Medicinal Flowers. XI.¹⁾ Structures of New Dammarane-Type Triterpene Diglycosides with Hydroperoxide Group from Flower Buds of *Panax ginseng*

Masayuki Yoshikawa,* Sachiko Sugimoto, Seikou Nakamura, and Hisashi Matsuda

Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8412, Japan. Received November 13, 2006; accepted January 15, 2007; published online January 22, 2007

Six new dammarane-type triterpene diglycosides with a hydroperoxide group, floralginsenosides A, B, C, D, E, and F, were isolated from ginseng flower, the flower buds of *Panax ginseng* C. A. MEYER, together with seven known dammarane-type triterpene oligoglycosides. The structures of new floralginsenosides were elucidated on the basis of chemical and physicochemical evidence.

Key words floralginsenoside; Panax ginseng; medicinal flower; dammarane-type triterpene diglycoside; hydroperoxide; ginseng flower

The roots of *Panax* (*P.*) ginseng C. A. MEYER (Araliaceae) is a most famous Chinese natural medicine, which is widely used for the treatment of gastrointestinal disorders as well as a tonic in traditional Chinese medicine and Japanese Kampo medicine. The biologically active constituents of ginseng roots have been pursued extensively and many dammarane-type triterpene oligoglycosides have been characterized as the principal ingredients.²⁾ On the other hand, the flower buds of *P. ginseng* have been used as a exhilarant. As the chemical constituents of ginseng flower, several dammarane-type triterpene glycosides were hitherto isolated.^{3,4})

Recently, we have reported the isolation and structure elucidation of dammarane-type triterpene oligoglycosides termed notoginsenosides-O, -P, -Q, -S, and -T with hepatoprotective and immunological adjuvant activities from the flower buds of *P. notoginseng* (BURK.) F. H. CHEN.^{5,6)} As a continuing study on the bioactive constituents of medicinal flowers,^{1,7)} we have isolated new dammarane-type triterpene diglycosides named floralginsenosides A (1), B (2), C (3), D (4), E (5), and F (6) from the flower buds of Chinese *P. ginseng* together with seven known dammarane-type triterpene oligoglycosides. In this paper, we describe the isolation and structure elucidation of six new floralginsenosides (1–6).⁸⁾

Isolation of Floralginsenosides The methanolic extract from the flower buds of *P* ginseng cultivated in Jilin province of China was partitioned into an ethyl acetate (EtOAc)–water mixture to furnish an EtOAc-soluble portion and an aqueous layer. The aqueous layer was further extracted with *n*-butanol to give an *n*-BuOH-soluble portion. The *n*-BuOH-soluble portion was subjected to normal-phase and reversed-phase silica gel column chromatography and finally HPLC to afford floralginsenosides A (1, 0.0053% from the dried flower buds), B (2, 0.057%), C (3, 0.014%), D (4, 0.0054%), E (5, 0.0014%), and F (6, 0.0046%) together with ginsenoside-F₁ (7,⁴⁾ 0.019%), ginsenoside-F₃ (8,⁹⁾ 0.20%), ginsenoside-F₅ (9,⁹⁾ 0.084%), ginsenoside Rg₁ (10,¹⁰⁾ 0.38%), ginsenoside Rg₂ (11,¹¹⁾ 0.0016%), gypenoside XVII (12,¹²⁾ 0.010%), and pseudo-ginsenoside-RC₁ (13,¹³⁾ 0.030%).

Structures of Floralginsenosides Floralginsenoside A (1) was isolated as an amorphous powder with positive optical rotation ($[\alpha]_D^{21} + 20.4^\circ$ in MeOH). As shown by its positive response to the *N*,*N*-dimethyl-*p*-phenylenediammonium dichloride reagent,¹⁴⁾ 1 was deduced to have a hydroperoxide

residue. The IR spectrum of 1 showed strong absorption bands at 3469 and 1076 cm^{-1} suggestive of the glycosidic structure together with an absorption band at 1655 cm⁻¹ due to a double bond. The molecular formula C42H72O16 was determined from the quasimolecular ion peaks observed in the positive-ion and negative-ion fast atom bombardment (FAB)-MS and by high-resolution MS measurement. Namely, a quasimolecular ion peak was observed at $m/z 855 (M+Na)^+$ in the positive-ion FAB-MS of 1, while its negative-ion FAB-MS showed the quasimolecular ion peak at $m/z 831 (M-H)^{-1}$ in addition to fragment ion peaks at m/z 815 (M-OH), m/z799 (M-OOH)⁻, and m/z 651 (M-OH-C₆H₁₁O₅)⁻, which was derived by cleavage of the glycoside linkage of the terminal hexose. Acid hydrolysis of 1 with 1.0 M aqueous HCl liberated D-glucose, which was identified by HPLC analysis using an optical rotation detector.⁶⁾ The ¹H-NMR (pyridine d_5) and ¹³C-NMR (Table 1) spectra of 1, which were assigned by various NMR experiment,¹⁵⁾ showed signals assignable to an aglycon part [δ 0.82, 1.04, 1.15, 1.568, 1.573, 1.85, 2.03 (3H each, all s, H₃-30, 19, 18, 29, 21, 27, 28), 3.49 (1H, dd, J=4.6, 11.8 Hz, H-3), 4.10 (1H, m, H-12), 4.40 (1H, m, H-6), 4.68 (1H, dd, J=5.2, 7.5 Hz, H-24), 5.02, 5.20 (1H each, both brs, H₂-26)], together with two β -D-glucopyranosyl moieties [δ 4.99 (1H, d, J=7.7 Hz, H-1'), 5.12 (1H, d, J=8.0 Hz, H-1")]. The proton and carbon signals due to the tetracarbocyclic moiety (C-1-C-20, C-28-C-30) including the 6- and 20-*O*- β -D-glucopyranosyl parts in the ¹H- and ¹³C-NMR spectra of 1 were superimposable on those of ginsenoside $Rg_1^{-}(10)$,¹⁰⁾ whereas the signals designated to the side chain moiety (C-20-C-27) of the aglycon part were similar to those of notoginsenoside-C.¹⁶ As shown in Fig. 1, the ¹H-¹H correlation spectroscopy (¹H-¹H COSY) experiment on 1 indicated the presence of partial structures written in bold lines, and in the heteronuclear multiple-bond correlations (HMBC) experiment, long-range correlations were observed between the following protons and carbons: H-5 and C-6; H-9 and C-8, 10; H-13 and C-14; H-15 and C-14; H-18 and C-7, 8; 19-H and C-5, 10; H-21 and C-17, 20, 22; H-22 and C-20, 23; H-26 and C-24, 27; H-27 and C-24, 25, 26; H-1' and C-6; H-1" and C-20. Finally, treatment of 1 with pyridine vielded a known dammarane-type triterpene glycoside, vina-ginsenoside R₂₅ (14), which was isolated from Vietnamese ginseng.¹⁷⁾ On the basis of this evidence, the struc-

