Bioactive Constituents from Chinese Natural Medicines. XXIII.1) Absolute Structures of New Megastigmane Glycosides, Sedumosides A₄, A₅, A₆, H₁ **and I, and Hepatoprotective Megastigmanes from** *Sedum sarmentosum*

Kiyofumi N ${\rm N}\overline{\rm n}$ omiya, a,b Toshio Morikawa, a,b Yi Zhang, a Seikou Nakamura, a Hisashi Matsuda, a Osamu MURAOKA, *^b*,*^c* and Masayuki YOSHIKAWA*,*^a*

aKyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8412, Japan: b Pharmaceutical Research and Technology Institute, Kinki University; and ^c School of Pharmacy, Kinki University; 3–4–1 Kowakae, Higashi-osaka, Osaka 577–8502, Japan. Received March 8, 2007; accepted May 7, 2007

The methanol-eluted fraction of the hot water extract from the whole plant of *Sedum sarmentosum* **(Crassulaceae) was found to show hepatoprotective effect on D-galactosamine-induced cytotoxicity in primary cultured** mouse hepatocytes. From the active fraction, five new megastigmane glycosides, sedumosides A₄, A₅, A₆, H, and I, **were isolated together with 22 megastigmane constituents. Their absolute stereostructures were elucidated on the basis of chemical and physicochemical evidence. Among them, sedumoside** F_1 **(IC₅₀=47** μ **M), (3***S***,5***R***,6***S***,9***R***)**megastigmane-3,9-diol (61 μ M), and myrsinionosides A (52 μ M) and D (62 μ M) were found to show the strong he**patoprotective activity.**

Key words *Sedum sarmentosum*; sedumoside; megastigmane; hepatoprotective activity; Chinese natural medicine; Crassulaceae

During the course of our characterization studies on the bioactive constituents from Chinese natural medicines, $1-16$) we reported the isolation and structure elucidation of sarmentoic acid (1), sarmentol A (2), and sedumosides A_1 — A_3 $(3–5)$, B (6) , C (7) , D (8) , E₁ $-E_3$ $(9–11)$, F₁ (12) , F₂ (13) , and G (**14**) from the whole plant of *Sedum sarmentosum* $(Crasulaceae)$ ^{1,16)} As a continuing study on this herbal medicine, the methanolic extract of the hot water extract from *S. sarmentosum* was found to show hepatoprotective effect on D-galactosamine (D-GalN)-induced cytotoxicity in primary cultured mouse hepatocytes. Through bioassay-guided separation, we isolated five new megastigmane glycosides, sedumosides A_4 (15), A_5 (16), A_6 (17), H (18), and I (19), from the active methanol-eluted fraction together with other megastigmane constituents (**1**—**14**, **20**—**27**). This paper deals with the absolute stereostructure elucidation of these new constituents (**15**—**19**) and the hepatoprotective effects of megastigmane constituents (**1**—**5**, **9**—**27**) and related megastigmanes (**1a**, **19a**) on D-GalN-induced cytotoxicity in primary cultured mouse hepatocytes.

The hot water extract of the whole plant of *S. sarmentosum* was treated with methanol to give the methanol-soluble

Chart 1

Table 1. Inhibitory Effects of Methanol-Soluble Part and Its Fractions from the Hot Water Extract of *S. sarmentosum* on D-GalN-Induced Cytotoxicity in Primary Cultured Mouse Hepatocytes

Each value represents the mean \pm S.E.M. (*n*=4). Significantly different from the control, ** *p*<0.01. (—): Cytotoxicity.

Table 2. 13C-NMR Data for **15**—**19**, **18a**, **18b**, and **19a**

Position	15^{a}	16 ^a	17^{b}	$17^{a)}$	$18^{a)}$	$18a^{a}$	$18b^{a)}$	19 ^a	$19a^{a}$
	36.8	36.8	35.9	36.8	37.3	37.4	40.1	40.2	40.3
\overline{c}	51.9	48.5	48.1	48.5	47.9	48.1	51.8	57.0	57.0
3	67.4	75.8	74.2	75.7	202.3	202.3	215.2	214.0	214.0
4	46.5	44.8	44.3	44.8	125.4	125.5	46.2	50.7	50.7
5	34.8	35.0	33.7	34.9	169.6	169.7	33.8	37.5	37.5
6	54.3	54.4	53.2	54.4	52.2	52.4	50.4	52.6	52.8
$\overline{7}$	26.0	26.1	25.3	26.1	26.8	27.2	21.9	23.2	23.6
$\,$ 8 $\,$	35.2	35.2	35.1	35.3	33.9	34.1	36.7	41.3	40.7
9	82.8	82.5	82.9	82.9	71.5	73.2	73.6	210.6	212.1
10	65.1	64.9	65.5	65.1	75.2	67.3	67.4	74.7	68.8
11	21.4	21.4	21.0	21.4	27.4	27.5	29.5	21.1	21.0
12	31.3	31.4	30.9	31.3	29.0	29.1	28.0	30.3	30.3
13	21.4	21.6	21.1	21.5	24.9	24.8	19.0	21.4	21.3
1'	105.1	102.7	103.0	102.7	104.7			104.2	
2^{\prime}	75.5	75.1	75.4	75.1	75.1			74.9	
3'	78.0	78.1	78.7	78.1	77.8			77.8	
4'	71.2	71.7	71.7	71.7	71.6			71.6	
$5'$	67.1	77.9	78.5	77.9	77.9			78.1	
6^{\prime}		62.7	62.9	62.9	62.7			62.8	
1''		104.0	105.6	105.1					
2 ⁿ		75.6	75.6	75.5					
3''		78.1	78.7	78.0					
4 ^{''}		71.7	71.1	71.3					
$5^{\prime\prime}$		77.9	67.5	67.1					
6''		62.7							

Measured in *a*) CD₃OD or *b*) pyridine- d_5 at 125 MHz.

part (0.57% from the fresh plant). The methanol-soluble part was subjected to Diaion HP-20 column chromatography $(H₂O \rightarrow MeOH)$ to give the water- and methanol-eluted fractions (0.44% and 0.13%, respectively) as previously reported.16) As shown in Table 1, the methanol-soluble part and methanol-eluted fraction were found to show hepatoprotective activity. From the methanol-eluted fraction, **15** (0.00001%), **16** (0.00003%), **17** (0.00002%), **18** (0.00022%), and **19** (0.00026%) were isolated using normal- and reversephase silica gel column chromatography, and finally HPLC together with 22 megastigmane constituents (**1**—**14**, **20**— **27**), which were reported previously.^{1,16)}

