
The aqueous solubility of organic compounds is an impor-
tant molecular property, playing a large role in the behavior
of compounds in many areas of interest. Given the impor-
tance of solubility, a means of prediction based solely on mo-
lecular structure should prove a useful tool, as many com-
pounds exist for which the solubility simply is not available.
The solubility of chemicals and drugs in the water phase has
an essential influence on the extent of their absorption and
transport in a body. That is why solubility is considered to be
a very important parameter in current ADMET (Absorption,
Distribution, Metabolism, Excretion, and Toxicity) re-
search.1—5)

Water solubility plays a key role in areas such as drug
dosage, anesthesiology, corrosion of metals, transport fate of
pollutants in terrestrial, aquatic and atmospheric ecosystems,
deposition of minerals and composition of ground waters,
and availability of oxygen and other gases in life support sys-
tems. The widespread relevance of water solubility data to
many branches and disciplines of science, medicine, technol-
ogy, and engineering has led to the development of several
models to predict water solubility. Hence, it was deemed ad-
vantageous to develop a model to predict water solubility
using only theoretically derived descriptors.6—9) Comparing
with the time-consuming experimental procedures to deter-
mine aqueous solubility directly, reliable computational
methods to predict aqueous solubility are more popular in
today’s research.10—12) There are some reports about the ap-
plications of QSPR approaches to predict the aqueous solu-
bility of organic compounds.13—19) In our previous papers, we
reported on the application of QSPR techniques in the devel-
opment of a new, simplified approach to prediction of com-
pounds properties.20—22) Several articles have published with
MLR models for the prediction of aqueous solubility.23—26)

In a QSPR study, a mathematical model is developed
which relates the structure of a set of compounds to a physi-

cal property such as aqueous solubility. In a QSPR study is
that there is some sort of relationship between the physical
property of interest and structural descriptors. These descrip-
tors are numerical representations of structural features of
molecules that attempt to encode important information that
causes structurally different compounds to have different
physical property values. Even though the descriptors used to
build a QSPR model can be empirical, it is generally more
useful to use descriptors derived mathematically from the 3D
molecular structure, since this allow any relationship so de-
rived to be extended to the prediction of the property for un-
available compounds. In this work a QSPR study is per-
formed, to develop model that relate the structures of a het-
erogeneous group of 150 drug-like compounds to their aque-
ous solubility. The stepwise MLR was used to select the most
informative descriptors from the calculated descriptors by
Molecular Modeling Pro Plus software. The selected descrip-
tors were used to develop a MLR model for predicting the
solubility for 40 drug compounds in water at 25 °C. The aim
of this work was to investigate molecular descriptors impor-
tant in determining aqueous solubility.

Data and Methods
The QSPR model for the estimation of the log Sw’s of various drug organic

compounds is established in the following six steps: the molecular structure
input and generation of the files containing the chemical structures is stored
in a computer–readable format; quantum mechanics geometry is optimized
with a semi-empirical (AM1) method; structural descriptors are computed;
structural descriptors are selected; and the structure-log Sw model is gener-
ated by the multiple linear regression and statistical analysis.

Data Set All solubility data for all 150 compounds was taken from the
literature.27) These values were converted from mole/liter to logarithm of
drug solubility (log Sw). These were measured at 25 °C in aqueous solution.
The data set was split into a training set (110 compounds) and a prediction
set (40 compounds). The solubility’s of these compounds are deposited in
Journal log as supporting material (see Table 1).

Computer Hardware and Software All calculations were run on a
Pentium IV personal computer with windows XP operating system. The
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Table 1. Experimental Values of log Sw for Drug-Like Organic Compounds in Water at 25 °C for Training (a) and Pediction (b) Sets

No. Name log Sw No. Name log Sw

1 Naphthacenea �8.69 76 5-Methyl-5-(3-methylbut-2-enyl)barbituratea �2.602
2 Chrysenea �8.06 77 5-i-Propyl-5-(3-methylbut-2-enyl)barbituratea �2.593
3 3,4-Benzopyrenea �7.82 78 Propylparabenb �2.557
4 Hexachlorobenzenea �7.76 79 Lomefloxacina �2.533
5 Benzanthracenea �7.21 80 5,5-Dipropylbarbiturateb �2.527
6 Etomidatea �6.735 81 Carbofurana �2.5
7 Anthracenea �6.38 82 Acetazolamidea �2.489
8 Fenbuconazoleb �6.226 83 Amobarbitala �2.47
9 Pyrenea �6.18 84 Isocarboxazidb �2.461

