
The number of natural and synthetic coumarin (2H-
chromen-2-one) derivatives1) have been reported to exert 
notably antimicrobial2,3) as well as antifungal,4,5) tuberculo-
static6) and anti-human immunodeficiency virus (HIV)7,8) ac-
tivity. Moreover, the antibiotic novobiocin belongs to the hy-
droxycoumarin series. The importance of these compounds
have motivated many workers to synthesize a number of
them, and numerous methods have been developed for their
preparation.9—11) On the other hand, catechols are a promis-
ing group of compounds worthwhile for further investigation,
which may lead to the discovery of selective acting, bio-
degradable agrochemicals having high human, animal and
plant compatibility.12,13) A literature survey reveals that, in
contrast to the widely studied, coumarin derivatives, no paper
has reported the synthesis of 4-(dihydroxyphenylthio)-2H-
chromen-2-one derivatives. Following our experiences in
electrochemical oxidation of catechols in the presence of nu-
cleophiles,14—21) we envisaged that synthesis of organic com-
pounds with both structures of catechol and coumarin might
cause an enhancement of pharmaceutical properties and me-
dicinal activities. This idea prompted us to investigate the
electrochemical oxidation of catechols in the presence of 4-
mercaptocoumarin as the nucleophile and we have discov-
ered an easy and one-pot electrochemical method for the
synthesis of 4-(dihydroxyphenylthio)-2H-chromen-2-one de-
rivatives (4a—d) in high yield and purity, using this environ-
mentally friendly method with high atom economy. In order
to study the feasibility of the electrochemical synthesis of 4-
(dihydroxyphenylthio)-2H-chromen-2-one derivatives (4a—
d) and mechanistic aspects of this conversions, electrochemi-
cal oxidation of catechols in the absence and presence of 4-
mercaptocoumarin was studied using cyclic voltammetry. As
well, in this work computational studies were used for quan-
titative answer to the question concerning the difference in
electrochemical oxidation of catechol in the presence of 4-
hydroxycoumarin and 4-mercaptocoumarin.

Results and Discussion
Electrochemical Studies Figure 1, curve a, shows the

voltammetric curve obtained for the oxidation of catechol
(1 mM) in water/acetonitrile (50/50) solution containing
sodium acetate (c�0.2 M) on a glassy carbon electrode. In the
studied potential-range, a well defined voltammetric curve is
obtained that has an anodic (A1) and the corresponding ca-
thodic (C1) peaks. These peaks are correspond to the oxida-
tion of catechol (1a) to o-benzoquinone (2a) and vice versa
within a quasi-reversible two electron process.14—21) The oxi-
dation of catechol (1a) in the presence of 4-mercapto-
coumarin (3) as a nucleophile was studied in some details.
Figure 1, curve b shows the cyclic voltammogram obtained
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Fig. 1. Cyclic Voltammograms of (a) 1 mM Catechol (1a) in the Absence
of 4-Mercaptocoumarin (3), (b) 1 mM Catechol (1a) in the Presence of 1 mM

4-Mercaptocoumarin (3) and (c) 1 mM 4-Mercaptocouamrin (3) in the Ab-
sence of Catechol, at a Glassy Carbon Electrode in Water/Acetonitrile
(50/50) Solution Containing Sodium Acetate (c�0.2 M)

Scan rate: 50 mV s�1; t�25�1 °C.



for a 1 mM solution of 1a in the presence of 1 mM of 4-mer-
captocoumarin (3). In this case, the presence of the counter-
part cathodic peak strongly depends on the sweep rate (Fig.
2). Thus, for the highest sweep rate employed a well-defined
cathodic peak is observed. The peak current ratio (Ip

C1/Ip
A1) is

lower than one. It is 0.15 for a sweep rate of 50 mV/s, and it
increases when the sweep rate increases. A similar situation
is observed when the 4-mercaptocoumarin (3) to catechol
(1a) concentration ratio is decreased (Fig. 3). These indicate
the reactivity of electrochemically generated o-benzoquinone
(2a) toward 3. In this figure, curve c is the voltammogram of
3.

Diagnostic criteria of cyclic voltammetry and the spectro-
scopic data (IR, 1H-NMR, 13C-NMR and MS) of the isolated
products, indicated that the reaction mechanism of electro-
oxidation of catechol (1a) in the presence of 4-mercapto-
coumarin (3) is EC (‘E’ represents an electron transfer at the

electrode surface, and ‘C’ represents a homogeneous chemi-
cal reaction) (Chart 1).

The increasing of the peak A1 current in the presence of 4-
mercaptocoumarin (3) (Fig. 1, curve b) is due to the oxida-
tion of 4-mercaptocoumarin (3) which occurred at the same
potential as that observed for the oxidation of catechol. Also,
the positive shift of the peak A1 in the presence of 4-mercap-
tocoumarin (3) (Fig. 1, curve b) that was enhanced during the
repetitive recycling of potential is probably due to the forma-
tion of a thin film of product at the surface of the electrode,
inhibiting, to a certain extent, the performance of the elec-
trode process.14—21) The overoxidation of 4a was circum-
vented during the preparative reaction because of the pres-
ence of the electron-withdrawing group.

We have previously investigated the electrochemical oxi-
dation of catechols in the presence of 4-hydroxycoumarin (6)
as a nucleophile.22) The results signified the formation of
benzofuran derivatives (coumestan derivatives) (9) via inter
and intramolecular Micheal addition reactions (ECEC mech-
anism) with consumption of four electrons per molecule of
catechols (Chart 2).

