Four New Triterpene Glycosides from *Nigella damascena*

Hitoshi YOSHIMITSU,*,*^a* Makiko NISHIDA, *^b* Masafumi OKAWA, *^c* and Toshihiro NOHARA*^d*

^a Faculty of Pharmaceutical Sciences, Sojo University; 4–22–1 Ikeda, Kumamoto 862–0082, Japan: ^b Faculty of Engineering, Kyushu Kyoritsu University; 1–8 Jiyugaoka, Yahata-nishi-ku, Kitakyushu 807–8585, Japan: ^c Faculty of Pharmaceutical Sciences, Fukuoka University; 8–19–1 Nanakuma, Jonan-ku, Fukuoka 814–0180, Japan: and ^d Faculty of Medical and Pharmaceutical Sciences, Kumamoto University; 5–1 Oe-honmachi, Kumamoto 862–0973, Japan. Received November 15, 2006; accepted December 22, 2006; published online December 26, 2006

Four new triterpene glycosides, named nigellosides A, B, C, and D, were from the air-dried aerial parts of *Nigella damascena* **L. (Ranunculaceae), and the structures were elucidated on the basis of spectroscopic data including 2D NMR spectra and chemical evidence. Their chemical structures have been characterized as 3-***O***-**a**-Lrhamnopyranosyl-(1**→**2)-**a**-L-arabinopyranosyl gypsogenin 28-**b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranosyl ester, 3-***O***-**b**-D-glucopyranosyl-(1**→**3)-**a**-L-rhamnopyranosyl-(1**→**2)-**a**-L-arabinopyranosyl gypsogenin 28-**b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranosyl ester, 3-***O***-**a**-L-rhamnopyranosyl-(1**→**2)-**b**-D-xylopyranosyl hederagenin 28-**b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranosyl ester, and 3-***O***-**b**-D-glucopyranosyl-(1**→**3)-**a**-L-rhamnopyranosyl-(1**→**2)-**b**-D-xylopyranosyl hederagenin 28-**b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranosyl ester.**

Key words *Nigella damascena*; nigelloside; oleanene glycoside; Ranunculaceae

The genus *Nigella* with some 20 species belongs to Ranunculaceae. These are distributed from the southern area of Europa to the northern Africa, the southwestern Asia, and the Central Asia. *Nigella damascena* L. (Japanese name, kurotanesou) is cultivated as a garden plant. From its seeds, alkaloid,¹⁾ sesquiterpenes,²⁾ and phenolic compounds³⁾ were isolated. A survey of the literature showed no chemical work being done on the aerial parts of *N. damascena*. As part of our continuing investigation on the chemical constituents in the Ranunculaceous plants, $4-6$) this paper deals with structural elucidation of four new triterpene glycosides, named nigellosides A (**1**), B (**2**), C (**3**), and D (**4**).

Results and Discussion

The methanolic extract of the air-dried aerial parts of *N. damascena* was partitioned into a chloroform–water solvent system. The water-soluble portion was separated by MCI gel CHP20P, octadecyl silica gel (ODS), and silica gel column chromatographies, and finally HPLC to give nigellosides A (**1**), B (**2**), C (**3**), and D (**4**) together with eight triterpene glycosides, $3-O-B-p$ -glucopyranosyl- $(1\rightarrow 3)$ - α -L-rhamnopyranosyl-(1→2)- α -L-arabinopyranosyl hederagenin 28- β -D-glucopyranosyl- $(1\rightarrow6)$ -β-D-glucopyranosyl ester (5) ,⁷⁾ dipsacoside B $(6)^{8}$, 3-*O*- β -D-glucopyranosyl- $(1\rightarrow 3)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - α -L-arabinopyranosyl hederagenin 28- β -Dglucopyranosyl ester (7) ,⁹⁾ 3-*O*- β -D-glucopyranosyl- $(1\rightarrow3)$ - α -L-rhamnopyranosyl-(1→2)- α -L-arabinopyranosyl oleanolic acid 28- β -D-glucopyranosyl-(1→6)- β -D-glucopyranosyl ester (8) ,¹⁰⁾ 3-*O*- β -D-glucopyranosyl- $(1\rightarrow 3)$ - α -L-rhamnopyranosyl-(1→2)- β -D-xylopyranosyl oleanolic acid 28- β -D-glu-