Chart 1. Structures of New Floralginsenosides (1-6) and Known Saponins (7-13) from the Flower Buds of P. ginseng

Fig. 1. Significant ¹H–¹H COSY and HMBC Correlations for New Floralginsenosides (1–6) from the Flower Buds of *P. ginseng*

Table 1. $^{13}\mathrm{C}\text{-NMR}$ Data for Floralginsenosides A (1), B (2), C (3), D (4), E (5), and F (6)

	1	2	3	4	5	6
C-1	39.6	39.5	39.4	39.4	39.3	39.3
C-2	28.0	28.0	28.1	28.2	26.8	26.8
C-3	78.8	78.9	78.6	78.6	89.0	88.9
C-4	40.4	40.4	40.3	40.4	39.8	39.8
C-5	61.5	61.5	61.8	61.8	56.5	56.5
C-6	80.1	80.1	67.8	67.8	18.5	18.5
C-7	45.3	45.2	47.5	47.5	35.3	35.2
C-8	41.2	41.2	41.2	41.3	40.2	40.2
C-9	50.1	50.3	50.0	49.9	50.5	50.2
C-10	39.8	39.8	39.4	40.4	37.1	37.1
C-11	31.1	31.2	30.9	30.9	32.2	31.1
C-12	70.3	70.5	70.2	70.6	71.1	70.5
C-13	49.3	49.3	49.2	49.2	49.0	49.7
C-14	51.5	51.5	51.4	51.5	51.8	51.6
C-15	30.7	30.6	30.8	30.7	31.4	30.7
C-16	26.8	26.5	26.7	26.4	26.8	26.5
C-17	51.5	52.2	52.1	52.1	54.2	52.3
C-18	17.6	17.6	17.6	17.7	16.0	16.0
C-19	17.6	17.6	17.5	17.5	16.5	16.3
C-20	83.2	83.2	83.3	83.2	73.3	83.2
C-21	22.6	23.2	21.8	23.3	27.9	23.3
C-22	32.9	39.7	32.8	39.9	40.4	39.7
C-23	26.7	126.6	26.7	126.7	127.3	126.6
C-24	89.9	138.0	90.1	138.1	135.8	138.1
C-25	145.8	81.3	146.2	81.3	81.3	81.3
C-26	113.3	25.2	113.3	25.4	25.2	25.2
C-27	17.8	25.4	17.8	25.2	25.3	25.4
C-28	31.8	31.8	32.0	32.0	28.2	28.2
C-29	16.4	16.4	16.5	16.5	16.7	16.8
C-30	17.3	17.1	17.4	17.3	17.1	17.2
C-1′	106.0	105.9	98.0	98.2	105.1	106.9
C-2'	75.5	75.5	74.9	75.1	83.6	75.8
C-3′	79.6	78.1	79.4	78.9	78.1	78.8
C-4′	72.0	72.0	72.1	72.2	71.8	72.0
C-5′	78.1	79.6	76.4	76.4	78.1	78.3
C-6′	63.1	63.1	69.5	68.5	63.0	63.1
C-1″	98.1	98.3	105.1	110.2	106.1	98.3
C-2″	75.1	75.3	72.2	83.3	77.1	75.3
C-3″	79.2	78.0	74.2	78.8	78.4	78.9
C-4″	71.8	71.1	68.8	86.2	71.9	71.7
C-5″	78.0	78.7	66.0	62.9	78.2	78.2
C-6″	63.1	63.2			62.9	63.2

Measured in pyridine- d_5 at 125 MHz and 150 MHz.

ture of floral ginsenoside A $(1)^{18}$ was characterized as shown.