Absolute Stereostructures of Sedumosides A_4 (15), A_5 **(16),** A_6 **(17), H (18), and I (19)** Sedumoside A_4 (15) was isolated as an amorphous powder with negative optical rotation ($[\alpha]_D^{26}$ -11.1° in MeOH). The IR spectrum of 15 showed absorption bands at 3405, 1072, and 1039 cm^{-1} ascribable to hydroxyl and ether functions. In the positive-ion fast atom bombardment (FAB)-MS of **15**, a quasimolecular ion peak was observed at m/z 385 $(M+Na)^+$. The molecular formula $C_{18}H_{34}O_7$ of 15 was determined based on high-resolution positive-ion FAB-MS measurement. Acid hydrolysis of **15** with 1.0 ^M hydrochloric acid (HCl) liberated the agly-

cone, sarmentol A^{16} (2), together with D-xylose, which was identified by HPLC analysis using an optical rotation detector.^{1,2,4—6,9—12,14,16)} The ¹H- (CD₃OD) and ¹³C-NMR (Table 2) spectra¹⁷⁾ of **15** showed signals assignable to a sarmentol A part { δ 0.84, 0.95 (3H each, both s, 11, 12-H₃), 0.98 (3H, d, *J*=6.8 Hz, 13-H₃), [3.53 (1H, dd, *J*=6.7, 12.5 Hz), 3.62 (1H, m), 10-H₂], 3.62 (1H, m, 9-H), 3.70 (1H, m, 3-H)} and a β - D -xylopyranosyl moiety δ 4.34 (1H, d, J=7.7 Hz, 1'-H)]. In the heteronuclear multiple-bond correlation (HMBC) experiment of **15**, a long-range correlation was observed between the 1'-proton and the 9-carbon (δ_c 82.8). On the basis of the above-mentioned evidence, the absolute stereostructure of sedumoside A_4 was elucidated to be sarmentol A 9-O- β -Dxylopyranoside (**15**).

Sedumosides A_5 (16) and A_6 (17) were also isolated as amorphous powders with negative optical rotations $(16: [\alpha]_D^{19}]$ -16.7° ; **17**: $[\alpha]_D^{17}$ -26.8° both in MeOH), respectively. The molecular formula $C_{25}H_{46}O_{13}$, of **16** was determined from the positive-ion FAB-MS $[m/z 577 (M+Na)^+]$ and by high-resolution positive-ion FAB-MS. On the other hand, the molecular formula of 17, $C_{24}H_{44}O_{12}$, was also determined based on high-resolution positive-ion FAB-MS. The acid hydrolysis of **16** and **17** liberated **2** (from **16** and **17**), together with D-glucose (from **16** and **17**) and D-xylose (from **17**), which were identified by HPLC analysis using an optical rotation detector.^{1,2,4—6,9—12,14,16)} The ¹H- (CD₃OD) and ¹³C-NMR (Table 2) spectra¹⁷⁾ of **16** showed signals assignable to a sarmentol A part together with two β -D-glucopyranosyl moieties [δ 4.33 (1H, d, J=7.7 Hz, 1'-H), 4.42 (1H, d, J=7.7 Hz, 1"-H)]. The long-range correlations in the HMBC experiment on **16** were observed between the 1'-proton and the 3-carbon (δ_c 75.8) and between the 1"-proton and the 9-carbon (δ_c 82.5). On the other hand, the proton and carbon signals in the ¹H- (pyridine- d_5) and ¹³C-NMR (Table 2) spectra¹⁷⁾ of 17 were superimposable on those of **16**, except for the signals due to sugar parts {a β -D-glucopyranosyl [δ 5.02 (1H, d, $J=8.0$ Hz, 1'-H)] and a β -D-xylopyranosyl moiety [δ 5.04 (1H, d, $J=8.2$ Hz, 1["]-H)]}. The connectivities of the sugar parts in **17** were also characterized in HMBC experiments, which showed long-range correlations between the 1'-proton and the 3-carbon (δ_c 74.2) and between the 1"-proton and the 9-carbon (δ_c 82.9). On the basis of the above-mentioned evidence, the absolute stereostructures of sedumosides A_5 and A_6 were elucidated to be sarmentol A 3,9-di-O- β -D-glucopyranoside (16) and sarmentol A $3-O-\beta$ -D-glucopyranosyl-9-*O*-b-D-xylopyranoside (**17**).

Sedumoside H (**18**) was obtained as an amorphous powder and exhibited a positive optical rotation ($[\alpha]_D^{27}$ +71.4° in MeOH). In the UV spectrum of **18**, an absorption maximum was observed at 240 ($log \varepsilon$ 4.08) nm. The IR spectrum of **18** showed absorption bands at 3389, 1669, 1076, and 1038 cm⁻¹ assignable to hydroxyl, α , β -unsaturated carbonyl, and ether functions. In the positive-ion FAB-MS of **18**, a quasimolecular ion peak was observed at m/z 411 $(M+Na)^+$ and high-resolution FAB-MS analysis revealed the molecular formula to be $C_{19}H_{32}O_8$. Acid hydrolysis of 18 with 1.0 M HCl liberated D-glucose, which was identified by HPLC analysis using an optical rotation detector.^{1,2,4—6,9—12,14,16)} Enzymatic hydrolysis of 18 with β -glucosidase gave a new megastigmane, sarmentol H (**18a**), as the aglycon. The proton and carbon signals in the ${}^{1}H$ - (CD₃OD) and ${}^{13}C$ -NMR (Table 2) spectra¹⁷) of **18a** indicated the presence of three methyls $\lbrack 6 \ 1.02, 1.09, 2.04 \ (3H each, all s, 12, 11, 13-H₃) \rbrack$, a methylene and a methine bearing an oxygen function δ 3.45 $(2H, d, J=5.5 Hz, 10-H₂), 3.54 (1H, m, 9-H)$], and an olefin [δ 5.81 (1H, s, 4-H)]. The ¹H-¹H correlation spectroscopy (1 H–¹ H COSY) experiment on **18a** indicated the presence of a partial structure shown by the bold line in Fig. 1. In the HMBC experiment on **18a**, long-range correlations were observed between the following proton and carbon pairs: $2-H_2$ and 3-C; 4-H and 2, 3, 6, 13-C; 6-H and 1, 5, 7-C; 7-H, and 6, 8-C; 8-H₂ and 6, 7, 9-C; 9-H and 7, 8, 10-C; 10-H₂ and 9-C; 11-H₃ and 1, 2, 6, 12-C; 12-H₃ and 1, 2, 6, 11-C; and 13- H_3 and 4—6-C. The relative stereostructure of **18a** was characterized in a NOESY experiment, which showed NOE correlations between the following proton pairs: 2α -H and 12- H_3 ; 2 β -H and 11-H₃; 4-H and 13-H₃; 6-H and 12-H₃; and 7- H_2 and 11-H₃ (Fig. 1). To clarify the absolute stereostructure of **18a**, we carried out the conversion of **18a** into sarmentol C (**7a**), of which the absolute stereostructure was elucidated previously.16) Thus hydrogenation of **18a** with 10% palladium carbon (Pd–C) under an H_2 atmosphere gave $7a$ and **18b** in an approximate 1 : 3 ratio. The reductant (**18b**) was produced by hydrogenation of **18a** *via* intermediates (**i** and