∗ To whom correspondence should be addressed. e-mail: hyoshimi@ph.sojo-u.ac.jp © 2007 Pharmaceutical Society of Japan

copyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl ester (9) ,¹¹⁾ 3- O - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - α -L-arabinopyranosyl oleanolic acid 28-β-D-glucopyranosyl- $(1\rightarrow 6)$ -β-D-glucopyranosyl ester (10) ,¹²⁾ anhuienside C (11) ,¹³⁾ and hederagenin 3-O- α -Lrhamnopyranosyl- $(1\rightarrow 2)$ - α -L-arabinopyranoside (12) .¹⁴⁾

The molecular formula of nigelloside A (**1**) was determined as $C_{53}H_{84}O_{22}$ by high-resolution (HR)-ESI-MS showing a $[C_{53}H_{84}O_{22}Na]$ ⁺ ion at m/z 1095.5361. The ¹H-NMR spectrum revealed signals due to six quaternary methyls at δ 0.87, 0.88, 0.89, 1.05, 1.21, and 1.39, an olefinic proton at δ 5.39 (1H, br s), an aldehyde proton at δ 9.67 (s), and four anomeric protons at δ 4.72 (d, J=5.8 Hz), 5.01 (d, J= 7.6 Hz), 6.06 (br s), and 6.22 (d, $J=7.9$ Hz). The ¹³C-NMR spectrum displayed signals due to six quaternary carbon at δ 30.8, 36.1, 40.1, 42.2, 47.0, and 55.4, an oxygen-bearing methine carbon at δ 80.2, a set of olefinic carbon at δ 122.6 and 144.2, an ester carbonyl carbon at δ 176.5, an aldehyde carbon at δ 207.6, and four anomeric carbons at δ 95.7, 101.4, 102.0, and 105.3. A detailed analysis of these spectral data indicated that 1 was the $3,28$ -bisdesmoside of gypsogenin,¹⁵⁾ having four monosaccharide units. The configuration of the hydroxyl group at C-3, bearing a saccharide moiety, was determined to be β from the coupling constants of the proton (dd, *J*-4.6, 11.5 Hz, H-3). Hydrolysis of **1** afforded L-arabinose, D-glucose, and L-rhamnose, the structure of which was confirmed by the 1 H-NMR coupling pattern and optical rotation using chiral detection in the HPLC analysis, together with gypsogenin. The NMR data could be assigned with the aid of ${}^{1}H-{}^{1}H$ correlation spectroscopy (COSY), ${}^{1}H$ -detected heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond connection (HMBC) experiments. The anomeric centers of the arabinose and glucose moieties were determined to be α - and β -configurations, respectively, from each ${}^{3}J_{\text{H1-H2}}$ value. The anomeric configuration of rhamnose could not be deduced from the $\frac{3}{J_{\text{H1-H2}}}$ value. However, the 13C shifts of the rhamnose were superimposable on those of methyl α -L-rhamnopyranoside. The presence of a 2substituted α -L-arabinopyranosyl (⁴C₁) unit, a 2-substituted β -D-glucopyranosyl (⁴C₁) unit, a terminal β -D-glucopyranosyl (⁴C₁) unit, and a terminal α -L-rhamnopyranosyl (¹C₄)

March 2007 **489** 2007 **120 2018**

Table 1. ¹³C-NMR Data for **1**—4 (in Pyridine- d_5 , 125 MHz, δ ppm)

unit was shown by comparison of the 13 C shifts for each monosaccharide. In the HMBC experiments, long-range correlations were observed between the anomeric proton (δ) 4.72) of 2-substituted arabinosyl moiety and the C-3 (δ 80.2) of gypsogenin, the anomeric proton (δ 5.01) of terminal glucosyl moiety and the C-6' (δ 69.4) of 6-substituted glucosyl moiety, the anomeric proton (δ 6.06) of terminal rhamnosyl moiety and the C-2 (δ 75.3) of 2-substituted arabinosyl moiety, and the anomeric proton (δ 6.22) of 6-substituted glucosyl moiety and the C-28 (δ 176.5) of gypsogenin. From the above evidence, the structure of **1** was concluded to be 3-*O*- α -L-rhamnopyranosyl-(1→2)- α -L-arabinopyranosyl gypsogenin 28- β -D-glucopyranosyl-(1→6)- β -D-glucopyranosyl ester.