Floralginsenoside B (2) was also obtained as an amorphous powder with positive optical rotation ($[\alpha]_{\rm D}^{22}$ +25.6° in MeOH) and was shown to possess a hydroperoxide group by its positive response to the N,N-dimethyl-p-phenylenediammonium dichloride reagent.¹⁴⁾ The IR spectrum of 2 showed absorption bands at 3433, 1655, and 1076 cm⁻¹ assignable to hydroxyl, olefin, and ether functions. In the positive-ion and negative-ion FAB-MS of 2, quasimolecular ion peaks were observed at m/z 855 (M+Na)⁺ and m/z 831 $(M-H)^{-}$, respectively and the fragment ion peaks at m/z815 (M-OH)⁻, m/z 799 (M-OOH)⁻, and m/z 651 $(M-OH-C_6H_{11}O_5)^-$ were observed in the negative-ion FAB-MS. The high-resolution MS analysis revealed the molecular formula of 2 to be $C_{42}H_{72}O_{16}$. The acid hydrolysis of 2 liberated D-glucose, which was identified by HPLC analysis.⁶⁾ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra¹⁵⁾ of **2** showed signals due to an aglycon part [δ 0.79, 1.09, 1.24, 1.55, 1.56, 1.58, 1.59, 2.04 (3H each, all s, H₃-30, 19, 18, 21, 26, 27, 29, 28), 3.50 (1H, dd, J=4.6, 11.8 Hz, H-3), 3.98 (1H, m, H-12), 4.43 (1H, ddd, J=2.9, 10.3, 10.6 Hz, H-6), 6.05 (1H, d, J=15.7 Hz, H-24), 6.20 (1H, ddd, J=6.3, 8.3, 15.7 Hz, H-23)] and two β -D-glucopyranosyl moieties [δ 5.01 (1H, d, *J*=7.8 Hz, H-1'), 5.17 (1H, d, *J*=7.8 Hz, H-1")]. The proton and carbon signals due to the tetracarbocyclic moiety including the 6- and 20-O- β -D-glucopyranosyl parts in the ¹H- and ¹³C-NMR spectra of **2** were superimposable on those of 1 and ginsenoside Rg_1 (10),¹⁰ while the signals due to the side chain part very resembled those of notoginsenoside-E.¹⁹⁾ The structure of 2 was characterized by means of ¹H–¹H COSY and HMBC experiments (Fig. 1). Finally, reduction of 2 with sodium borohydride (NaBH₄) furnished a known dammarane-type triterpene glycoside, vina-ginsenoside-R15 (15), which was isolated from Vietnamese ginseng.²⁰⁾ Consequently, the structure of floral ginsenoside B (2)was determined as shown.

Floralginsenoside C (3) and D (4), obtained as an amorphous powder with positive optical rotation (3: $[\alpha]_{D}^{23} + 49.8^{\circ}$; 4: $[\alpha]_D^{26}$ +8.8° in MeOH), showed the positive response to the N,N-dimethyl-p-phenylenediammonium dichloride reagent.¹⁴⁾ The IR spectra of 3 and 4 showed absorption bands due to hydroxyl, olefin, and ether group (3: 3415, 1670, and 1078 cm^{-1} ; 4: 3439, 1655, and 1078 cm^{-1}). The common molecular formula, C₄₁H₇₀O₁₅, for 3 and 4 were determined individually from the quasimolecular ion peaks $[m/z 825 (M+Na)^+$ and $m/z 801 (M-H)^-$] in the positive and negative-ion FAB-MS and by high-resolution MS measurement. The acid hydrolysis of 3 and 4 liberated D-glucose and L-arabinose, which were identified by HPLC analysis.⁶⁾ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra¹⁵) of 3 and 4 showed signals assignable to an aglycon part [3: δ 0.96, 1.01, 1.07, 1.42, 1.53, 1.94, 1.95 (3H each, all s, H₃-30, 19, 18, 29, 21, 27, 28), 3.49 (1H, dd, J=4.3, 11.5 Hz, H-3), 4.13 (1H, m, H-12), 4.36 (1H, m, H-6), 4.74 (1H, br s, H-24), 5.04, 5.23 (1H each, both br s, H₂-26); [4: δ 0.91, 1.04, 1.17, 1.43, 1.59, 1.96 (3H each, all s, H₂-30, 19, 18, 29, 21, 28), 1.60 (6H, s, H₃-26, 27), 3.50 (1H, dd, J=4.8, 11.7 Hz, H-3), 4.00 (1H, m, H-12), 4.39 (1H, dd, J=3.4, 10.3 Hz, H-6), 6.11 (1H, d, J=15.8 Hz, H-24), 6.18 (1H, dd-like, J=ca. 10, 16 Hz, H-23)], a β -D-glucopyranosyl moiety [3: δ 5.05 (1H, d, J=7.5 Hz, H-1'); 4: δ 5.15 (1H, d, J=7.6 Hz, H-1')], and an α -L-arabinopyranosyl moiety [3: δ 4.87 (1H, d, J=6.3 Hz, H-1")] or an α -L-arabinofuranosyl moiety [4: δ 5.62 (1H, brs, H-1")]. The proton and carbon signals due to the tetracarbocyclic part including the 20-O-diglycosyl moiety in the ¹H- and ¹³C-NMR spectra of **3** and **4** were very similar to those of ginsenoside- $F_3(8)^{9}$ and ginsenoside- $F_5(9)^{9}$ respectively, whereas the signals due to the side chain part of 3 and 4 were superimposable on those of 1 and 2, respectively. Furthermore, the ¹H-¹H COSY and HMBC experiments on 3 and 4 showed correlations as shown in Fig. 1. This evidence led us to formulate the structures of floral ginsenoside C $(3)^{18)}$ and D (4) as shown.