10 Fenbufena �5.301 85 Heptobarbitala �2.38
11 Fludioxonila �5.21 86 Phenacetinb �2.371
12 Phenanthrenea �5.15 87 Phenobarbitalb �2.366
13 Diclofenacb �5.097 88 Pteridine-4-methyl-thiolb �2.365
14 Fenpiclonila �5.074 89 Cyclobutane-spirobarbituratea �2.349
15 Fluorenea �4.92 90 Ethylparabena �2.346
16 Indoprofena �4.824 91 5-Allyl-5-phenylbarbituratea �2.346
17 Fenoxycarbb �4.719 92 5-Ethyl-5-pentylbarbituratea �2.34
18 Flufenamic acida �4.623 93 Glutethimidea �2.337
19 G-BHC (Lindane)a �4.6 94 Secbutabarbitalb �2.333
20 Acenaphtheneb �4.59 95 Cyclobarbitalb �2.273
21 Iopanoic acida �4.58 96 Sulfamethazinea �2.268
22 Diflunisala �4.479 97 5-Ethyl-5-(3-methylbut-2-enyl)barbituratea �2.253
23 5-Ethyl-5-nonylbarbituratea �4.462 98 Propylthiouracila �2.185
24 Amitriptylinea �4.456 99 Idobutala �2.172
25 1,3,5-Trichlorobenzenea �4.44 100 2-Naphthola �2.159
26 Haloperidola �4.429 101 Probarbitalb �2.153
27 Diphenylb �4.34 102 Atropinea �2.124
28 Phenytoina �4.226 103 Butalbitala �2.119
29 5,5-Diphenylbarbituratea �4.196 104 Camphora �2.086
30 Naproxena �4.155 105 Minoxidila �1.978
31 1,4-Dibromobenzeneb �4.07 106 Salicylamidea �1.836
32 Oxazepamb �3.952 107 7-Butyltheophyllinea �1.805
33 5-Ethyl-5-octylbarbituratea �3.943 108 Salicylic acida �1.804
34 Fenchlorphosa �3.905 109 Allobarbitalb �1.796
35 Fenclofenaca �3.854 110 Pteridine-2-methyl-thiola �1.754
36 Methyclothiazidea �3.778 111 7-Butyl-8-methyltheophyllinea �1.745
37 Mefenamic acida �3.77 112 Aspirinb �1.733
38 1,2,3-Trichlorobenzenea �3.76 113 Saccharina �1.725
39 Diurona �3.76 114 Aprobarbitala �1.71
40 Flurbiprofena �3.74 115 Methyl-p-hydroxybenzoateb �1.705
41 Naphthaleneb �3.61 116 Baclofena �1.696
42 Lorazepama �3.604 117 Butobarbitone (Butethal)a �1.686
43 Bumetanideb �3.562 118 1-Butyltheobromineb �1.625
44 5-t-Butyl-5-(3-methylbut-2-enyl)barbiturateb �3.551 119 5-Ethyl-5-allylbarbiturateb �1.614
45 Linurona �3.521 120 Cimetidineb �1.613
46 Atrazinea �3.489 121 7-Isobutyl-8-methyltheophyllinea �1.599
47 Melphalanb �3.485 122 Benzoic acida �1.555
48 Isoproturona �3.469 123 Pteridine-7-methyl-thiola �1.551
49 Fluometuronb �3.463 124 5-Ethyl-5-propylbarbiturateb �1.491
50 Ibuprofena �3.42 125 5,5-Diethylbarbiturateb �1.41
51 Nalidixic acida �3.366 126 Acetanilidea �1.398
52 Carbamazepinea �3.294 127 Salbutamola �1.224
53 5-Ethyl-5-heptylbarbituratea �3.218 128 Sulfamerazinea �1.218
54 Cyclohexane-spirobarbituratea �3.168 129 1-Propyltheobromineb �1.207
55 Ketoprofena �3.155 130 5-Methyl-5-ethylbarbituratea �1.162
56 Butambena �3.131 131 5-Methyl-5-allylbarbiturateb �1.16
57 Alclofenaca �3.125 132 6-Chlorpteridineb �1.124
58 Butylparabenb �3.101 133 2-Methoxypteridinea �1.112
59 Hexethala �3.049 134 Acetaminophena �1.074
60 Hydroflumethiazidea �3.043 135 4-Dimethylaminopteridineb �1.021
61 Heptabarbitalb �3.000 136 Methocarbamolb �0.985
62 Cycloheptane-spirobarbituratea �2.982 137 Benzamideb �0.953
63 Methaqualonea �2.921 138 7-Isobutyltheophyllinea �0.942
64 Praziquantelb �2.893 139 Didanosinea �0.937
65 Chlorzoxazonea �2.831 140 7-Chlorpteridineb �0.876
66 Dichlorpropa �2.827 141 7-Methylpteridinea �0.854
67 Sulfathiazolea �2.805 142 Nicotinic acida �0.85
68 Diatrizoic acida �2.788 143 Propranolola �0.714
69 5,5-Di-i-propylbarbituratea �2.766 144 2-Chlorpteridinea �0.699
70 Pteridine-7-thiola �2.706 145 Aminopyrinea �0.619
71 Sulfamethoxazolea �2.705 146 Guaifenesina �0.598
72 Pteridine-4-thiola �2.646 147 Ethambutolb �0.565
73 Phenylbutazonea �2.644 148 Methyprylona �0.382
74 Primidonea �2.64 149 2-Methylpteridinea �0.094
75 Ethyl-4-aminobenzoate (Benzocaine)a �2.616 150 7-Dimethylaminopteridinea �0.021