The HR-ESI-MS of nigelloside B (**2**) showed a peak at *m*/*z* 1257.5864 corresponding to the molecular formula $[C_{59}H_{94}O_{27}Na]^+$ (Calcd for 1257.5880). The ¹H-NMR data were similar to those of **1** except for the new additional anomeric proton at δ 5.64 (d, J=8.1 Hz). In the ¹³C-NMR spectrum of **2**, signals due to the aglycon moiety and the saccharide moiety, attached to the carboxyl group at C-28, were in good agreement with those of **1**, although the signals due to the saccharide moiety, attached to the hydroxyl group at C-3, were not identical. Hydrolysis of **2** afforded gypsogenin, L-arabinose, D-glucose, and L-rhamnose. Meanwhile, the molecular formula of 2 was higher by $C_6H_{10}O_5$ (hexose unit) than that of **1**. The above data indicated that an additional

glucosyl unit was linked to the saccharide moiety attached to the hydroxyl group at C-3. In the HMBC experiment, the anomeric proton signals at δ 4.65 (d, J=6.3 Hz, ara H-1), 6.17 (br s, rha H-1), and 5.64 (glc H-1") showed long-range correlations with the carbon signals at δ 80.6 (C-3), 74.8 (ara C-2), and 83.3 (rha C-3), respectively. Therefore, the structure of **2** was formulated as $3-O-B-D-glucopyranosyl-(1\rightarrow3)$ - α -L-rhamnopyranosyl-(1→2)- α -L-arabinopyranosyl gypsogenin 28- β -D-glucopyranosyl-(1→6)- β -D-glucopyranosyl ester.

Nigelloside C (**3**) showed a clustered molecular ion at *m*/*z* 1097.5492 $[C_{53}H_{86}O_{22}Na]^+$ in the HR-ESI-MS. The ¹H-NMR spectrum revealed signals due to six quaternary methyls at δ 0.84, 0.85, 0.97, 1.11, 1.12 and 1.17, an olefinic proton at δ 5.39 (1H, dd, $J=2.9$, 3.5 Hz), and four anomeric protons at δ 5.01 (d, *J*=8.0 Hz), 5.04 (d, *J*=7.5 Hz), 6.23 (d, $J=8.1$ Hz), and 6.49 (d, $J=1.2$ Hz). The ¹³C-NMR spectrum displayed signals due to six quaternary carbon at δ 30.7, 36.9, 39.9, 42.2, 43.5, and 47.1, an oxygen-bearing methane carbon at δ 80.9, a set of olefinic carbon at δ 122.9 and 144.1, an ester carbonyl carbon at δ 176.5, and four anomeric carbons at δ 95.7, 101.8, 105.3, and 105.3. These spectral data indicated that **3** was the 3,28-bisdesmoside of hederagenin, $\frac{7}{2}$ possessing four monosaccharide units. The configuration of the hydroxyl group at C-3 bearing a saccharide moiety was determined to be β from the coupling constants of the proton (dd, $J=4.5$, 11.5 Hz, H-3). Hydrolysis of

490 Vol. 55, No. 3

3 afforded hederagenin, D-glucose, L-rhamnose, and D-xylose. The anomeric center of the xylose moiety was determined to be β -configuration from the ${}^{3}J_{\text{H1-H2}}$ value. The ${}^{4}C_{1}$ conformation of xylose was shown by comparison of the 13 C shifts for monosaccharide. Meanwhile, the NMR data of **3** showed that the glucose and rhamnose moieties had the identical anomeric centers and conformations to **1**, respectively. In the HMBC experiments, the anomeric proton signals at δ 5.01 (glc H-1"), 5.04 (xyl H-1), 6.23 (glc H-1'), and 6.49 (rha H-1) showed long-range correlations with the carbon signals at δ 69.4 (glc C-6'), 80.9 (C-3), 176.5 (C-28), and 77.8 (xyl C-2), respectively. Thus, the structure of **3** was elucidated as $3-O-α$ -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-xylopyranosyl hederagenin 28- β -D-glucopyranosyl-(1→6)- β -D-glucopyranosyl ester.

The molecular formula of nigelloside D (**4**) was higher by $C_6H_{10}O_5$ than that of 3. A comparative study of the ¹H-NMR spectrum of **4** with that of **3** revealed them to be identical except for the appearance of the new additional anomeric proton at δ 5.50 (d, $J=8.0$ Hz). Furthermore, a detailed comparison of the 13C-NMR spectrum of **4** with that of **3** showed the signal due to C-3 of rhamnose, which was shifted remarkably downfield by 10.5 ppm, and additional six carbon signals (106.9, 78.7, 78.4, 75.9, 71.5, 62.5). Hydrolysis of **4** afforded hederagenin, p-glucose, L-rhamnose, and p-xylose. The foregoing evidence indicated the presence of an additional glucosyl unit, which was linked to the hydroxyl group at C-3 of the rhamnose moiety, in 4. The amomeric proton signals at δ 5.50 (glu H-1''') showed long-range correlations with the carbon signals at δ 83.1 (rha C-3). Consequently, 4 was characterized as $3-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 3)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-xylopyranosyl hederagenin 28- β -D-glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl ester.