Floralginsenoside E (5), obtained as an amorphous powder with positive optical rotation ($[\alpha]_D^{22} + 17.6^\circ$ in MeOH) and positive response to the hydroperoxide reagent,¹⁴⁾ showed absorption bands at 3451, 1655, and 1078 cm⁻¹ due to hydroxyl, olefin, and ether functions in the IR spectrum. The positive-ion and negative-ion FAB-MS of 5 exhibited quasimolecular ion peaks at m/z 839 (M+Na)⁺ and m/z 815

 $(M-H)^{-}$, respectively and the fragment ion peaks, m/z 799 $(M-OH)^{-}$ and m/z 635 $(M-OH-C_6H_{11}O_5)^{-}$, were observed in the negative-ion FAB-MS. The molecular formula $C_{42}H_{72}O_{15}$ of 5 was determined from the positive- and negative-ion FAB-MS and by high-resolution MS measurement. The acid hydrolysis of 5 yielded D-glucose.⁶⁾ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra¹⁵) of 5 showed signals due to an aglycon part [δ 0.87, 0.97, 1.06, 1.13, 1.31, 1.43, 1.56, 1.57 (3H each, all s, H₃-19, 30, 18, 29, 28, 21, 26, 27), 3.31 (1H, dd, J=4.5, 11.9 Hz, H-3), 3.92 (1H, m, H-12), 6.04 (1H, d, J=16.0 Hz, H-24), 6.25 (1H, ddd, J=5.7, 8.9, 16.0 Hz, H-23)] and two β -D-glucopyranosyl moieties [δ 4.92 (1H, d, J=7.7 Hz, H-1'), 5.35 (1H, d, J=7.7 Hz, H-1")]. The proton and carbon signals due to the tetracarbocyclic part including the 3-O-diglycoside moiety in the ¹H- and ¹³C-NMR spectra of 5 were superimposable on those of 20(S)ginsenoside Rg_{3} ⁽²¹⁾ while the signals due to the side chain part were similar to those of 2. On the basis of this evidence and the ${}^{1}H-{}^{1}H$ COSY and HMBC experiments on 5 (Fig. 1), the structure of floralginsenoside E (5) was clarified as shown.

Floralginsenoside F (6) was isolated as an amorphous powder with positive optical rotation $([\alpha]_D^{25} + 14.8^{\circ} \text{ in MeOH})$ and has a hydroperoxide function as shown by the positive response to the *N*,*N*-dimethyl-*p*-phenylenediammonium dichloride reagent.¹⁴⁾ The IR spectrum of 6 showed absorption bands assignable to hydroxyl and olefin functions at 3566, 1655, and 1078 cm⁻¹. Here again, the molecular for-

mula C₄₂H₇₂O₁₅ of 6 was determined from the positive-ion and negative-ion FAB-MS $[m/z 839 (M+Na)^+$ and m/z 815 $(M-H)^{-}$ and by high-resolution MS measurement. The acid hydrolysis of 6 furnished D-glucose.⁶⁾ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra¹⁵) of **6** showed signals due to an aglycon part [δ 0.87, 0.92, 1.01, 1.02, 1.32, 1.57, 1.58, 1.60 (3H each, all s, H₂-19, 30, 18, 29, 28, 26, 27, 21), 3.38 (1H, dd, J=4.3, 11.8 Hz, H-3), 3.95 (1H, m, H-12), 6.03 (1H, d, J=16.0 Hz, H-24), 6.18 (1H, ddd, J=6.0, 8.3, 16.0 Hz, H-23)] and two β -D-glucopyranosyl moieties [δ 4.92 (1H, d, J=7.7 Hz, H-1'), 5.19 (1H, d, J=7.8 Hz, H-1")]. The proton and carbon signals due to the tetracarbocyclic part including the 3- and $20-O-\beta$ -D-glucopyranosyl moieties in the ¹H- and ¹³C-NMR spectra of **6** were similar to those of ginsenoside- F_2 ,²²⁾ while the signals due to the side chain part resembled those of 2. Finally, reduction of 6 with $NaBH_4$ yielded a known dammarane-type triterpene glycoside, majoroside F_4 (16), which was isolated from *Panax japonics* C. A. MEYER var. *major* (BURK.).²³⁾ This evidence and the examination of the ${}^{1}H-{}^{1}H$ COSY and HMBC data on 6 (Fig. 1) led us to elucidate the structure of floralginsenoside F (6) as shown.

Experimental

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter (l=5 cm); IR spectra, Shimadzu FTIR-8100 spectrometer; FAB-MS and high-resolution MS, JEOL JMS-SX 102A mass spectrometer; ¹H-NMR spectra, JEOL EX-270 (270 MHz), JNM-LA500 (500 MHz), and JEOL ECA-600K (600 MHz) spectrometers; ¹³C-NMR spectra, JEOL EX-270 (68 MHz) JNM-LA500 (125 MHz), and JEOL ECA-600K (150 MHz) spectrometers with tetramethylsilane as an internal standard; and HPLC detector, Shimadzu RID-6A refractive index and SPD-10Avp UV–VIS detectors. HPLC column, COS-MOSIL-5C₁₈-MS-II (250×4.6 mm i.d.) and (250×20 mm i.d.) columns were used for analytical and preparative purposes, respectively.