ChemDraw Ultra version 9.0 (ChemOffice 2005, CambridgeSoft Corpora-
tion) software was used for drawing the molecular structures.28) The opti-
mizations of molecular structures were done by the MOPAC 7.0 (AM1
method) and descriptors were calculated by Molecular Modeling Pro Plus
(MMPP) Version 6.0 (ChemSW, Inc.) softwares.29,30) A stepwise MLR pro-
cedure was used for selection of descriptors using the SPSS/PC software
package.31) MLR was performed by using a routine from the Unscrambler
version 7.6 package32) and other calculations were performed in the MAT-
LAB (version 7.0, MathWorks, Inc.) environment.

Molecular Modeling and Theoretical Molecular Descriptors The
derivation of theoretical molecular descriptors proceeds from the chemical
structure of the compounds. In order to calculate the theoretical descriptors,
molecular structures were constructed with the aid of ChemDraw Ultra ver-
sion 9.0 and molecular structures were optimized using AM1 algorithm.33,34)

The computational chemistry software Chem3D Ultra version 9.0 with
MOPAC was used to build the molecules and perform the necessary geome-
try optimizations. A gradient cutoff of 0.01 was used for all geometry opti-
mizations and the COSMO (COnductor-like Screening MOdel) solvation
model was applied for calculations of molecular geometry in water. We have
chosen descriptors associated with the neutral molecules of drug in our cal-
culations. As a result, a total of 20 theoretical descriptors were calculated for
each compound in the data sets (150 compounds).

The molecular weight, van der Waals volume, surface area, molecular vol-
ume,35) molar volume,36) density, molecular length, molecular width, molec-
ular depth, octanol–water partition coefficient (log P),37,38) molar refractivity
(MR), Q log P,39) Hansen’s solubility parameters (dispersion, polarity and
hydrogen bonding), mean water of hydration,40) hydrophilic–lipophilic bal-
ance (HLB), hydrophilic surface area, % hydrophilic surface area and polar
surface area41) descriptors were calculated by Molecular Modeling Pro Plus
(MMPP) Version 6.0 (ChemSW, Inc.) software.

Stepwise Regression for Descriptor Selection The selection of rele-
vant descriptors, which relate the solubility to the molecular structure, is an
important step to construct a predictive model. In this work, the stepwise
multiple linear regression was used as the feature selection method to select
the best calculated descriptors among 20 theoretical descriptors using Mole-
cular Modeling Pro Plus software. All descriptors with zero values or con-
stant and near constant values for all the molecules in the data set were elim-
inated. The correlation matrix was calculated between the descriptors, one of
the two descriptors which has the pair wise correlation coefficient above 0.8
(r�0.8) and it has a large correlation coefficient with the other descriptors
was eliminated.