In regard to the chemical constituents of *N. damascena*, alkaloid,¹⁾ sesquiterpenes,²⁾ and phenolic compounds³⁾ have been characterized from the seeds, but no report on the aerial parts (leaves and stems) has been published to date. To our knowledge, these triterpene glycosides (**1**—**12**) are first isolated from *N. damascena*. Meanwhile, a sugar sequence of 3- O - β -D-glucopyranosyl-(1→3)- α -L-rhamnopyranosyl-(1→2)- α -L-arabinopyranosyl or 3 - O - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - α -L-arabinopyranosyl has been isolated from the Araliaceae, Caprifoliaceae, Dipsacaceae, Ranunculaceae, Umbelliferae and Valerianaceae plants. A sugar sequences of $3-O-\beta$ -Dglucopyranosyl- $(1\rightarrow 3)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -Dxylopyranosyl and $3-O-α$ -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -Dxylopyranosyl has been isolated from the *Anemone anhuiensis* (Ranunculaceae)13) and *Scabiosa tschiliensis* (Dipsacaceae), $^{11)}$ respectively. These saccharide moiety containing D-xylose are rare sugar sequence.

Experimental

General Procedure Optical rotations were taken with a JASCO DIP-1000 automatic digital polarimeter. The NMR spectra were measured with a JEOL ECA 500 NMR spectrometer. The NMR samples of compounds **1**— **12** were prepared by pyridine- d_5 . Chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. The HR-ESI-MS was recorded with a JEOL JMS-T100LP spectrometer. HPLC was carried out using a TSK gel-120A (7.8 mm i.d. \times 30 cm) column with a Tosoh CCPM pump, Tosoh RI-8010 detector, and JASCO OR-2090 detector. TLC was performed on pre-coated Kieselgel 60 F_{254} plates (Merck), and detection was achieved by spraying with 10% H_2SO_4 followed by heating. Column chromatography was carried out on Kieselgel (230—400 mesh, Merck), ODS (PrePAK-500/ C_{18} , Waters) and MCI gel CHP20P (Mitsubishi Chemical Ind.).

Plant Material The plant seeds, defined as the seeds of *N. damascena*, were provided by Sakata Seed Corp., Kanagawa, Japan. The plant seeds were cultivated at the Botanical Garden of Kumamoto University.

