between all other
parameters was less than 0.8. Linear models were formed by
a stepwise addition of terms. A deletion process was then

Q Y Y Y Y2 2 21� � � �( ) ( )obs calc obs mean∑∑{ }

LSE obs calc� �( )Y Y∑ 2
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Table 3. Pearson Correlation Matrix Constructed to Determine the Interre-
lationship among the Parameters

�log kc AN log P MR MV MW NPSSA NUFD PR

�log kc 1.000
AN 0.812 1.000
log P 0.690 0.430 1.000
MR 0.713 0.600 0.742 1.000
MV 0.705 0.612 0.658 0.789 1.000
MW 0.629 0.640 0.527 0.938 0.696 1.000
NPSSA 0.693 0.513 0.835 0.877 0.745 0.732 1.000
NUFD �0.511 �0.416 �0.269 �0.309 �0.443 �0.265 �0.246 1.000
PR 0.700 0.593 0.721 0.996 0.806 0.947 0.856 �0.325 1.000

Table 2. Values of Eight Descriptors of Benzoglycolamide Esters Used in
MLR

No. AN log P MR MV Pr NPSSA MW NUFD

1 �0.42 0.51 49.11 154.7 406.1 73.4 177.2 0.20
2 �0.37 0.86 50.91 166.2 424.7 112.5 193.2 0.20
3 �0.36 1.39 55.54 182.7 464.5 136.4 207.2 0.20
4 �0.36 1.91 60.18 199.2 504.2 115.3 221.3 0.20
5 �0.36 1.69 60.14 199.6 501.6 157.6 221.3 0.20
6 �0.36 2.09 64.78 215.8 539.1 175.8 235.3 0.20
7 �0.35 �0.05 59.11 183.5 498.5 96.9 236.2 0.19
8 �0.36 0.25 59.24 182.0 496.3 98.9 236.2 0.20
9 �0.37 �0.48 69.38 208.3 589.3 137.1 283.3 0.20

10 �0.35 1.81 60.30 197.7 502.0 163.3 221.3 0.15
11 �0.31 2.34 64.94 214.2 541.7 122.3 235.3 0.16
12 �0.32 3.40 74.20 247.2 621.3 214.0 263.3 0.16
13 �0.32 2.43 73.65 237.4 599.3 163.9 259.3 0.18
14 �0.32 4.46 83.47 280.2 700.9 246.6 291.4 0.14
15 �0.31 4.20 83.39 281.0 695.7 231.0 291.4 0.16
16 �0.34 0.53 63.87 198.5 536.1 123.0 250.3 0.18
17 �0.32 1.08 61.84 195.2 518.7 145.9 237.3 0.19
18 �0.32 1.61 66.47 211.7 558.5 110.6 251.3 0.15
19 �0.31 1.50 77.19 243.0 649.5 188.6 295.3 0.18
20 �0.31 2.12 77.69 259.9 660.7 170.1 295.3 0.15
21 �0.32 2.26 71.34 234.2 606.3 155.6 279.3 0.20
22 �0.32 3.31 76.84 242.6 629.6 213.4 275.3 0.20
23 �0.33 5.35 97.93 205.5 798.6 285.3 343.5 0.19
24 �0.32 1.88 73.29 237.9 607.2 200.5 264.3 0.20
25 �0.32 1.92 62.57 193.3 511.6 163.7 233.3 0.20
26 �0.31 2.48 67.17 211.0 551.6 177.8 247.3 0.18
27 �0.31 2.04 71.78 228.7 591.7 198.9 261.3 0.18
28 �0.32 1.51 64.16 202.0 531.9 160.2 249.3 0.16
29 �0.31 3.53 76.50 248.6 629.7 215.9 275.3 0.19
30 �0.31 3.51 76.59 251.0 627.0 215.3 275.3 0.19
31 �0.31 0.39 68.76 208.0 566.0 154.3 263.3 0.16
32 �0.32 2.14 70.83 222.1 578.0 187.4 262.3 0.15
33 �0.32 1.56 76.99 237.1 635.1 203.6 292.0 0.19
34 �0.29 1.40 64.05 187.8 531.7 131.1 263.25 0.19
35 �0.32 1.95 68.67 205.5 571.8 147.5 277.3 0.20
36 �0.32 2.26 73.51 230.9 615.2 187.0 291.3 0.16
37 �0.31 1.06 70.67 211.7 584.5 149.2 276.3 0.18



employed where each variable in the model was held out in
turn and using the remaining parameters models were gener-
ated. Each descriptor was chosen as input for the software
package of SPSS and then the stepwise addition method im-
plemented in the software was used for choosing the descrip-
tors contributing to the hydrolytic rate constant of benzogly-
colamide esters.