ii), as shown in Fig. 1. The proton and carbon signals in the ¹H- (CD₃OD) and ¹³C-NMR (Table 2) spectra¹⁷⁾ of **18b** were superimposable on those of **7a** $\{\delta\ 0.97, 1.05\ (3H each, both$ s, 11, 12-H₃), 1.01 (3H, d, J=7.0 Hz, 13-H₃), [3.46 (1H, dd, *J*=6.4, 11.0 Hz), 3.49 (1H, dd, *J*=4.9, 11.0 Hz), 10-H₂], 3.60 (1H, m, 9-H)}, except for the signals around the 6-position. The relative stereostructure of **18b** was clarified in a NOESY experiment, which showed NOE correlations between the following proton pairs: 2α -H and 12-H₃; 2β -H and 11-H₃; 5-H and 11-H₃; 6-H and 11-H₃; and 7-H₂ and 12, 13-H₃. The absolute stereostructure of **18b** was confirmed by the application of the octant rule.¹⁸⁾ The circular dichroic (CD) spectrum of 18b showed a positive Cotton effect at 291 nm $(\Delta \varepsilon)$ -0.17 in MeOH), so that the absolute configuration of the 5 position in **18b** was confirmed to be the *R* orientation. Consequently, **18b** was clarified to be the 6-diastereoisomer of **7a** and sarmentol H was characterized to be (6*R*,9*S*)-4-megastigmen-9,10-dihydroxy-3-one (18a). Next, the ¹H- (CD_3OD) and ¹³C-NMR (Table 2) spectra¹⁷⁾ of **18** showed signals assignable to a sarmentol H part together with a β -D-glucopyranosyl moiety δ 4.28 (1H, d, J=7.7 Hz, 1'-H)]. In the HMBC experiment on **18**, a long-range correlation was observed between the 1'-proton and the 10-carbon (δ_c 75.2), so that the connectivity of a β -D-glucopyranosyl part in 18 was clarified to be the 10-position of **18a**. On the basis of those findings, the absolute stereostructure of sedumoside H was elucidated to be sarmentol H 10-*O*- β -D-glucopyranoside (18).

Sedumoside I (19), $[\alpha]_D^{24}$ -0.2° (MeOH), was also obtained as an amorphous powder. The molecular formula $C_{10}H_{32}O_8$, of **19** was determined from the positive-ion FAB-MS and high-resolution positive-ion FAB-MS. The acid hydrolysis of **19** liberated D-glucose, which was identified by HPLC analysis using an optical rotation detector.^{1,2,4—6,9}-12,14,16) The ¹H- (CD₃OD) and ¹³C-NMR (Table 2) spectra¹⁷⁾ of **19** showed signals assignable to three methyls δ 0.77, 1.07

(3H each, both s, 11, 12-H₂), 1.08 (3H, d, $J=6.7$ Hz, 13-H₂)] and a methylene bearing an oxygen function δ 4.33, 4.52 (1H each, both d, $J=17.4$ Hz, 10-H₂)] together with a β glucopyranosyl moiety δ 4.31 (1H, d, J=7.7 Hz, 1'-H)]. The planar structure of 19 was confirmed by ¹H-¹H COSY and HMBC experiments, as shown in Fig. 2. Thus the ${}^{1}H-{}^{1}H$ COSY experiment on **19** indicated the presence of two partial structures $(4-C—8-C; 1'-C—6'-C)$, while long-range correlations in the HMBC experiment on **19** were observed between the following proton and carbon pairs: 2-H and 1, 3- C; $4-H_2$ and 3, 6-C; $5-H$ and $3-C$; $6-H$ and $1-C$; $7-H_2$ and $9-H_1$ C; 8-H₂ and 9-C; 10-H₂ and 9-C; 11-H₃ and 1, 2, 6, 12-C; 12- H_3 and 1, 2, 6, 11-C; 13-H₃ and 4—6-C; and 1'-H and 10-C. In the NOESY experiment on **19**, NOE correlations were observed between the following proton pairs: 2α -H and 6-H, 12-H₃; 2 β -H and 11-H₃; 4 α -H and 6-H, 13-H₃; 6-H and 12- H_3 ; and 7- H_2 and 11- H_3 (Fig. 2). Next, enzymatic hydrolysis of 19 with β -glucosidase gave a new megastigmane, sarmen-

tol I (**19a**), as the aglycon. The CD spectra of **19** and **19a** both showed a positive Cotton effect [19, 285 nm $(\Delta \varepsilon)$ (10.09) ; **19a**, 288 nm ($\Delta \varepsilon$ +0.12), both in MeOH]. By the application of the octant rule to **19** and **19a**, the absolute configuration of the 5-positions were confirmed to be *R* orientations.18) Thus the absolute stereostructures of **19a** and **19** were determined to be (5*R*,6*S*)-megastigman-10-hydroxy-3,9-dione and its 10 -*O*- β -D-glucopyranoside, respectively.

Protective Effects on D-GalN-Induced Cytotoxicity in Primary Cultured Mouse Hepatocytes Previously, we reported the isolation and structure elucidation of several constituents with hepatoprotective effects from *Hovenia dulcis*, 19) *Bupleurum scorzonerifolium*, 20,21) *Curcuma zedoaria*, 22—24) *Angelica furcijuga*, 25,26) *Betula platyphylla* var. *japonica*, 27) *Pisum sativum*, 28) *Salacia reticulata*, 29) *Tilia argentea*, 30) *Anastatica hierochuntica*, 31) *Panax notoginseng*, 32) *Cyperus longus*, 33) *Erycibe expansa*, 34) and *Camellia sinensis*. 35) Since the methanol-soluble part and methanoleluted fraction were found to show hepatoprotective activities (*vide ante*), the inhibitory effects of megastigmane constituents $(1-5, 9-27)$ and related compounds $(1a, 19a)$ were also examined. As shown in Table 3, sedumoside F_1 $(12, 1C_{50} = 47 \,\mu\text{m})$, $(3S, 5R, 6S, 9R)$ -megastigmane-3,9-diol (20, 61 μ m), myrsinionosides A (22, 52 μ m) and D (23, 62 μ m), and sarmentol I (19a, 32μ M) were found to show hepatoprotective activity, which were equivalent to that of the hepatoprotective agent silybin (41 μ M).

Experimental

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter $(l=5 \text{ cm})$; CD spectra, JASCO J-720WI spectrometer; UV spectra, Shimadzu UV-1600 spectrometer; IR

Table 3. Inhibitory Effects of Constituents from *S. sarmentosum* on D-GalN-Induced Cytotoxicity in Primary Cultured Mouse Hepatocytes