Extraction and Isolation The air-dried aerial parts (leaves and stems) of *N. damascena* (1.0 kg) was extracted with MeOH at room temperature for one month. The MeOH extract (52 g) was partitioned between chloroformsoluble (9 g) and water-soluble (43 g) portions. The water-soluble portion was subjected to MCI gel CHP20P column chromatography (MeOH/H₂O, $1:4\rightarrow4:1$) to afford five fractions [Fractions 1 (3.7 g), 2 (286 mg), 3 (334 mg), 4 (212 mg), and 5 (101 mg)]. Fraction 1 (3.7 g) was further separated by ODS column chromatography (MeOH/H₂O, $2:3\rightarrow7:3$) to afford four fractions [Fr. 1-1 (72 mg), Fr. 1-2 (442 mg), Fr. 1-3 (1.9 g), and Fr. 1-4 (413 mg)]. Fraction 1-3 (1.9 g) was subjected to silica gel column chromatography (CHCl₃/MeOH/H₂O, 6:4:1), followed by HPLC (MeOH/H₂O, 13 : 7), to furnish compounds **5** (493 mg) and **6** (782 mg). Fraction 1-4 (413 mg) was subjected to silica gel column chromatography $(CHCl₃/)$ MeOH/H₂O, $6:4:1$), followed by HPLC (MeOH/H₂O, $7:3$), to furnish compounds **3** (160 mg) and **4** (142 mg). Fraction 2 (286 mg) was subjected to silica gel column chromatography (CHCl₃/MeOH/H₂O, 6:4:1), followed by HPLC (MeOH/H₂O, 7:3), to furnish compound 2 (98 mg). Fraction 3 (334 mg) was further separated by ODS column chromatography (MeOH/ H₂O, 1 : 1→7 : 3) to afford three fractions [Fr. 3-1 (66 mg), Fr. 3-2 (22 mg), and Fr. 3-3 (196 mg)]. Fraction 3-1 (66 mg) was subjected to silica gel column chromatography (CHCl₃/MeOH/H₂O, 12:8:1), followed by HPLC (MeOH/H₂O, 7:3), to furnish compound **1** (46 mg). Fraction 3-2 (22 mg) was subjected to silica gel column chromatography (CHCl₃/MeOH/H₂O, $12:8:1$), followed by HPLC (MeOH/H₂O, 7:3), to furnish compound 7 (6 mg). Fraction 3-3 (196 mg) was subjected to silica gel column chromatography (CHCl₃/MeOH/H₂O, 12 : 8 : 1), followed by HPLC (MeOH/H₂O, 3 : 1), to furnish compound **8** (158 mg). Fraction 4 (212 mg) was further separated by ODS column chromatography (MeOH/H₂O, $3:2\rightarrow7:3$) to afford two fractions [Fr. 4-1 (74 mg) and Fr. 4-2 (105 mg)]. Fraction 4-1 (74 mg) was subjected to silica gel column chromatography $(CHCl₃/MeOH/H₂O,$ $12:8:1$), followed by HPLC (MeOH/H₂O, 3:1), to furnish compound 9 (54 mg). Fraction 4-2 (105 mg) was subjected to silica gel column chromatography (CHCl₃/MeOH/H₂O, 12 : 8 : 1), followed by HPLC (MeOH/H₂O, 3 : 1), to furnish compounds **10** (42 mg) and **11** (15 mg). Fraction 5 (101 mg) was subjected to silica gel column chromatography (CHCl₃/MeOH/H₂O, $12:8:1$), followed by HPLC (MeOH/H₂O, 4:1), to furnish compound 12 (7 mg).

Nigelloside A (1): A white powder, $[\alpha]_D^{25} - 0.67^{\circ}$ (*c*=0.98, MeOH). HR-ESI-MS (m/z): 1095.5361 (M+Na; Calcd for C₅₃H₈₄O₂₂Na: 1095.5352). ¹H-NMR (pyridine-*d*₅) δ: 0.87 (3H, s, H-29), 0.88 (3H, s, H-30), 0.89 (3H, s, H-25), 1.05 (3H, s, H-26), 1.21 (3H, s, H-27), 1.39 (3H, s, H-24), 1.67 (3H, d, *J*-6.3 Hz rha H-6), 3.17 (1H, dd, *J*-3.8, 13.5 Hz, H-18), 3.71 (1H, br d, *J*=9.7 Hz ara H-5a), 3.86 (1H, m, glc H-5"), 3.98 (1H, dd, *J*=7.6, 9.1 Hz, glc H-2"), 4.08 (1H, dd, J=4.6, 11.5 Hz, H-3), 4.08 (1H, overlapped, glc H-5), 4.10 (1H, dd, *J*-7.9, 9.1 Hz, glc H-2), 4.16 (1H, dd, *J*-9.1, 9.1 Hz, glc H-3"), 4.18 (1H, dd, J=9.1, 9.1 Hz, glc H-3'), 4.18 (1H, overlapped, ara H-3), 4.19 (1H, dd, J=9.1, 9.1 Hz, glc H-4"), 4.20 (1H, overlapped, ara H-4), 4.25 (1H, dd, *J*-9.2, 9.2 Hz, rha H-4), 4.26 (1H, dd, *J*-4.6, 13.5 Hz, ara H-5b), 4.32 (1H, dd, *J*-9.1, 9.1 Hz, glc H-4), 4.33 (each 1H, dd, *J*-4.6, 11.4 Hz, glc H-6'a and glc H-6"a), 4.43 (1H, dd, J=5.8, 7.5 Hz, ara H-2), 4.46 (1H, dd, J=1.7, 11.4 Hz, glc H-6"b), 4.53 (1H, m, rha H-5), 4.57 (1H, dd, *J*-3.4, 9.2 Hz, rha H-3), 4.65 (1H, br d, *J*-3.4 Hz, rha H-2), 4.69 (1H, br d, $J=10.3$ Hz, glc H-6'b), 4.72 (1H, d, $J=5.8$ Hz, ara H-1), 5.01 (1H, d, *J*-7.6 Hz, glc H-1), 5.39 (1H, br s, H-12), 6.06 (1H, br s, rha H-1), 6.22 (1H, d, *J*=7.9 Hz, glc H-1'), 9.67 (1H, s, H-23). ¹³C-NMR (pyridine-*d₅*) δ: given in Table 1.