The following experimental conditions were used for chromatography: ordinary-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150—350 mesh); reverse-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh); TLC, precoated TLC plates with Silica gel 60F₂₅₄ (Merck, 0.25 mm) (ordinary phase) and Silica gel RP-18 F_{254S} (Merck, 0.25 mm) (reverse phase); reversed-phase HPTLC, precoated TLC plates with Silica gel RP-18 WF_{254S} (Merck, 0.25 mm); and detection was achieved by spraying with 1% Ce(SO₄)₂–10% aqueous H₂SO₄ followed by heating.

Plant Material The flower buds of *P. ginseng* were cultivated in Jilin province of China at Nov., 2005 and identified by one of authors (M. Y.).

Extraction and Isolation The dried flower buds of *Panax ginseng* (1.0 kg) were finely cut and extracted four times with methanol under reflux for 3 h. Evaporation of the solvent under reduced pressure provided the methanolic extract (386 g, 38.6%). The methanolic extract (370 g) was partitioned in an EtOAc–H₂O (1 : 1, v/v) mixture, and the aqueous phase was further extracted with *n*-BuOH. Removal of the solvent from the EtOAc-soluble, *n*-BuOH-soluble, and H₂O-soluble fractions under reduced pressure yielded 43.3 g (4.3%), 216.7 g (21.7%), and 107.1 g (12.0%) of the residue, respectively.

Normal-phase silica gel column chromatography [BW-200 (Fuji Silysia Co., Ltd., 3.0 kg), CHCl₃–MeOH–H₂O (50:10:1–35:10:1–7:3:1 lower layer–6:4:1, v/v/v)–MeOH] of the *n*-BuOH-soluble fraction (134.0 g) gave nine fractions [Fr. 1 (0.3 g), 2 (1.1 g), 3 (13.5 g), 4 (13.6 g), 5 (55.0 g), 6 (15.9 g), 7 (12.1 g), 8 (5.9 g), 9 (4.3 g)]. Fraction 2 (1.1 g) was separated by reversed-phase silica gel column chromatography [Chromatorex ODS DM1020T (Fuji Silysia Co., Ltd., 40 g), MeOH–H₂O [(10:90–20:80–30:70–40:60–50:50–60:40–70:30–80:20, v/v)–MeOH] to furnish nine fractions [Fr. 2-1 (0.16 g), Fr. 2-2 (0.20 g), Fr. 2-3 (0.18 g), Fr. 2-4 (0.09 g), Fr. 2-5 (0.18 g), Fr. 2-6 (0.09 g), Fr. 2-7 (0.04 g), Fr. 2-8 (0.08 g), Fr. 2-9 (0.09 g)]. Fraction 2-4 (0.09 g) was separated by HPLC [COSMOSIL 5C₁₈-MS-II, (250×20 mm i.d.), MeOH–H₂O (70:30, v/v)] to give ginsenosides- F₁ (7, 37 mg, 0.0054%), and -F₅ (9, 11 mg, 0.0017%). Fraction 2-7 (0.12 g) was purified by HPLC [COSMOSIL 5C₁₈-MS-II, (250×20 mm i.d.),

MeOH-H₂O (70:30, v/v)] to give 7 (98 mg, 0.014%). Fraction 3 (13.5 g) was separated by reversed-phase silica gel column chromatography [400 g, MeOH-H₂O (20:80-30:70-40:60-50:50-60:40-70:30,v/v)-MeOH] to furnish fourteen fractions [Fr. 3-1 (0.86 g), Fr. 3-2 (0.23 g), Fr. 3-3 (0.18 g), Fr. 3-4 (0.96 g), Fr. 3-5 (0.56 g), Fr. 3-6 (3.74 g), Fr. 3-7 (0.18 g), Fr. 3-8 (0.09 g), Fr. 3-9 (0.05 g), Fr. 3-10 (2.91 g), Fr. 3-11 (0.28 g), Fr. 3-12 (0.15 g), Fr. 3-13 (0.55 g), Fr. 3-14 (2.00 g)]. Fraction 3-4 (0.12 g) was separated by HPLC [COSMOSIL 5C $_{18}$ -MS-II, (250×20 mm i.d.), MeOH–H₂O (50:50, v/v)] to give floral ginsenosides A (1, 46 mg, 0.053%), and B (2, 39 mg, 0.046%). Fraction 3-5 (0.26 g) was purified by HPLC [COSMOSIL $5C_{18}$ -MS-II, (250×20 mm i.d.), MeOH-H₂O (50:50, v/v)] to give 2 (30 mg, 0.0094%), floralginsenosides C (3, 44 mg, 0.014%), and D (4, 17 mg, 0.0054%). Fraction 3-6 (0.22 g) was purified by HPLC [COSMOSIL 5C18-MS-II, (250×20 mm i.d.), MeOH-H₂O (55:45, v/v)] to give ginsenoside Rg1 (10, 145 mg, 0.36%). Fraction 3-7 (0.18 g) was purified by HPLC [COS-MOSIL 5C₁₈-MS-II, (250×20 mm i.d.), MeOH-H₂O (60:40, v/v)] to give 10 (120 mg, 0.018%). Fraction 3-8 (0.09 g) was separated by HPLC [COS-MOSIL 5C₁₈-MS-II, (250×20 mm i.d.), MeOH-H₂O (60:40, v/v)] to give 10 (23 mg, 0.0033%). Fraction 3-10 (0.21 g) was purified by HPLC [COS-MOSIL 5C₁₈-MS-II, $(250 \times 20 \text{ mm i.d.})$, MeOH-H₂O (65:35, v/v)] to give 9 (41 mg, 0.082%), and ginsenoside-F₃ (8, 99 mg, 0.20%). Fraction 3-11 (0.28 g) was purified by HPLC [COSMOSIL 5C₁₈-MS-II, (250×20 mm i.d.), MeOH-H₂O (65:35, v/v)] to give 8 (20 mg, 0.0029%), and ginsenoside Rg₂ (11, 11 mg, 0.0016%). Fraction 3-12 (0.15 g) was separated by HPLC [COS-MOSIL 5C₁₈-MS-II, (250×20 mm i.d.), MeOH–H₂O (70:30, v/v)] to give floralginsenosides E (5, 10 mg, 0.0014%), and F (6, 32 mg, 0.0046%). Fraction 3-13 (0.20 g) was purified by HPLC [COSMOSIL 5C18-MS-II, $(250 \times 20 \text{ mm i.d.})$, MeOH-H₂O (75 : 25, v/v)] to give gypenoside XVII (12, 25 mg, 0.010%), pseudo-ginsenoside-RC₁ (13, 72 mg, 0.030%).