In order to select the subset of descriptors that best explain drug solubil-
ity, we have used stepwise regression.42—44) This method combines the for-
ward and backward procedures. Stepwise model-building techniques for re-
gression designs with a single dependent variable involve identifying an ini-
tial model, repeatedly altering the model from the previous step by adding
(forward stepwise) or removing (back stepwise) a predictor variable and ter-
minating the search when stepping does not further improve the model. The
forward stepwise method employs a combination of the forward entry of in-
dependent variables and backward removal of insignificant variables. The
best single predictor, which is the most significant variable, was used for the
initial linear regression step. Next, descriptors were added one at a time, al-
ways adding the one that most improved the fit, until the fit was not signifi-
cantly improved. Once all the significant variables were determined, the re-
gression equation was constructed. The number of variables retained in the
model is based on the levels of significance assumed for inclusion and ex-
clusion of variables from the model.

By using these criteria, 17 out of 20 original descriptors were eliminated
and the remaining descriptors were used to generate the models using the
SPSS/PC software package. The result shows that three calculated descrip-
tors are the most feasible ones. The selected descriptors are octanol–water
partition coefficient (log P), molecular volume (MV) and Hansen’s hydrogen
bond forming ability (HB).

Multiple Linear Regression Modeling The general purpose of multi-
ple regressions is to quantify the relationship between several independent
or predictor variables and a dependent variable. A set of coefficients defines
the single linear combination of independent variables (molecular descrip-
tors) that best describes drug solubility. The solubility value for each drug
would then be calculated as a composite of each molecular descriptor
weighted by the respective coefficients. A multilinear model can be repre-
sented as:

y�b0�b1x1�b2x2�b3x3� · · ·�b kxk�e (1)

where k is the number of independent variables, b1, . . . , b k are the regression
coefficients and y is the dependent variable. Regression coefficients repre-
sent the independent contributions of each calculated molecular descriptor.
The algebraic MLR model is defined in Eq. 1 and in matrix notation:

y�Xb�e (2)

When X is of full rank the least squares solution is: b̂�(XTX)�1XTy where b̂
is the estimator for the regression coefficients in b̂.

A single MLR model was developed for drug organic compounds using
the Unscrambler version 7.6 software. MLR model was constructed with re-
maining descriptors based on stepwise feature selection. The MLR model
was built using a training set and validation using an external prediction set.
Multiple linear regression (MLR) techniques based on least-squares proce-
dures are very often used for estimating the coefficients involved in the
model equation.45,46)

Results and Discussion
All descriptors were calculated for the neutral species. 

The log Sw is assumed to be highly dependent upon the oc-
tanol–water partition coefficient (log P), molecular volume
(MV) and hydrogen bond forming ability (HB). The correla-
tion coefficients between experimental log Sw and the log P,
MV and HB are �0.9229, �0.6215 and 0.5501, respectively.
Figure 1 shows the excellent correlation between the experi-
mental log Sw of the all drug compounds with the log P.

In the present study, the QSPR model was generated using
a training set of 110 molecules. The test set of 40 molecules
(Table 2) with regularly distributed log Sw values was used to
assess the predictive ability of the QSPR model produced in
the regression.

MLR Analysis The software package used for conduct-
ing MLR analysis was Unscrambler 7.6. Multiple linear re-
gression (MLR) analysis has been carried out to derive the
best QSPR model. The MLR technique was performed on
the molecules of the training set shown in Table 1. After re-
gression analysis, a few suitable models were obtained
among which the best model was selected and presented in
Eq. 3. A small number of molecular descriptors (log P, MV
and HB) proposed were used to establish a QSPR model. Ad-
ditional validation was performed on an external data set
consisting of 40 organic compounds. Multiple linear regres-
sion analysis provided a useful equation that can be used to
predict the log Sw of drug based upon these parameters. The
best equation obtained for the solubility of the drug com-
pounds is:

log Sw��0.3359�1.0563 log P�0.0062MV�0.0378HB (3)
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Fig. 1. The Experimental log Sw Values Drug-Like Compounds Correlate
Well with the Octanol–Water Partition Coefficients (log P)



Positive values in the regression coefficients indicate that the
indicated descriptor contributes positively to the value of
log Sw, whereas negative values indicate that the greater the
value of the descriptor the lower the value of log Sw. In other
words, increasing the log P and MV will decrease log Sw and
increasing the HB increases extent of log Sw of the drug or-
ganic compounds.