	Inhibition $(\%)$						
	0μ _M	$3 \mu M$	10μ _M	$30 \mu \text{m}$	100μ M		
Sarmentoic acid (1)	0.0 ± 1.5	$16.2 \pm 3.3**$	19.6 ± 3.6 **	$21.6 \pm 3.4**$	29.5 ± 2.3 **		
1a	$0.0 - 0.8$	$18.7 \pm 1.9**$	$23.5 \pm 2.3**$	25.2 ± 2.5 **	33.6 ± 2.3 **		
Sarmentol $A(2)$	$0.0 + 9.8$	2.5 ± 2.9	15.4 ± 1.2	$20.4 \pm 3.2*$	$38.8 \pm 1.3**$		
Sedumoside A_1 (3)	0.0 ± 3.6	16.9 ± 2.1 **	19.3 ± 1.2 **	22.3 ± 1.5 **	$31.4 \pm 0.8**$		
Sedumoside $A_2(4)$	0.0 ± 2.3	$19.3 \pm 1.7**$	$23.5 \pm 2.9**$	27.0 ± 1.2 **	$43.8 \pm 4.3**$		
Sedumoside A_3 (5)	0.0 ± 2.8	$17.7 \pm 0.8**$	$18.6 \pm 2.0**$	23.8 ± 2.3 **	$32.8 \pm 2.2**$		
Sedumoside A_4 (15)	0.0 ± 3.3	4.1 ± 2.3	8.8 ± 2.8	$19.2 \pm 3.4*$	$41.8 \pm 2.7**$		
Sedumoside $A_5(16)$	0.0 ± 1.8	$23.2 \pm 1.9**$	26.3 ± 1.1 **	$27.9 \pm 1.8**$	$47.6 \pm 1.7**$		
Sedumoside $A6$ (17)	0.0 ± 1.3	3.2 ± 0.6	5.2 ± 3.1	$9.9 \pm 2.4*$	24.3 ± 1.6 **		
Sedumoside $E_1(9)$	0.0 ± 1.6	5.0 ± 0.7	5.8 ± 1.7	$8.9 \pm 1.0*$	$18.3 \pm 1.7**$		
Sedumoside $E_2(10)$	0.0 ± 1.6	$20.6 \pm 1.9**$	21.4 ± 2.4 **	$27.5 \pm 2.0**$	$30.2 \pm 3.3**$		
Sedumoside $E_3(11)$	0.0 ± 1.0	2.8 ± 1.9	6.2 ± 1.9	20.3 ± 0.2 **	48.5 ± 0.6 **		
Sedumoside $F_1(12)$	0.0 ± 3.4	17.7 ± 1.1	$25.7 \pm 2.4**$	$42.7 \pm 1.0**$	$62.6 \pm 2.7**$		
Sedumoside F_2 (13)	$0.0 - 0.6$	15.9 ± 0.8 **	16.2 ± 1.5 **	$19.4 \pm 1.9**$	25.1 ± 2.1 **		
Sedumoside H (18)	0.0 ± 1.2	-2.3 ± 1.6	1.0 ± 1.2	1.8 ± 2.1	5.4 ± 1.5		
Sedumoside I (19)	0.0 ± 1.2	20.9 ± 1.7 **	22.4 ± 1.5 **	29.9 ± 1.2 **	45.1 ± 2.5 **		
Sarmentol I (19a)	0.0 ± 2.8	3.8 ± 2.8	$12.8 \pm 1.7**$	$41.3 \pm 2.4**$	$86.5 \pm 2.7**$		
$(3S, 5R, 6S, 9R)$ -Megastigmane-3,9-diol (20)	0.0 ± 2.3	$18.8 \pm 1.4**$	$25.5 \pm 0.7**$	41.6 ± 2.5 **	$57.2 \pm 1.5***$		
Staphylionoside D (21)	0.0 ± 3.1	2.2 ± 2.0	2.0 ± 2.5	6.3 ± 0.9	12.2 ± 1.6 **		
Myrsinionoside A (22)	0.0 ± 2.2	$17.7 \pm 3.0*$	$27.4 \pm 5.1**$	45.0 ± 4.8 **	57.9 ± 2.5 **		
Myrsinionoside $D(23)$	0.0 ± 1.4	$14.9 \pm 1.8**$	21.4 ± 1.5 **	39.1 ± 1.5 **	$58.8 \pm 0.9**$		
Alangionoside A (24)	0.0 ± 0.9	$16.5 \pm 4.6*$	$19.6 \pm 3.8*$	24.3 ± 2.6 **	$31.9 \pm 4.0**$		
Alangionoside $J(25)$	0.0 ± 2.5	$17.9 \pm 3.0^*$	20.1 ± 3.1 **	$25.3 \pm 1.3**$	$34.0 \pm 1.8**$		
26	0.0 ± 1.4	-1.5 ± 3.5	4.3 ± 3.1	6.9 ± 3.4	$26.9 \pm 5.0**$		
Platanionoside D (27)	0.0 ± 1.4	13.9 ± 4.6	$21.0 \pm 4.7**$	27.4 ± 2.1 **	$46.2 \pm 4.8**$		
Silybin ^{$a)$}	0.0 ± 0.3	4.8 ± 1.1	7.7 ± 0.7	$45.2 \pm 8.8**$	77.0 ± 5.5 **		

Each value represents the mean±S.E.M. (*n*=4). Significantly different from the control, ∗*p*<0.05, ∗∗ *p*<0.01. *a*) Commercial silybin was purchased from Funakoshi Co., Ltd. (Tokyo, Japan).

spectra, Shimadzu FTIR-8100 spectrometer; EI-MS and high-resolution MS, JEOL JMS-GCMATE mass spectrometer; FAB-MS and high-resolution MS, JEOL JMS-SX 102A mass spectrometer; ¹H-NMR spectra, JEOL EX-270 (270 MHz) and JNM-LA500 (500 MHz) spectrometers; 13C-NMR spectra, JEOL EX-270 (68 MHz) and JNM-LA500 (125 MHz) spectrometers with tetramethylsilane as an internal standard; and HPLC detector, Shimadzu RID-6A refractive index and SPD-10A*vp* UV–VIS detectors. HPLC column, Cosmosil $5C_{18}$ -MS-II (Nacalai Tesque Inc., 250×4.6 mm i.d.) and $(250\times20 \text{ mm } i.d.)$ columns were used for analytical and preparative purposes, respectively.

The following experimental conditions were used for chromatography: ordinary-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, Ltd., Aichi, Japan, 150—350 mesh); reverse-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., Aichi, Japan, 100—200 mesh); TLC, precoated TLC plates with Silica gel $60F_{254}$ (Merck, 0.25 mm) (ordinary phase) and Silica gel RP-18 F254S (Merck, 0.25 mm) (reverse phase); reverse-phase HPTLC, precoated TLC plates with Silica gel RP-18 WF_{254S} (Merck, 0.25 mm); and detection was achieved by spraying with 1% $Ce(SO₄)₂$ -10% aqueous H₂SO₄, followed by heating.