Nigelloside B (2): A white powder, $[\alpha]_D^{25} - 1.74^{\circ}$ (*c*=0.35, MeOH). HR-ESI-MS (*m*/*z*): 1257.5864 (M+Na; Calcd for C₅₉H₉₄O₂₇Na: 1257.5880). ¹H-NMR (pyridine-*d₅*) δ: 0.87 (3H, s, H-29), 0.88 (3H, s, H-30), 0.89 (3H, s, H-25), 1.05 (3H, s, H-26), 1.22 (3H, s, H-27), 1.47 (3H, s, H-24), 1.60 (3H, d, *J*-6.3 Hz rha H-6), 3.18 (1H, dd, *J*-4.0, 13.7 Hz, H-18), 3.70 (1H, br d, *J*=10.4 Hz ara H-5a), 3.87 (1H, m, glc H-5"), 3.99 (1H, dd, *J*=8.0, 9.1 Hz, glc H-2"), 4.03 (1H, m, glc H-5""), 4.09 (1H, overlapped, ara H-3), 4.10 (1H, overlapped, glc H-5'), 4.11 (each 1H, dd, $J=8.1$, 9.1 Hz, glc H-2' and glc H-2"'), 4.16 (1H, br s, ara H-4), 4.19 (each 1H, dd, J=9.1, 9.1 Hz, glc H-3" and glc H-4), 4.21 (1H, dd, *J*-9.1, 9.1 Hz, glc H-3), 4.25 (1H, dd, *J*-3.4, 12.1 Hz, ara H-5b), 4.27 (1H, dd, J=9.1, 9.1 Hz, glc H-3^m), 4.31 (each 1H, dd, $J=9.1$, 9.1 Hz, glc H-4' and glc H-4''), 4.35 (each 1H, dd, $J=4.9$, 11.4 Hz, glc H-6'a and glc H-6"a), 4.39 (1H, dd, J=4.9, 11.3 Hz, glc H-6"a), 4.44 (1H, dd, *J*-6.3, 8.5 Hz, ara H-2), 4.47 (1H, br d, *J*-11.4 Hz, glc H-

6"b), 4.48 (1H, dd, *J*=1.8, 11.3 Hz, glc H-6""b), 4.48 (1H, dd, *J*=9.1, 9.1 Hz, rha H-4), 4.58 (1H, m, rha H-5), 4.65 (1H, d, *J*-6.3 Hz, ara H-1), 4.71 (1H, br d, *J*=9.8 Hz, glc H-6'b), 4.81 (1H, dd, *J*=2.9, 9.1 Hz, rha H-3), 4.95 (1H, br d, *J*-2.9 Hz, rha H-2), 5.03 (1H, d, *J*-8.0 Hz, glc H-1), 5.39 (1H, br s, H-12), 5.64 (1H, d, *J*=8.1 Hz, glc H-1'''), 6.17 (1H, d, *J*=1.2 Hz, rha H-1), 6.24 (1H, d, *J*=8.0 Hz, glc H-1'), 9.78 (1H, s, H-23). ¹³C-NMR (pyridine-*d*₅) δ: given in Table 1.