For evaluation of the predictive power of the generated
MLR, the optimized model was applied for prediction of
log Sw values of 40 compounds in the prediction set which
were not used in the optimization procedure. For the con-
structed model, the predictive ability of the MLR model was
evaluated by calculation of statistical parameters. The pre-
dicted values of log Sw, residuals and the percent relative er-
rors (%RE) of prediction obtained by the MLR method are
presented in Table 2. The plots of predicted log Sw versus ex-
perimental log Sw and the residuals (experimental log Sw�
predicted log Sw) versus experimental log Sw value, obtained
by the MLR modeling, and the random distribution of residu-
als about zero mean are shown in Fig. 2. The stability and va-
lidity of model was tested by prediction of the response val-
ues for the prediction set. This model is applicable for pre-

diction of log Sw from �8.690 to �0.021. The average rela-
tive errors (�RE%) of prediction and squares of correlation
coefficients (R2) are �1.2996% and 0.9954 for MLR model,
respectively.
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Table 2. Experimental log Sw, Molecular Descriptors, Predicted log Sw, Residuals and Percent Relative Errors Values for External Prediction Set

No. Name Exp. (log Sw) Log P MV HB Pred. (log Sw) Residuals %RE

1 Fenbuconazole �6.226 4.8400 180.7364 7.6632 �6.2717 0.0457 0.7338
2 Diclofenac �5.097 3.9400 143.4893 8.9003 �5.0448 �0.0522 �1.0248
3 Fenoxycarb �4.719 3.4028 166.1030 7.7500 �4.6602 �0.0588 �1.2460
4 Acenaphthene �4.590 3.4660 124.0000 2.5700 �4.6636 0.0736 1.6030
5 Diphenyl �4.340 3.3000 126.0000 3.0700 �4.4816 0.1416 3.2636
6 1,4-Dibromobenzene �4.070 3.1400 126.0000 7.3100 �4.1522 0.0822 2.0194
7 Oxazepam �3.952 3.0832 141.6930 12.3718 �3.9973 0.0453 1.1471
8 Naphthalene �3.610 2.7100 111.0000 5.2600 �3.6832 0.0732 2.0267
9 Bumetanide �3.562 2.6112 164.4000 12.0828 �3.6496 0.0876 2.4598

10 5-t-Butyl-5-(3-methylbut-2-enyl)barbiturate �3.551 2.3944 145.4307 7.5771 �3.4743 �0.0767 �2.1611
11 Melphalan �3.485 2.4829 156.9261 10.6779 �3.5212 0.0362 1.0393
12 Fluometuron �3.463 2.3500 114.3074 7.6518 �3.2328 �0.2302 �6.6481
13 Butylparaben �3.101 2.5020 110.8953 12.8699 �3.1748 0.0738 2.3813
14 Heptabarbital �3.000 2.0000 138.6097 7.9317 �3.0022 0.0022 0.0742
15 Praziquantel �2.893 2.0224 142.0000 7.4934 �3.0634 0.1704 5.8888
16 Propylparaben �2.557 2.0460 100.9936 12.6500 �2.6405 0.0835 3.2659
17 5,5-Dipropylbarbiturate �2.527 1.5834 118.5753 8.4545 �2.4190 �0.1080 �4.2749
18 Isocarboxazid �2.461 1.5946 123.4382 9.9000 �2.4061 �0.0549 �2.2322
19 Phenacetin �2.371 1.7570 103.2280 7.2320 �2.5540 0.1830 7.7202
20 Phenobarbital �2.366 1.5196 121.1266 8.7466 �2.3563 �0.0097 �0.4121
21 Pteridine-4-methyl-thiol �2.365 1.6325 88.3642 10.7589 �2.1975 �0.1675 �7.0824
22 Secbutabarbital �2.333 1.4961 118.6515 8.4605 �2.3270 �0.0060 �0.2568
23 Cyclobarbital �2.273 1.3589 128.6793 8.2893 �2.2503 �0.0227 �0.9966
24 Probarbital �2.153 1.3100 108.6790 9.4100 �2.0331 �0.1199 �5.5706
25 Allobarbital �1.796 1.0444 112.3838 10.8000 �1.7227 �0.0733 �4.0785
26 Aspirin �1.733 1.1769 92.6674 11.6759 �1.7081 �0.0249 �1.4379
27 Methyl-p-hydroxybenzoate �1.705 1.3040 81.0940 14.0800 �1.6801 �0.0249 �1.4633
28 1-Butyltheobromine �1.625 0.7700 129.8055 11.1612 �1.5266 �0.0984 �6.0565
29 5-Ethyl-5-allylbarbiturate �1.614 0.8966 105.5769 9.1275 �1.5880 �0.0260 �1.6115
30 Cimetidine �1.613 0.9319 124.0000 9.2716 �1.7333 0.1203 7.4598
31 5-Ethyl-5-propylbarbiturate �1.491 0.7488 98.5588 9.4045 �1.3782 �0.1128 �7.5685
32 5,5-Diethylbarbiturate �1.410 0.7488 98.6599 9.4045 �1.3788 �0.0312 �2.2144
33 1-Propyltheobromine �1.207 0.3900 119.8542 11.7121 �1.0430 �0.1640 �13.5833
34 5-Methyl-5-allylbarbiturate �1.160 0.4793 95.4815 10.6000 �1.0293 �0.1307 �11.2678
35 6-Chlorpteridine �1.124 0.6200 84.0000 11.8881 �1.0584 �0.0656 �5.8341
36 4-Dimethylaminopteridine �1.021 0.3530 94.8208 11.8202 �0.94564 �0.0754 �7.3807
37 Methocarbamol �0.985 0.6288 115.9000 15.3616 �1.0328 0.0478 4.8543
38 Benzamide �0.953 0.5810 67.3657 11.2000 �0.9408 �0.0122 �1.2817
39 7-Chlorpteridine �0.876 0.3830 76.0465 11.8881 �0.7591 �0.1169 �13.3458
40 Ethambutol �0.565 0.2000 119.3000 14.6500 �0.6278 0.0628 11.1097