Plant Material *S. sarmentosum* was cultivated in Huangshan, Anhui province, China, and plant material was identified by one of authors (M. Y.). A voucher specimen (2005.01. Eishin-02) of this plant is on file in our laboratory. $1,16$

Extraction and Isolation Fractions 1-5 (1510 mg), 2-5 (3300 mg), 2-8 (1800 mg), 2-10 (1360 mg), 3-7 (230 mg), and 5-6 (665 mg) were obtained from the methanol-eluted fraction of the hot water extract from the fresh whole plant of *S. sarmentosum* as reported previously.^{1,16}) Fraction 1-5 (1510 mg) was purified on Sephadex LH-20 column chromatography [150 g, CHCl₃–MeOH (1 : 1, v/v)] and finally HPLC [MeOH–H₂O (35 : 65, v/v)] to furnish sedumoside I (**19**, 107.2 mg, 0.00020%). Fraction 2-5 (3300 mg) was further separated by HPLC $[CH_3CN-H_2O (15:85, v/v)]$ to furnish sedumoside H (**18**, 83.7 mg, 0.00016%) and **19** (34.1 mg, 0.00006%). Fraction 2-8 (1800 mg) was purified on Sephadex LH-20 column chromatography [150 g, CHCl₃–MeOH (1 : 1, v/v)] and finally HPLC [CH₃CN–MeOH–H₂O $(20:8:72, v/v/v)$ and MeOH–H₂O $(40:60, v/v)$] to furnish sedumoside A4 (**15**, 4.9 mg, 0.00001%). Fraction 2-10 (1360 mg) was further separated by HPLC [CH₃CN–MeOH–H₂O (20:8:72, v/v/v) and MeOH–H₂O (40: 60, v/v)] to furnish **18** (37.5 mg, 0.00007%). Fraction 3-7 (230 mg) was purified by HPLC [MeOH-H₂O (29:71, v/v)] to furnish sedumoside A6 (**17**, 12.0 mg, 0.00002%). Fraction 5-6 (665 mg) was purified by HPLC [CH₃CN–MeOH–H₂O (10:8:82, v/v/v)] to give sedumoside A_5 (**16**, 18.4 mg, 0.00003%).

Sedumoside A₄ (15): An amorphous powder, $[\alpha]_D^{26}$ -11.1° (*c*=0.25, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{18}H_{34}O_7Na$ $(M+Na)^+$ 385.2202; Found 385.2209. IR (KBr, cm⁻¹): 3405, 2924, 2870, 1473, 1072, 1039. ¹H-NMR (500 MHz, CD₃OD) δ: 0.53 (1H, ddd, J=2.0, 4.6, 10.7 Hz, 6-H), 0.84, 0.95 (3H each, both s, 11, 12-H3), 0.98 (3H, d, $J=6.8$ Hz, 13-H₃), 0.90 (1H, ddd, $J=11.9$, 11.9, 11.9 Hz, 4α -H), 1.07, 1.66 (1H each, both m, 7-H₂), 1.09 (1H, dd, $J=11.9$, 11.9 Hz, 2 α -H), 1.45 (1H, m, 5-H), 1.49, 1.65 (1H each, both m, 8-H₂), 1.64 (1H, ddd, J=2.4, 4.0, 11.9 Hz, 2β-H), 1.89 (1H, m, 4β-H), [3.18 (1H, dd, J=10.4, 11.3 Hz), 3.84 (1H, dd, J=5.2, 11.3 Hz), 5'-H₂], 3.20 (1H, dd, J=7.7, 9.2 Hz, 2'-H), 3.31 (1H, m, 3'-H), 3.47 (1H, ddd, J=5.2, 8.9, 10.4 Hz, 4'-H), [3.53 (1H, dd, *J*=6.7, 12.5 Hz), 3.62 (1H, m), 10-H₂], 3.62 (1H, m, 9-H), 3.70 (1H, m, 3-H), 4.34 (1H, d, $J=7.7$ Hz, 1'-H). ¹³C-NMR (125 MHz, CD₃OD) δ_c : see Table 2. Positive-ion FAB-MS m/z : 385 $(M+Na)^+$.

Sedumoside A₅ (16): An amorphous powder, $[\alpha]_D^{19} -16.7^\circ$ ($c=0.93$, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{25}H_{46}O_{13}Na$ $(M+Na)^+$ 577.2836; Found 577.2831. IR (KBr, cm⁻¹): 3410, 2941, 2898, 1474, 1171, 1076, 1030. ¹H-NMR (500 MHz, CD₃OD) δ: 0.55 (1H, ddd, *J*=1.9, 5.2, 11.3 Hz, 6-H), 0.83, 0.97 (3H each, both s, 11, 12-H₃), 0.98 (3H, d, *J*=6.5 Hz, 13-H₃), 1.02 (1H, ddd, *J*=12.2, 12.2, 12.2 Hz, 4α-H), 1.08, 1.65 (1H each, both m, 7-H₂), 1.13 (1H, dd, $J=12.2$, 12.2 Hz, 2α -H), 1.45 (1H, m, 5-H), 1.57, 1.64 (1H each, both m, 8-H₂), 1.79 (1H, ddd, J=2.2, 3.7, 12.2 Hz, 2β -H), 2.01 (1H, m, 4β -H), 3.17 (1H, dd, $J=7.7$, 9.2 Hz, $2'$ -H), 3.20 (1H, dd, J=7.7, 9.2 Hz, 2"-H), 3.25—3.29 (4H, m, 4', 5', 4", 5"-H), 3.33 (1H, dd, *J*9.2, 9.2 Hz, 3-H), 3.35 (1H, dd, *J*9.2, 9.2 Hz, 3-H), [3.52 (1H, dd, J = 5.8, 11.9 Hz), 3.65 (1H, dd, J = 3.4, 11.9 Hz), 10-H₂], [3.64 (2H, m), 3.85 (2H, dd, J=2.0, 12.0 Hz), 6', 6"-H₂], 3.69 (1H, m, 9-H), 3.84 (1H, m, 3-H), 4.33 (1H, d, J=7.7 Hz, 1'-H), 4.42 (1H, d, J=7.7 Hz, 1"-H). ¹³C-NMR (125 MHz, CD₃OD) δ_c : see Table 2. Positive-ion FAB-MS *m/z*: 577 $(M+Na)^+$.