Nigelloside C (3): A white powder, $[\alpha]_D^{25} - 10.5^{\circ}$ (*c*=0.93, MeOH). HR-ESI-MS (*m*/*z*): 1097.5492 (M+Na; Calcd for C₅₃H₈₆O₂₂Na: 1097.5508). ¹H-NMR (pyridine-*d*₅) δ: 0.84 (3H, s, H-29), 0.85 (3H, s, H-30), 0.97 (3H, s, H-25), 1.11 (3H, s, H-26), 1.12 (3H, s, H-27), 1.17 (3H, s, H-27), 1.67 (3H, d, *J*-6.3 Hz rha H-6), 3.16 (1H, dd, *J*-4.0, 13.7 Hz, H-18), 3.54 (1H, t, *J*-10.9 Hz, xyl H-5a), 3.72 (1H, d, *J*-9.8 Hz, H-23a), 3.98 (each 1H, dd, *J*=9.1, 9.1 Hz, xyl H-3 and glc H-2"), 3.86 (1H, m, glc H-5"), 4.09 (each 1H, overlapped, xyl H-4 and glc H-5), 4.10 (1H, dd, *J*-8.1, 9.1 Hz, glc H-2), 4.16 (1H, dd, *J*=9.1, 9.1 Hz, glc H-3"), 4.17 (1H, dd, *J*=9.1, 9.1 Hz, glc H-3), 4.19 (1H, dd, *J*-9.1, 9.1 Hz, glc H-4), 4.20 (1H, dd, *J*-7.5, 9.1 Hz, xyl H-2), 4.23 (1H, overlapped, H-23b), 4.25 (1H, dd, *J*-5.2, 10.9 Hz, xyl H-5b), 4.27 (1H, dd, *J*-4.5, 11.5 Hz, H-3), 4.30 (1H, dd, *J*-9.2, 9.2 Hz, rha H-4), 4.32 (1H, dd, *J*-9.1, 9.1 Hz, glc H-4), 4.33 (each 1H, dd, *J*-4.6, 11.5 Hz glc H-6'a and glc H-6"a), 4.45 (1H, brd, $J=10.3$ Hz, glc H-6"b), 4.66 (1H, dd, *J*-3.5, 9.2 Hz, rha H-3), 4.68 (1H, dd, *J*-1.7, 11.5 Hz, glc H-6b), 4.76 (1H, m, rha H-5), 4.79 (1H, br d, *J*-3.5 Hz, rha H-2), 5.01 (1H, d, *J*=8.0 Hz, glc H-1"), 5.04 (1H, d, *J*=7.5 Hz, xyl H-1), 5.39 (1H, dd, *J*=2.9, 3.5 Hz, H-12), 6.23 (1H, d, *J*-8.1 Hz, glc H-1), 6.49 (1H, d, *J*-1.2 Hz, rha H-1). ¹³C-NMR (pyridine- d_5) δ : given in Table 1.

Nigelloside D (4): A white powder, $[\alpha]_D^{25} - 14.0^{\circ}$ (*c*=0.96, MeOH). HR-FAB-MS (m/z): 1259.6053 (M+Na; Calcd for C₅₉H₉₆O₂₇Na: 1259.6037). ¹H-NMR (pyridine- d_5) δ : 0.85 (3H, s, H-30), 0.86 (3H, s, H-29), 0.97 (3H, s, H-25), 1.11 (3H, s, H-26), 1.18 (3H, s, H-24), 1.18 (3H, s, H-27), 1.62 (3H, d, *J*-6.3 Hz rha H-6), 3.17 (1H, dd, *J*-4.1, 13.8 Hz, H-18), 3.53 (1H, dd, *J*=10.6, 10.9 Hz, xyl H-5a), 3.86 (1H, m, glc H-5"), 3.93 (1H, d, *J*=10.3 Hz, H-23a), 3.96 (1H, m. glc H-5"'), 3.99 (1H, dd, *J*=7.5, 9.1 Hz, glc H-2), 4.09 (1H, dd, *J*-8.0, 9.1 Hz, glc H-2), 4.10 (1H, dd, *J*-8.0, 9.1 Hz, glc H-2), 4.11 (each 1H, overlapped, xyl H-3, xyl H-4, and glc H-5), 4.17 (1H, dd, *J*-8.0, 9.1 Hz, xyl H-2), 4.18 (each 1H, dd, *J*-9.1, 9.1 Hz, glc H-3 and glc H-4"), 4.20 (1H, dd, *J*=9.1, 9.1 Hz, glc H-3'), 4.24 (each 1H, overlapped, xyl H-5b, glc H-3‴ and glc H-4‴), 4.26 (1H, dd, J=4.6, 10.3 Hz, glc H-6^{"'}a), 4.30 (1H, dd, J=4.6, 11.5 Hz, H-3), 4.31 (1H, dd, J=9.1, 9.1 Hz, glc H-4'), 4.35 (each 1H, dd, *J*=5.2, 11.5 Hz, glc H-6'a and glc H-6"a), 4.39 (1H, d, J = 10.3 Hz, H-23b), 4.45 (each 1H, br d, J = 12.1 Hz, glc H-6"b and glc H-6b), 4.51 (1H, dd, *J*-9.1, 9.1 Hz, rha H-4), 4.70 (1H, br d, *J*-9.8 Hz, glc H-6b), 4.76 (1H, m, rha H-5), 4.89 (1H, dd, *J*-2.9, 9.1 Hz, rha H-3), 5.00 (1H, br d, *J*=2.9 Hz, rha H-2), 5.01 (1H, d, *J*=7.5 Hz, glc H-1"), 5.03 (1H, d, *J*-8.0 Hz, xyl H-1), 5.39 (1H, dd, *J*-3.4, 3.5 Hz, H-12), 5.50 (1H, d, *J*=8.0 Hz, glc H-1'''), 6.24 (1H, d, *J*=8.0 Hz, glc H-1'), 6.49 (1H, d,

 $J=1.2$ Hz, rha H-1). ¹³C-NMR (pyridine- d_5) δ : given in Table 1.