Fig. 2. Plots of Predicted log Sw and Residuals log Sw Estimated by MLR
Modeling versus Experimental log Sw for Test Molecules in Prediction Set



Interpretation of Descriptors The QSPR developed in-
dicated that octanol–water partition constant (log P), molecu-
lar volume and hydrogen bond forming ability significantly
influence drug aqueous solubility.

The n-octanol–water partition coefficient, respectively its
logarithmic value is called log P. The log P frequently used to
estimate the membrane permeability and the bioavailability
of compounds, since an orally administered drug must be
enough lipophilic to cross the lipid bilayer of the membranes,
and on the other hand, must be sufficiently water soluble to
be transported in the blood and the lymph. The log P is fre-
quently used in quantitative structure–property relationships
as a measure of the lipophilic character of the molecules. Oc-
tanol–water partition coefficient (log P) is used in QSPR
studies and rational drug design as a measure of molecular
hydrophobicity. Hydrophobicity affects drug absorption,
bioavailability, hydrophobic drug–receptor interactions, me-
tabolism of molecules, as well as their toxicity. Lipophilicity
is approximately correlated to passive transport across cell
membranes and the ability of a compound to partition
through a membrane since membranes are composed largely
of lipids. Log P is well established as a key parameter to de-
scribe lipophilicity, uptake and distribution in biological sys-
tems. With increases octanol/water partition coefficients,
water solubility decreases.

Molecular volume determines transport characteristics of
molecules, such as intestinal absorption or blood-brain bar-
rier penetration. Volume is therefore often used in QSPR
studies to model molecular properties and biological activity.
The steric effects characterise bulk properties of a molecule
and can be described with molecular volume. The molecular
volume is clearly the most important descriptor for aqueous
solubility. In order for a solute to enter into aqueous solution,
a cavity must be formed in the solvent for the solute mole-
cule to occupy. Water as a solvent would much prefer to in-
teract with itself or other hydrogen bonding or ionic species
than with a nonpolar solute, so there is an increasing penalty
(and thus lower solubility) for larger solutes. By increasing
molecular volume leads to increasing cavity formation en-
ergy in water, the larger the solute, the greater the energy de-
mand to make cavity and the lower the solubility.

A particularly strong type of polar interaction occurs in
molecules where a hydrogen atom is attached to an extremely
electron-hungry atom such as oxygen, nitrogen, or fluorine.
In such cases, the hydrogen’s sole electron is drawn toward
the electronegative atom, leaving the strongly charged hydro-
gen nucleus exposed. In this state the exposed positive nu-
cleus can exert a considerable attraction on electrons in other
molecules, forming a protonic bridge that is substantially
stronger than most other types of dipole interactions. This
type of polarity is so strong compared to other van der Waals
interactions, that it is given its own name: hydrogen bonding.
Understandably, hydrogen bonding plays a significant role in
solubility behavior. Hydrogen bonding not a true bond, but a
very strong form of dipole–dipole attraction. The O–H and
N–H bonds in molecular structures are strongly polarized
and the positive charge is located on Hd�. In this study we
have a dipolar protic solvent (water) containing hydrogen
bond donor (O–H bonds) and hydrogen bond acceptor (lone
pairs of oxygen atom). Hydrogen bond donor solutes are
simply those containing a hydrogen atom bound to an elec-