Floralginsenoside A (1): A white amorphous powder; $[\alpha]_D^{21} + 20.4^{\circ}$ (c=0.59, MeOH); IR (KBr) v_{max} 3469, 1655, 1462, 1076 cm⁻¹; ¹H-NMR (pyridine- d_5 , 500 MHz) & 0.82, 1.04, 1.15, 1.568, 1.573, 1.85, 2.03 (3H each, all s, H₃-30, 19, 18, 29, 21, 27, 28), 3.49 (1H, dd, J=4.6, 11.8 Hz, H-3), 4.10 (1H, m, H-12), 4.40 (1H, m, H-6), 4.68 (1H, dd, J=5.2, 7.5 Hz, H-24), 4.99 (1H, d, J=7.7 Hz, H-1'), 5.02, 5.20 (1H each, both brs, H₂-26), 5.12 (1H, d, J=8.0 Hz, H-1'); ¹³C-NMR data see Table 1; positive-ion FAB-MS m/z 855 (M+Na)⁺; negative-ion FAB-MS m/z 831 (M–H)⁻, 815 (M–OH)⁻, 799 (M–OOH)⁻, and 651 (M–OH–C₆H₁₁O₅)⁻; HR-FAB-MS: m/z 855.4718 [Calcd for $C_{42}H_{72}O_{16}$ Na (M+Na)⁺, 855.4726].

Floralginsenoside B (2): A white amorphous powder; $[\alpha]_D^{22} + 25.6^{\circ}$ (c=0.13, MeOH); IR (KBr) v_{max} 3433, 1655, 1363, 1076 cm⁻¹; ¹H-NMR (pyridine- d_5 , 500 MHz) δ : 0.79, 1.09, 1.24, 1.55, 1.56, 1.58, 1.59, 2.04 (3H each, all s, H₃-30, 19, 18, 21, 26, 27, 29, 28), 3.50 (1H, dd, J=4.6, 11.8 Hz, H-3), 3.98 (1H, m, H-12), 4.43 (1H, ddd, J=2.9, 10.3, 10.6 Hz, H-6), 5.01 (1H, d, J=7.8 Hz, H-1'), 5.17 (1H, d, J=7.8 Hz, H-1''), 6.05 (1H, d, J=15.7 Hz, H-24), 6.20 (1H, ddd, J=6.3, 8.3, 15.7 Hz, H-23); ¹³C-NMR data see Table 1; positive-ion FAB-MS m/z 855 (M+Na)⁺; negative-ion FAB-MS m/z 831 (M-H)⁻, 815 (M-OH)⁻, 799 (M-OOH)⁻, and 651 (M-OH-C₆H₁(0₅)⁻; HR-FAB-MS: m/z 855.4718 [Calcd for C₄₂H₇₂O₁₆Na (M+Na)⁺, 855.4726].

Floralginsenoside C (3): A white amorphous powder; $[\alpha]_D^{23} + 49.8^{\circ}$ (c=0.17, MeOH); IR (KBr) v_{max} 3415, 2932, 1670, 1078 cm⁻¹; ¹H-NMR (pyridine- d_5 , 500 MHz) δ : 0.96, 1.01, 1.07, 1.42, 1.53, 1.94, 1.95 (3H each, all s, H₃-30, 19, 18, 29, 21, 27, 28), 3.49 (1H, dd, J=4.3, 11.5 Hz, H-3), 4.13 (1H, m, H-12), 4.36 (1H, m, H-6), 4.74 (1H, brs, H-24), 4.87 (1H, d, J=6.3 Hz, H-1"), 5.04, 5.23 (1H each, both brs, H₂-26), 5.05 (1H, dd, J=7.5 Hz, H-1'); ¹³C-NMR data see Table 1; positive-ion FAB-MS m/z 825 (M+Na)⁺; negative-ion FAB-MS: m/z 801 (M-H)⁻, 669 (M-C₅H₉O₄)⁻, 489 (M-C₁₁H₂₀O₁₀)⁻; HR-FAB-MS: m/z 825.4618 [Calcd for C₄₁H₇₀O₁₅Na (M+Na)⁺, 825.4612].