Sedumoside A₆ (17): An amorphous powder, $[\alpha]_D^{17}$ -26.8° (*c*=0.60,

MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{24}H_{44}O_{12}Na$ $(M+Na)^{+}$: 547.2730; Found: 547.2728. IR (KBr, cm⁻¹): 3410, 2940, 2918, 1541, 1474, 1171, 1081, 1047. ¹H-NMR (500 MHz, pyridine-*d₅*) δ: 0.51 (1H, ddd, J = 2.8, 4.6, 10.7 Hz, 6-H), 0.77, 0.92 (3H each, both s, 11, 12-H₃), 0.90 (3H, d, J=6.1 Hz, 13-H₃), 1.16, 1.92 (1H each, both m, 7-H₂), 1.19 (1H, ddd, $J=11.3$, 11.3, 11.3 Hz, 4α -H), 1.27 (1H, dd, $J=11.9$, 11.9 Hz, 2α -H), 1.27 (1H, m, 5-H), 1.66, 1.80 (1H each, both m, 8-H₂), 2.02 (1H, ddd, *J*=2.0, 3.1, 11.9 Hz, 2β-H), 2.21 (1H, m, 4β-H), [3.70 (1H, dd, *J*=10.4, 11.3 Hz), 4.35 (1H, d, J=5.2, 11.3 Hz), 5"-H₂, 3.96 (2H, m, 10-H₂), 3.98 (1H, m, 5'-H), 4.04 (2H, m, 9, 2"-H), 4.05 (1H, m, 2'-H), 4.12 (1H, m, 3-H), 4.15 (1H, dd, J=8.8, 8.8 Hz, 3"-H), 4.21 (1H, m, 4"-H), 4.29 (2H, m, 3', 4'-H), [4.43 (1H, dd, J=5.2, 11.9 Hz), 4.58 (1H, dd, J=2.5, 11.9 Hz), 6'-H₂], 5.02 (1H, d, J = 8.0 Hz, 1'-H), 5.04 (1H, d, J = 8.2 Hz, 1"-H). ¹H-NMR (500 MHz, CD₃OD) δ: 0.53 (1H, ddd, J=2.2, 4.6, 10.7 Hz, 6-H), 0.82, 0.95 (3H each, both s, 11, 12-H₃), 0.97 (3H, d, $J=6.5$ Hz, 13-H₃), 1.02 (1H, ddd, $J=11.9, 11.9, 11.9$ Hz, 4α -H), 1.06, 1.65 (1H each, both m, 7-H₂), 1.13 (1H, dd, $J=12.2$, 12.2 Hz, 2α-H), 1.44 (1H, m, 5-H), 1.49, 1.65 (1H each, both m, 8-H₂), 1.79 (1H, ddd, *J*=2.2, 4.3, 12.2 Hz, 2β-H), 2.01 (1H, m, 4β-H), 3.11 (1H, dd, J=7.6, 9.2 Hz, 2'-H), [3.17 (1H, dd, J=10.4, 11.0 Hz), 3.83 $(1H, m)$, 5"-H₂, 3.18 (1H, dd, J=7.6, 9.4 Hz, 2"-H), 3.25 (2H, m, 4', 5'-H), 3.31 (1H, m, 3"-H), 3.33 (1H, m, 3'-H), 3.47 (1H, m, 4"-H), [3.51 (1H, dd, *J*7.0, 12.8 Hz), 3.60 (1H, m), 10-H2], 3.61 (1H, m, 9-H), [3.64 (1H, dd, *J*5.2, 11.9 Hz), 3.85 (1H, m), 6-H2], 3.84 (1H, m, 3-H), 4.33 (1H, d, *J*=7.7 Hz, 1'-H), 4.33 (1H, d, *J*=7.7 Hz, 1"-H). ¹³C-NMR (125 MHz, pyridine- d_5 and CD₃OD) δ _C: see Table 2. Positive-ion FAB-MS: m/z 547 $(M+Na)^+$.

Sedumoside H (18): An amorphous powder, $[\alpha]_D^{27}$ +71.4° (c =0.21, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{19}H_{32}O_8$ Na $(M+Na)^{+}$: 411.1995; Found: 411.1989. CD [MeOH, nm $(\Delta \varepsilon)$]: 211 $(+4.40), 237 (+3.42), 335 (+0.75)$. UV [MeOH, nm (log ε)]: 240 (4.08). IR (KBr, cm⁻¹): 3389, 3011, 2961, 2876, 1669, 1471, 1076, 1038, 752. ¹H-NMR (500 MHz, CD₃OD) δ : 1.01, 1.09, 2.04 (3H each, all s, 12, 11, 13-H₃), 1.49, 1.98 (1H each, both m, 7-H₂), 1.51, 1.61 (1H each, both m, 8-H₂), 1.96 (1H, m, 6-H), 2.00 (1H, d, $J=17.1$ Hz, 2β -H), 2.46 (1H, d, $J=17.1$ Hz, 2α -H), 3.21 (1H, dd, J=7.7, 8.6 Hz, 2'-H), 3.28 (1H, m, 5'-H), 3.30 (1H, m, 4'-H), 3.36 (1H, m, $3'$ -H), [3.43 (1H, dd, $J=6.4$, 10.1 Hz), 4.74 (1H, dd, $J=3.4$, 10.1 Hz), 10-H₂], [3.64 (1H, dd, *J*=4.9, 11.6 Hz), 3.84 (1H, brd, *J*=ca. 12 Hz), 6'-H₂], 3.75 (1H, m, 9-H), 4.28 (1H, d, J=7.7 Hz, 1'-H), 5.81 (1H, s, 4-H). ¹³C-NMR (125 MHz, CD₃OD) δ_c : see Table 2. Positive-ion FAB-MS: m/z 411 $(M+Na)^+$.

Sedumoside I (19): An amorphous powder, $[\alpha]_D^{27}$ -0.2° (*c*=1.41, MeOH). High-resolution EI-MS: Calcd for $C_{19}H_{32}O_8$ (M⁺): 388.2097; Found: 388.2095. CD [MeOH, nm $(\Delta \varepsilon)$]: 285 (+0.09). IR (KBr, cm⁻¹): 3431, 2961, 1723, 1715, 1559, 1472, 1076, 1044, 753. ¹H-NMR (500 MHz, CD₃OD) δ : 0.77, 1.07 (3H each, both s, 11, 12-H₃), 1.08 (3H, d, $J=6.7$ Hz, 13-H₃), 1.21 (1H, ddd, J=3.1, 6.1, 10.7 Hz, 6-H), 1.46, 1.81 (1H each, both m, 7-H₂), 1.81 (1H, m, 5-H), 1.96 (1H, dd, *J*=2.2, 13.2 Hz, 2β-H), 2.22 (1H, ddd, $J=2.2$, 4.6, 14.1 Hz, 4 β -H), 2.16 (1H, dd, $J=14.1$, 14.1 Hz, 4 α -H), 2.39 (1H, d, J=13.2 Hz, 2a-H), 2.69 (2H, m, 8-H₂), 3.25 (1H, m, 2'-H), 3.26 (1H, m, 4-H), 3.27 (1H, m, 5-H), 3.36 (1H, m, 3-H), 3.64, 3.87 (1H each, both m, 6'-H₂), 4.31 (1H, d, J=7.7 Hz, 1'-H), 4.33, 4.52 (1H each, both d, $J=17.4 \text{ Hz}, 10\text{-H}_2$). ¹³C-NMR (125 MHz, CD₃OD) $\delta_{\rm C}$: see Table 2. EI-MS (%): *m*/*z* 388 (M⁺, 1), 370 (M⁺-H₂O, 1), 255 (100), 227 (66), 208 (42).

Acid Hydrolysis of 15—19 A solution of sedumosides A_4 (15, 3.1 mg), A_5 (16, 2.0 mg), or A_6 (17, 2.5 mg) in 1 M HCl (1.0 ml) was heated under reflux for 1 h. After cooling, the reaction mixture was extracted with EtOAc. The EtOAc extract was neutralized with Amberlite IRA-400 (OH^- form), and the resin was removed by filtration. Removal of the solvent from the filtrate under reduced pressure furnished a residue, which was purified by HPLC [MeOH–H₂O (35:65, v/v)] to give sarmentol A^{16} (2, 1.2 mg, 91%) from **15**; 1.3 mg, 79% from **16**; or 0.8 mg, 73% from **17**). Through the similar procedure, a solution of sedumosides H (**18**) or I (**19**) (each 1.0 mg) in 1 M HCl (1.0 ml) was heated under reflux for 3 h. After cooling, the reaction mixture was extracted with EtOAc. The aqueous layers of **15**—**18** were subjected to HPLC analysis under the following conditions, respectively: HPLC column, Kaseisorb LC NH₂-60-5, 4.6 mm i.d.×250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan); mobile phase, CH_3CN-H_2O (85:15, v/v); flow rate 0.8 ml/min]. Identification of D-xylose (i) from **15** and **17** and D-glucose (ii) from **15**—**19** present in the aqueous layer was carried out by comparison of the retention time and optical rotation with those of authentic sample, t_R : (i) 9.5 min (D-xylose, positive optical rotation), and (ii) 13.9 min (D-glucose, positive optical rotation), respectively.