Sugar Analysis A solution of each compound (**1**, **2**, **3**, or **4**) (2 mg) in $2 \text{ N HCl}/$ dioxane (1 : 1, 2 ml) was heated at 100 °C for 1 h. The reaction mixture was diluted with H_2O and evaporated to remove dioxane. The solution was neutralized with Amberlite MB-3 and passed through a SEP-PAK C_{18} cartridge to give a sugar fraction. The sugar fraction was concentrated to dryness *in vacuo* to give a residue, which was dissolved in CH₃CN/H₂O $(3:1, 250 \,\mu l)$. The sugar fraction was analyzed by HPLC under the following conditions: column, Shodex RS-Pac DC-613 $(6.0 \text{ mm} \text{ i.d.} \times 150 \text{ mm}$, Showa Denko, Tokyo, Japan); solvent, CH₃CN/H₂O (3:1); flow rate, 1.0 ml/min; column temperature, 70 °C; detection, optical rotation (OR). The t_R (min) of the sugars was detected as follows. **1**: L-rhamnose 4.7 (-), L-arabinose 6.3 (+), D-glucose 7.4 (+), 2: L-rhamnose 4.7 (-), L-arabinose 6.3 (+), D-glucose 7.4 (+), 3 : L-rhamnose 4.7 (-), D-xylose 5.5 (+), D-glucose 7.4 (+), 4: L-rhamnose 4.7 (-), D-xylose 5.5 (+), D-glucose 7.4 (+). [Reference: L-rhamnose 4.7 (negative optical rotation: $-$), D-xylose 5.5 (positive optical rotation: $+$), L-arabinose 6.3 (positive optical rotation: $+$), D-glucose 7.4 (positive optical rotation: $+)$].

References

- 1) Doepke W., Fritsch G., *Pharmazie*, **25**, 69—70 (1970).
- 2) Tillequin F., Leconte C., Paris M., *Planta Med.*, **30**, 59—61 (1976).
- 3) Agradi E., Fico G., Cillo F., Francisci C., Tome F., *Planta Med.*, **67**, 553—555 (2001).
- 4) Yoshimitsu H., Nishida M., Yahara S., Nohara T., *Tetrahedron Lett.*, **39**, 6919—6920 (1998).
- 5) Yoshimitsu H., Nishida M., Hashimoto F., Nohara T., *Phytochemistry*, **51**, 449—452 (1999).
- 6) Nishida M., Yoshimitsu H., Okawa M., Ikeda T., Nohara T., *Chem. Pharm. Bull.*, **51**, 1215—1216 (2003).
- 7) Penders A., Delaude C., *Carbohydr. Res.*, **263**, 79—88 (1994).
- 8) Kizu H., Hirabayashi S., Suzuki M., Tomimori T., *Chem. Pharm. Bull.*, **33**, 3473—3478 (1985).
- 9) Braca A., Autore G., De S. F., Marzocco S., Morelli I., Venturella F., De T. N., *Planta Med.*, **70**, 960—966 (2004).
- 10) Choi J. S., Woo W. S., *Planta Med.*, **53**, 62—65 (1987).
- 11) Zheng Q., Koike K., Han L. K., Okuda H., Nikaido T., *J. Nat. Prod.*, **67**, 604—613 (2004).
- 12) Kawai H., Kuroyanagi M., Umehara K., Ueno A., Satake M., *Chem. Pharm. Bull.*, **36**, 4769—4775 (1988).
- 13) Ye W. C., Zhang Q. W., Zhao S. X., Che C. T., *Chem. Pharm. Bull.*, **49**, 632—634 (2001).
- 14) Saito S., Sumita S., Tamura N., Nagamura Y., Nishida K., Ito M., Ishiguro I., *Chem. Pharm. Bull.*, **38**, 411—414 (1990).
- 15) Fu H. Z., Koike K., Li W., Nikaido T., Lin W. H., Guo D. A., *J. Nat. Prod.*, **68**, 754—758 (2005).