Floralginsenoside D (4): A white amorphous powder; $[\alpha]_0^{26} + 8.8^{\circ}$ (*c*=0.80, MeOH); IR (KBr) v_{max} 3439, 1655, 1458, 1078 cm⁻¹; ¹H-NMR (pyridine-*d*₅, 600 MHz) δ : 0.91, 1.04, 1.17, 1.43, 1.59, 1.96 (3H each, all s, H₃-30, 19, 18, 29, 21, 28), 1.60 (6H, s, H₃-26, 27), 3.50 (1H, dd, *J*=4.8, 11.7 Hz, H-3), 4.00 (1H, m, H-12), 4.39 (1H, dd, *J*=3.4, 10.3 Hz, H-6), 5.15 (1H, d, *J*=7.6 Hz, H-1'), 5.62 (1H, br s, H-1"), 6.11 (1H, d, *J*=15.8 Hz, H-24), 6.18 (1H, dd-like, *J*=*ca*. 10, 16 Hz, H-23); ¹³C-NMR data see Table 1; positive-ion FAB-MS *m*/*z* 825 (M+Na)⁺; negative-ion FAB-MS *m*/*z* 801 (M-H)⁻, 669 (M-C₅H₉O₄)⁻, 489 (M-C₁₁H₂₀O₁₀)⁻; HR-FAB-MS: *m*/*z* 825.4606 [Calcd for C₄₁H₇₀O₁₅Na (M+Na)⁻, 825.4612].

Floralginsenoside E (5): A white amorphous powder; $[\alpha]_D^{22} + 17.6^{\circ}$ (*c*=0.27, MeOH); IR (KBr) v_{max} 3451, 2930, 1655, 1078 cm⁻¹; ¹H-NMR (pyridine-*d*₅, 600 MHz) δ : 0.87, 0.97, 1.06, 1.13, 1.31, 1.43, 1.56, 1.57 (3H each, all s, H₃-19, 30, 18, 29, 28, 21, 26, 27), 3.31 (1H, dd, *J*=4.5, 11.9 Hz,

H-3), 3.92 (1H, m, H-12), 4.92 (1H, d, J=7.7 Hz, H-1'), 5.35 (1H, d, J=7.7 Hz, H-1"), 6.04 (1H, d, J=16.0 Hz, H-24), 6.25 (1H, ddd, J=5.7, 8.9, 16.0 Hz, H-23); ¹³C-NMR data see Table 1; positive-ion FAB-MS m/z 839 (M+Na)⁺; negative-ion FAB-MS m/z 815 (M-H)⁻, 799 (M-OH)⁻, 635 (M-OH-C₆H₁₁O₅)⁻; HR-FAB-MS: m/z 839.4775 [Calcd for C₄₂H₇₂O₁₅Na (M+Na)⁺, 839.4769].

Floralginsenoside F (6): A white amorphous powder; $[\alpha]_D^{25} + 14.8^{\circ}$ (c=0.93, MeOH); IR (KBr) v_{max} 3566, 2972, 1655, 1078 cm⁻¹; ¹H-NMR (pyridine- d_5 , 500 MHz) δ : 0.87, 0.92, 1.01, 1.02, 1.32, 1.57, 1.58, 1.60 (3H each, all s, H₃-19, 30, 18, 29, 28, 26, 27, 21), 3.38 (1H, dd, J=4.3, 11.8 Hz, H-3), 3.95 (1H, m, H-12), 4.92 (1H, d, J=7.7 Hz, H-1'), 5.19 (1H, d, J=7.8 Hz, H-1"), 6.03 (1H, d, J=16.0 Hz, H-24), 6.18 (1H, ddd, J=6.0, 8.3, 16.0 Hz, H-23); ¹³C-NMR data see Table 1; positive-ion FAB-MS m/z 839 (M+Na)⁺; negative-ion FAB-MS m/z 815 (M-H)⁻, 799 (M-OH)⁻, 635 (M-OH-C₆H₁₁O₅)⁻; HR-FAB-MS: m/z 839.4772 [Calcd for C₄₂H₇₂O₁₅Na (M+Na)⁺, 839.4769].

Pyridine Treatment of 1 A solution of **1** (27 mg) in pyridine (0.6 ml) was allowed to stand at 40 °C for 12 h. After removal of the solvent under reduced pressure, the reaction mixture was separated by HPLC [COSMOSIL $5C_{18}$ -MS-II, (250×20 mm i.d.), MeOH–H₂O (50: 50, v/v)] to give vina-gin-senoside R₂₅ (**14**, 9 mg) and **1** (10 mg), which were identified with authentic samples by ¹H- and ¹³C-NMR and FAB-MS spectra comparisons.

NaBH₄ **Reduction of 2** A solution of 2 (12 mg) in dry-MeOH (3.0 ml) was treated with NaBH₄ (24 mg) and the mixture was stirred at room temperature for overnight. The reaction mixture was quenched in acetone, and then removal of the solvent under reduced pressure yielded a reduction mixture. The reduction mixture was purified by normal-phase silica gel column chromatography [0.7 g, CHCl₃–MeOH–H₂O (7:3:1 lower-layer–65:35:10, v/v/v)] to give vina-ginsenoside-R15 (15, 11 mg), which was identified with authentic sample by ¹H- and ¹³C-NMR and FAB-MS spectra comparisons.

NaBH₄ **Reduction of 6** A solution of 6 (10 mg) in dry-MeOH (3.0 ml) was treated with NaBH₄ (26 mg) and the mixture was stirred at room temperature for overnight. The reaction mixture was quenched in acetone, and then removal of the solvent under reduced pressure yielded a reduction product. The reduction product was purified by normal-phase silica gel column chromatography [0.7 g, CHCl₃–MeOH–H₂O (7:3:1 lower-layer–65:35:10, v/v/v)] to give majoroside F₄ (16, 8 mg), which was identified with authentic sample by ¹H- and ¹³C-NMR and FAB-MS spectra comparisons.