tronegative atom. Hydrogen bond acceptors solutes are that
have a lone pair available for donation, and include N and O
atoms in their structures. The hydrogen bonding (Hansen) a
measure of the tendency of a molecule to form hydrogen
bonds. As the hydrogen bond formation increases, water sol-
ubility increases, this is agreed to the fact that water has large
dipolarity/polarizability. As polarity increases, water solubil-
ity increases. The intermolecular hydrogen bonding can dra-
matically influence solubility properties.

Statistical Parameters For evaluation of the predictive
power of the generated MLR, the optimized models was ap-
plied for prediction of log Sw values of test compounds in the
prediction set, which were not used in the optimization pro-
cedure. For the constructed models, five general statistical
parameters were selected to evaluate the prediction ability of
the model for log Sw. For this case, the predicted log Sw’s of
each sample in prediction step were compared with the 
experimental log Sw. PRESS (predicted residual sum of
squares) appears to be the most important parameter ac-
counting for a good estimate of the real predictive error of
the models. Its small value indicates that the model predicts
better than chance and can be considered statistically signifi-
cant.

(4)

Root mean square error of prediction (RMSEP) is a meas-
urement of the average difference between predicted and ex-
perimental values, at the prediction stage. RMSEP can be in-
terpreted as the average prediction error, expressed in the
same units as the original response values. The RMSEP was
obtained by the following formula:

(5)

The third statistical parameter was relative error of predic-
tion (REP) that shows the predictive ability of each compo-
nent, and is calculated as:

(6)

The predictive applicability of a regression model is de-
scribed in various ways. The most general expression is the
standard error of prediction (SEP) which is given in the fol-
lowing formula:

(7)

The square of the correlation coefficient (R2), which is, indi-
cated the quality of fit of all the data to a straight line is cal-
culated for the checking of test set, and is calculated as:

(8)R
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where yi is the experimental log Sw of the drug in the sample
i, ŷi represented the predicted log Sw of the drug in the sample
i, ȳ, is the mean of experimental log Sw in the prediction set
and n is the total number of samples used in the prediction
set.

The statistical parameters values of PRESS, RMSEP, REP
(%), SEP and R2 of prediction set for the MLR model were
equal to 0.3677, 0.0959, �3.7619, 0.0971 and 0.9954 re-
spectively.

Conclusions
Predictive QSPR model which is based on molecular de-

scriptors is proposed in this study to correlate the aqueous
solubility of drug compounds. Application of the developed
model to a testing set of 40 compounds demonstrates that the
new model is reliable with good predictive accuracy and sim-
ple formulation. Since the QSPR was developed on the basis
of theoretical molecular descriptors calculated exclusively
from molecular structure, the proposed model could poten-
tially provide useful information about the solubility of drug
compounds.

We have developed here a useful QSPR equation derived
from theoretical descriptors associated with solubility prop-
erty. A MLR is successfully presented for prediction aqueous
solubility property (log Sw) of various drug compounds with
diverse chemical structures using a linear quantitative struc-
ture–property relationship. A model with high statistical
quality and low prediction errors was obtained. The model
could predict the solubility property of the drug compounds
accurately. The macroscopic (bulk) activities/properties of
chemical compounds clearly depend on their microscopic
(structural) characteristics. Development of quantitative
structure property/activity relationships (QSPR/QSAR) on
theoretical descriptors is a powerful tool not only for predic-
tion of the chemical, physical and biological properties/activ-
ities of compounds, but also for deeper understanding of the
detailed mechanisms of interactions in complex systems that
predetermine these properties/activities. MLR analysis pro-
vided useful equation that can be used to predict the log Sw of
chemicals based upon log P, MV and HB parameters. The re-
sults indicate that a strong correlation exists between the
log Sw and log P for drug compounds. This procedure al-
lowed us to achieve a precise and relatively fast method for
determination of log Sw of different series of drug com-
pounds and to predict with sufficient accuracy the log Sw of
new drug derivatives.
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