Enzymatic Hydrolysis of 18 and 19 with β **-Glucosidase** A solution of

sedumosides H $(18, 13.2 \text{ mg})$ or I $(19, 14.1 \text{ mg})$ in $H₂O$ (2.0 ml) was treated with β -glucosidase (each 15.0 mg, from Almond, Oriental Yeast Co., Ltd., Tokyo, Japan) and the solution was stirred at 37 °C for 16 h. After EtOH was added to the reaction mixture, the solvent was removed under reduced pressure and the residue was purified by HPLC [MeOH–H₂O $(40:60, v/v)$] to furnish sarmentols H (**18a**, 7.1 mg, 91% from **18**) and I (**19a**, 7.5 mg, 91% from **19**), respectively.

Sarmentol H (18a): Colorless oil, $[\alpha]_D^{25} + 64.1^{\circ}$ (*c*=0.40, MeOH). Highresolution EI-MS: Calcd for $C_{13}H_{22}O_3$ (M⁺): 226.1569; Found: 226.1572. CD [MeOH, nm $(\Delta \varepsilon)$]: 211 (+1.69), 232 (+1.35), 334 (+0.47). UV [MeOH, nm (log ε)]: 240 (4.00). IR (film, cm⁻¹): 3423, 2957, 2874, 1657, 1045. ¹H-NMR (500 MHz, CD₃OD) δ: 1.02, 1.09, 2.04 (3H each, all s, 12, 11, 13-H₃), 1.44, 1.66 (1H each, both m, 8-H₂), 1.49, 1.98 (1H each, both m, 7-H₂), 1.96 (1H, m, 6-H), 2.00 (1H, d, $J=17.1$ Hz, 2β -H), 2.46 (1H, d, *J*=17.1 Hz, 2α-H), 3.45 (2H, d, *J*=5.5 Hz, 10-H₂), 3.54 (1H, m, 9-H), 5.81 (1H, s, 4-H). ¹³C-NMR (125 MHz, CD₃OD) δ_c : see Table 2. EI-MS (%): *m/z* 226 (M⁺, 22), 208 (M⁺-H₂O, 19), 193 (26), 175 (34), 151 (94), 95 (100).

Sarmentol I (19a): Colorless oil, $[\alpha]_D^{24} + 19.9^\circ$ (*c*=0.31, MeOH). Highresolution EI-MS: Calcd for $C_{13}H_{22}O_3$ (M⁺): 226.1569; Found: 226.1563. IR (film, cm⁻¹): 3432, 2961, 2895, 1792, 1723, 1716, 1558, 1541, 1472, 1418, 1374, 1283, 1073, 1028, 860. ¹H-NMR (500 MHz, CD₃OD) δ: 0.77, 1.06 (3H each, both s, 11, 12-H₃), 1.07 (3H, d, J=6.8 Hz, 13-H₃), 1.21 (1H, ddd, *J*=2.9, 5.1, 11.0 Hz, 6-H), 1.46, 1.81 (1H each, both m, 7-H₂), 1.81 (1H, m, 5-H), 1.97 (1H, dd, *J*=2.2, 13.2 Hz, 2β-H), 2.16 (1H, dd, *J*=14.1, 14.1 Hz, 4α-H), 2.22 (1H, ddd, *J*=2.2, 4.6, 14.1 Hz, 4β-H), 2.39 (1H, d, *J*=13.2 Hz, 2α -H), 2.58 (2H, m, 8-H₂), 4.20 (2H, s, 10-H₂). ¹³C-NMR (125 MHz, CD₃OD) δ_c : see Table 2. EI-MS (%): m/z 226 (M⁺, 7), 208 (M⁺-H₂O, 9), 195 (45), 177 (9), 167 (29), 69 (100).

Hydrogenation of 18a A solution of sarmentol H (**18a**, 7.0 mg) in MeOH (4.0 ml) was treated with 10% palladium carbon (Pd–C, 13.0 mg) and the whole mixture was stirred at room temperature under an H_2 atmosphere for 1 h. The catalyst was filtered off, and the solvent from the filtrate was evaporated under reduced pressure to give a residue, which was purified by HPLC [MeOH–H₂O (40:60, v/v)] to give sarmentol C¹⁶⁾ (7a, 1.0 mg, 14%) and **18b** (3.0 mg, 43%).

18b: Colorless oil, $[\alpha]_D^{25}$ -2.9° (*c*=0.16, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{13}H_{24}O_3Na$ $(M+Na)^+$: 251.1616; Found: 251.1623. CD [MeOH, nm $(\Delta \varepsilon)$]: 291 (+0.17). IR (film, cm⁻¹): 3421, 2957, 2874, 1717, 1653, 1474, 1397, 1049. ¹H-NMR (500 MHz, CD₃OD) δ: 0.97, 1.05 (3H each, both s, 11, 12-H₃), 1.01 (3H, d, $J=7.0$ Hz, 13-H₃), 1.30 (1H, m, 6-H), 1.46, 1.62 (1H each, both m, 8-H₂), 1.48, 1.71 (1H each, both m, 7-H₂), 1.93 (1H, d, *J*=14.1 Hz, 2β-H), 2.14 (2H, d, *J*=8.6 Hz, 4-H₂), 2.35 (1H, d, $J=14.1$ Hz, 2α -H), [3.46 (1H, dd, $J=6.4$, 11.0 Hz), 3.49 (1H, dd, $J=4.9$, 11.0 Hz), 10-H₂], 3.60 (1H, m, 9-H). ¹³C-NMR (125 MHz, CD₃OD) δ_c : see Table 2. Positive-ion FAB-MS: m/z 251 (M+Na)⁺.

Bioassay Method. Protective Effects on Cytotoxicity Induced by D-GalN in Primary Cultured Mouse Hepatocytes The hepatoprotective effects of the constituents were determined in the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) colorimetric assay using primary cultured mouse hepatocytes.³⁵⁾ Hepatocytes were isolated from male ddY mice (30—35 g) using the collagenase perfusion method. The cell suspension at 4×10^4 cells in 100 μ l William's E medium containing fetal calf serum (10%, v/v), penicillin G (100 units/ml), and streptomycin (100 μ g/ml) was inoculated in a 96-well microplate, and precultured for 4 h at 37 °C under a 5% CO_2 atmosphere. Fresh medium (100 μ l) containing D-GalN (2 mM) and a test sample were added, and the hepatocytes were cultured for 44 h. The medium was exchanged with 100 μ l of fresh medium, and 10 μ l of MTT (5 mg/ml in phosphate buffered saline) solution was added to the medium. After 4 h culture, the medium was removed, and $100 \mu l$ of isopropanol containing 0.04 M HCl was then added to dissolve the formazan produced in the cells. The optical density (O.D.) of the formazan solution was measured by microplate reader at 570 nm (reference: 655 nm). Inhibition (%) was obtained using the following formula:

inhibition $\frac{\%}{\%}$ = [(O.D. (sample) – O.D. (control))/(O.D. (normal) $-$ O.D. (control))] \times 100

Cytotoxic effects of the constituents were assessed in the MTT colorimetric assay. Briefly, after 44 h incubation with a test sample in the absence of D-GalN, the MTT assay was performed as described above.