Acid Hydrolysis of Floralginsenosides A (1), B (2), C (3), D (4), E (5), and F (6) A solution of 1—6 (1 mg each) in 1.0 M HCl (1.0 ml) was heated under reflux for 3 h. After cooling, the reaction mixture was poured into icewater and neutralized with Amberlite IRA-400 (OH⁻ form), and the resin was removed by filtration. Then, the filtrate was extracted with EtOAc. The aqueous layer was subjected to HPLC analysis under the following conditions: HPLC column, Kaseisorb LC NH₂-60-5, 4.6 mm i.d.×250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan)]; mobile phase, MeCN–H₂O (75:25, v/v); flow rate 0.80 ml/min; column temperature, room temperature. Identification of D-glucose and L-arabinose present in the aqueous layer was carried out by comparison of its retention time and optical rotation with that of an authentic sample. $t_{\rm R}$: 7.8 min (L-arabinose, positive optical rotation) and 8.6 min (D-glucose, positive optical rotation).

Acknowledgments This research was supported by the 21st COE Program, Academic Frontier Project, and a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and Notes

- Part X: Yoshikawa M., Morikawa T., Yamamoto K., Kato Y., Nagatomo A., Matsuda H., J. Nat. Prod., 68, 1360–1365 (2005).
- 2) Yoshikawa M., Shokuhin to Kagaku, 45, 29–31 (2003).
- Yahara S., Matsuura K., Kasai R., Tanaka O., Chem. Pharm. Bull., 24, 3212–3213 (1976).
- 4) Yahara S., Kaji K., Tanaka O., *Chem. Pharm. Bull.*, **27**, 88–92 (1979).
- Yoshikawa M., Morikawa T., Yashiro K., Murakami T., Matsuda H., Chem. Pharm. Bull., 49, 1452—1456 (2001).
- Yoshikawa M., Morikawa T., Kashima Y., Ninomiya K., Matsuda H., J. Nat. Prod., 66, 922–927 (2003).
- Matsuda H., Morikawa T., Ishiwada T., Managi H., Kagawa M., Higashi Y., Yoshikawa M., *Chem. Pharm. Bull.*, 51, 440–443 (2003).
- Matsuda H., Sugimoto S., Nakamura S., Morikawa T., Ninomiya K., Yoshikawa M., presented at the International Conference on Biodiver-

sity and Natural Products (ICOB-5 & ISCNP-25 IUPAC), Kyoto, Japan, July, 2006, Abstract Paper P-483.

- Dou D.-Q., Chen Y.-J., Ma Z.-Z., Wen Y., Wang M.-H., Pei Y.-P., Wang Z.-X., Kawai H., Fukushima H., Murakami Y., *J. Chinese Pharm. Sci.*, 5, 48—52 (1996).
- Matsuura H., Kasai R., Tanaka O., Saruwatari Y., Fuwa T., Zhou J., *Chem. Pharm. Bull.*, **31**, 2281–2287 (1983).
- 11) Ko S.-R., Suzuki Y., Kim Y.-H., Choi K.-J., *Biosci. Biotechnol. Biochem.*, **65**, 1223—1226 (2001).
- Takemoto T., Arihara S., Nakajima T., Okuhira M., Yakugaku Zasshi, 103, 1015—1023 (1983).
- Yoshikawa M., Murakami T., Yashiro K., Yamahara J., Matsuda H., Saijoh R., Tanaka O., *Chem. Pharm. Bull.*, 46, 647–654 (1998).
- 14) Knappe E., Peteri D., Z. Anal. Chem., 190, 380-386 (1962).
- 15) The ¹H-NMR and ¹³C-NMR spectra of 1—6 were assigned with the aid of homo- and hetero-correlation spectroscopy (¹H–¹H, ¹H–¹³C COSY), distortionless enhancement by polarization transfer (DEPT) and HMBC experiments.

- 16) Yoshikawa M., Murakami T., Ueno T., Yashiro K., Hirokawa N., Murakami N., Yamahara J., Matsuda H., Saijoh R., Tanaka O., *Chem. Pharm. Bull.*, **45**, 1039—1045 (1997).
- 17) Tran Q.-L., Adnyana I.-K., Tezuka Y., Nagaoka T., Tran Q.-K., Kadota S., J. Nat. Prod., 64, 456–461 (2001).
- The stereostructures of the 24-positions in 1 and 3 have not been characterized yet.
- Yoshikawa M., Murakami T., Ueno T., Hirokawa N., Yashiro K., Murakami N., Yamahara J., Matsuda H., Saijoh R., Tanaka O., *Chem. Pharm. Bull.*, 45, 1056–1062 (1997).
- Duc N.-M., Kasai R., Yamasaki K., Tham N.-T., Tanaka O., Studies in Plant Science, 6, 77–82 (1999).
- Kitagawa I., Yoshikawa M., Yoshihara M., Hayashi T., Taniyama T., Yakugaku Zasshi, 103, 612–622 (1983).
- 22) Koizumi H., Sanada S., Ida Y., Saijoh R., Chem. Pharm. Bull., 30, 2393—2398 (1982).
- 23) Feng B., Wang X., Wang D., Yang C., Zhou J., Acta Botanica Yunnanica, 9, 477–484 (1987).