The specifications for the best-selected MLR models are
shown in Table 4. The monoparametric model indicated the
importance of charge on amide nitrogen (AN) in contribution
to basic hydrolytic rate constant (model 1, Table 4). Addition
of log P as an additional parameter to AN, significantly in-
creased the correlation from 0.812 to 0.895 (model 2, Table
4). Similarly the addition of NUFD as a third parameter also
increased the correlation from 0.895 to 0.908 (model 3, Table
4). Further the low interrelationship (Table 3) between AN,
log P and NUFD also favors the model expressed by these
descriptors. The MLR model indicated the importance of
electronic parameters AN and NUFD, lipophilic parameter
log P in contribution to basic hydrolytic rate constant. It
should be noted that the addition of other parameters to AN,
log P and NUFD does not improve the correlation coefficient.

Cross Validation The models are cross-validated by
leave one out (LOO) technique and the r2

cv values are pre-
sented in Table 4. Also we have used the following strategy
for testing the validity of the predictive power of the selected
MLR model. The MLR models presented in Table 4 were
cross validated by the calculation of the statistical parameters
PE, LSE, LOF, SEP, Q and Q2, the values are presented in
Table 5. The low values of PE, LSE, LOF, SEP and high val-
ues of Q and Q2 are also in favor of the selected models.

The hydrolytic rate constant of 37 molecules included in

the study was calculated by the MLR model containing AN,
Log P and NUFD, and the values are presented in Table 1.
The residual activity [difference between experimentally ob-
served log k (log ko) and QSAR calculated log k (log kc)] is
0.30 in case of compound 1 while in others it is less than or
equal to 0.2, which indicates the predictability of the MLR
model. Figure 1 shows the plot of MLR predicted versus ex-
perimental values of the basic hydrolytic rate constants of
benzoglycolamide esters. To investigate the existence of a
systemic error in developing the MLR model, the residuals
of MLR predicted values of basic hydrolytic rate constants
were plotted against the experimental values in Fig. 2. The
propagation of the residuals on both sides of zero indicates
that no systemic error exists in the development of MLR
model as suggested by Jalali-Heravi and Kyani.29)

Conclusion
An accurate and versatile MLR model was developed for

predicting the basic hydrolytic rate constant of some benzo-
glycolamide esters in alkaline medium. The problem of se-
lecting the appropriate descriptor as input for MLR model
was overcome by Pearson correlation matrix, which can be
used as a tool for identifying the appropriate descriptors
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Table 4. Best MLR Models for the Prediction of Basic Hydrolytic Con-
stant: (A) 37 Compounds and 1 Parameter, (B) 37 Compounds and 2 Para-
meters, and (C) 37 Compounds and 3 Parameters

Descriptor Coefficient Error t-Test value

(Model 1)a)

Intercept 1.723 0.377 4.573
AN 9.358 1.139 8.216

(Model 2)b)

Intercept 0.844 0.341 2.475
AN 7.280 0.976 7.463
log P 0.099 0.020 4.953

(Model 3)c)

Intercept 1.081 0.346 3.127
AN 6.577 0.993 6.621
log P 0.094 0.019 4.925
NUFD �2.542 1.237 �2.055

a) n�37, r�0.812, r2�0.657, r2
cv�0.535, F�67.50, s�0.175, p�0.01. b) n�37,

r�0.895, r2�0.799, r2
cv�0.691, F�68.71, s�0.135, p�0.01. c) n�37, r�0.908,

r2�0.823, r2
cv�0.689, F�51.55, s�0.129, p�0.01.

Table 5. PE, LSE, LOF, SEP, Q and Q2 Values Calculated for the Derived
Models for Modelling Basic Hydrolytic Rate Constant of Benzoglycolamide
Esters

Model Descriptor PE LSE LOF SEP Q Q 2

1 AN 0.0374 1.06 1.25 0.1692 4.63 0.666
2 AN, log P 0.0217 0.60 0.8021 0.1273 6.60 0.811
3 AN, log P, NUFD 0.0192 0.53 0.8061 0.1197 7.00 0.833

Fig. 1. Plot of the MLR Model Calculated Basic Hydrolytic Rate Con-
stants against the Experimental Values for Benzoglycolamide Esters

Fig. 2. Plot of the Residuals versus Experimental Values of Basic Hy-
drolytic Rate Constant for the Best MLR Model



when a large number of them with different features are
available The MLR model indicated the importance of elec-
tronic parameters AN and NUFD, lipophilic parameter log P
in contribution to basic hydrolytic rate constant. The validity
of the models have been established by the determination of
suitable statistical parameters.
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