Statistics Values are expressed as means ± S.E.M. One-way analysis of variance followed by Dunnett's test was used for statistical analysis.

Acknowledgments This research was supported by the 21st COE Pro-

gram, Academic Frontier Project, and a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and Notes

- 1) Part XXII: Morikawa T., Zhang Y., Nakamura S., Matsuda H., Muraoka O., Yoshikawa M., *Chem. Pharm. Bull.*, **55**, 435—441 (2007).
- 2) Matsuda H., Morikawa T., Tao J., Ueda K., Yoshikawa M., *Chem. Pharm. Bull.*, **50**, 208—215 (2002).
- 3) Morikawa T., Matsuda H., Toguchida I., Ueda K., Yoshikawa M., *J. Nat. Prod.*, **65**, 1468—1474 (2002).
- 4) Tao J., Morikawa T., Toguchida I., Ando S., Matsuda H., Yoshikawa M., *Bioorg. Med. Chem.*, **10**, 4005—4012 (2002).
- 5) Morikawa T., Tao J., Matsuda H., Yoshikawa M., *J. Nat. Prod.*, **66**, 638—645 (2003).
- 6) Tao J., Morikawa T., Ando S., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **51**, 654—662 (2003).
- 7) Matsuda H., Morikawa T., Xie H., Yoshikawa M., *Planta Med.*, **70**, 847—855 (2004).
- 8) Sun B., Morikawa T., Matsuda H., Tewtrakul S., Wu L. J., Harima S., Yoshikawa M., *J. Nat. Prod.*, **67**, 1464—1469 (2004).
- 9) Morikawa T., Sun B., Matsuda H., Wu L. J., Harima S., Yoshikawa M., *Chem. Pharm. Bull.*, **52**, 1194—1199 (2004).
- 10) Xie H., Wang T., Matsuda H., Morikawa T., Yoshikawa M., Tani T., *Chem. Pharm. Bull.*, **53**, 1416—1422 (2005).
- 11) Morikawa T., Xie H., Matsuda H., Yoshikawa M., *J. Nat. Prod.*, **69**, 881—886 (2006).
- 12) Morikawa T., Xie H., Matsuda H., Wang T., Yoshikawa M., *Chem. Pharm. Bull.*, **54**, 506—513 (2006).
- 13) Xie H., Morikawa T., Matsuda H., Nakamura S., Muraoka O., Yoshikawa M., *Chem. Pharm. Bull.*, **54**, 669—675 (2006).
- 14) Yoshikawa M., Matsuda H., Morikawa T., Xie H., Nakamura S., Muraoka O., *Bioorg. Med. Chem.*, **14**, 7468—7475 (2006).
- 15) Matsuda H., Sugimoto S., Morikawa T., Kubo M., Nakamura S., Yoshikawa M., *Chem. Pharm. Bull.*, **55**, 106—110 (2007).
- 16) Yoshikawa M., Morikawa T., Zhang Y., Nakamura S., Muraoka O., Matsuda H., *J. Nat. Prod.*, **70**, 575—583 (2007).
- 17) The ¹ H- and 13C-NMR spectra of **15**—**19**, **18a**, **18b**, and **19a** were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), homocorrelation spectroscopy ('H-¹H COSY), heteronuclear multiple-quantum coherence (HMQC), and HMBC experiments.
- 18) Otsuka H., Zhong X.-N., Shinzato T., Takeda Y., *Chem. Pharm. Bull.*, **49**, 1093—1097 (2001).
- 19) Yoshikawa M., Murakami T., Ueda T., Yoshizumi S., Ninomiya K., Murakami N., Matsuda H., Saito M., Fujii W., Tanaka T., Yamahara J., *Yakugaku Zasshi*, **117**, 108—118 (1997).
- 20) Matsuda H., Murakami T., Ninomiya K., Inadzuki M., Yoshikawa M., *Bioorg. Med. Chem. Lett.*, **7**, 2193—2198 (1997).
- 21) Matsuda H., Murakami T., Hirano K., Inadzuki M., Ninomiya K., Matsuda H., *Tetrahedron Lett.*, **38**, 7395—7398 (1997).
- 22) Matsuda H., Ninomiya K., Morikawa T., Yoshikawa M., *Bioorg. Med. Chem. Lett.*, **8**, 339—344 (1998).
- 23) Matsuda H., Morikawa T., Ninomiya K., Yoshikawa M., *Bioorg. Med. Chem.*, **9**, 909—916 (2001).
- 24) Morikawa T., Matsuda H., Ninomiya K., Yoshikawa M., *Biol. Pharm. Bull.*, **25**, 627—631 (2002).
- 25) Matsuda H., Murakami T., Kageura T., Ninomiya K., Toguchida I., Nishida N., Yoshikawa M., *Bioorg. Med. Chem. Lett.*, **8**, 2191—2196 (1998).
- 26) Yoshikawa M., Nishida N., Ninomiya K., Ohgushi T., Kubo M., Morikawa T., Matsuda H., *Bioorg. Med. Chem.*, **14**, 456—463 (2006).
- 27) Matsuda H., Ishikado A., Nishida N., Ninomiya K., Fujiwara H., Kobayashi Y., Yoshikawa M., *Bioorg. Med. Chem. Lett.*, **8**, 2939— 2944 (1998).
- 28) Murakami T., Kohno K., Ninomiya K., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 1003—1008 (2001).
- 29) Yoshikawa M., Ninomiya K., Shimoda H., Nishida N., Matsuda H., *Biol. Pharm. Bull.*, **25**, 72—76 (2002).
- 30) Matsuda H., Ninomiya K., Shimoda H., Yoshikawa M., *Bioorg. Med. Chem.*, **10**, 707—712 (2002).
- 31) Yoshikawa M., Xu F., Morikawa T., Ninomiya K., Matsuda H., *Bioorg. Med. Chem. Lett.*, **13**, 1045—1049 (2003).
- 32) Yoshikawa M., Morikawa T., Kashima Y., Ninomiya K., Matsuda H., *J.*

Nat. Prod., **66**, 922—927 (2003).

- 33) Xu F., Morikawa T., Matsuda H., Ninomiya K., Yoshikawa M., *J. Nat. Prod.*, **67**, 569—576 (2004).
- 34) Matsuda H., Morikawa T., Xu F., Ninomiya K., Yoshikawa M., *Planta*

Med., **70**, 1201—1209 (2004).

35) Li N., Morikawa T., Matsuda H., Ninomiya K., Li X., Yoshikawa M., *Heterocycles*, **71**, 1193—1201 (2007).