The significant difference in electrochemical oxidation of
catechols in the presence of 4-hydroxycoumarin (6) and 4-
mercaptocoumarin (3) is due to the structure of the formed
intermediate (7) in the case of 6 (Chart 3).

Comparison of the structure of 7 with 4a and 4d reveals
that in the compound 7, coumarin group acts as an electron-
donating group whereas in compounds 4a and 4d, mercapto-
coumarin group is an electron-withdrawing group. In this di-
rection, Fig. 4 presents cyclic voltammogram of product 4a
in comparison with catechol. A positive shift in half wave
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Fig. 2. Typical Cyclic Voltammograms of 1 mM Catechol (1a) in the Pres-
ence of 1 mM 4-Mercaptocoumarin (3), at a Glassy Carbon Electrode, in
Water/Acetonitrile (50/50) Solution Containing Sodium Acetate (c�0.2 M),
in Various Scan Rates

Scan rate from (a) to (d) are: 25, 35, 45 and 55 mV s�1, respectively.

Fig. 3. Cyclic Voltammograms of 1 mM Catechol (1a) in the Presence of
(a) 1 mM 4-Mercaptocoumarin (3), (b) 2 mM 4-Mercaptocoumarin (3), at a
Glassy Carbon Electrode, in Water/Acetonitrile (50/50) Solution Containing
Sodium Acetate (c�0.2 M)

Scan rate: 45 mV s�1; t�25�1 °C.

Chart 1

Chart 2



potential (E1/2) of 4a is observed. E1/2 was achieved experi-
mentally as midpoint potential between the anodic and ca-
thodic peaks. E1/2 for the compound 4a and catechol are 0.16
and 0.11 V, respectively (Fig. 4). This confirmed that mercap-
tocoumarin group in compound 4a is an electron-withdraw-
ing group.

Also, as discussed above, in the electrochemical oxidation
of catechols in the presence of 4-hydroxycoumarin (6), the
C-alkylation proceeds to form the intermediate 7, and sub-
sequent O-cylization affords the benzofuran derivatives.
Whereas, in the presence of 4-mercaptorcoumarin (3), S-
alkylation proceeds to form the compound 4. This can be ex-
plained using the hard and soft acids and bases (HSAB) con-
cept. According to this concept, hard acids tend to interact
with hard bases, while soft acids tend to interact strongly
with soft bases. The carbon is a soft electrophile and the

RO� is hard nucleophile whereas RS� is soft nucleophile.23)

Therefore, hydroxycoumarin reacted with its C atom (soft-
nucleophile–soft-electrophile) whereas mercaptocoumarin
reacted with S atom (softer-nucleophile).

The electrooxidation of 4-methylcatechol (1d), 3-
methoxycatechol (1c) and 3-methylcatechol (1b) in the pres-
ence of 3 proceed in a similar way to that of 1a. The exis-
tence of a methyl or methoxy group at the C-3 position of 1b
and 1c causes the o-benzoquinones derived from the oxida-
tion of these catechols (2b, 2c) attacked by 3 from C-4 or C-
5 positions to yield two types of product in each case which
has been confirmed by 1H-NMR results. So, we suggest that
o-benzoquinones 2b and 2c are attacked from two positions
by 3 leading to the formation of the two types of product in
each case (isomers A and B) (Chart 4).

A characteristic feature of the electrolysis is that low cur-
rent density is required. The current efficiency and yield of
product decrease with increasing current density. These ob-
servations can be explained by the occurrence of back reac-
tions, such as the reduction of o-benzoquinones (2) on the
platinum cathode and side reactions such as oxidation of nu-
cleophile and/or final product (4) during constant current
electrolysis in an undivided cell. In this work current density
1.5 mA/cm2 is preferred.

Computational Studies Here, the difference in electro-
chemical oxidation of catechol in the presence of 4-hydroxy-
coumarin (6) and 4-mercaptocoumarin (3) was explained by
computational structure, NBO (natural bond orbital) analysis
and density functional theory (DFT: B3LYP/6-31G*//
B3LYP/6-31G*) based methods, using the GAUSSIAN 98
package of programs. Structural parameters for the ground
state of compounds 1a, 7 and 4a, were calculated by
B3LYP/6-31G* level of theory. These results showed that in
the compound 7, catechol and the substituted rings have the
same direction and therefore electronic delocalization of
p→p* occurred between catechol and adjacent rings. But in
the compound 4a, rings are approximately orthogonal to-
gether (C1–S–C8 angle is 103 degree), and hence the elec-
tronic delocalization of p→p* is stopped and substituted
rings attract electrons of catechol ring (Figs. 5, 6).

Based on the optimized ground state geometry using
B3LYP/6-31G* method, the NBO analysis of donor–acceptor
(bond–antibond) interactions revealed that the stabilization
energies (E2) associated with the electronic delocalization
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Chart 3

Fig. 4. Cyclic Voltammograms of (a) 1 mM Catechol (1a), (b) 1 mM 4-(3,4-
Dihydroxyphenylthio)-2H-chromen-2-one (4a) at a Glassy Carbon Electrode
in Water/Acetonitrile (50/50) Solution Containing Sodium Acetate (c�
0.2 M)

Scan rate: 50 mV s�1; t�25�1 °C.

Chart 4



p→p* molecular orbital decreased in the compound 7 to 4a.
NBO results show that the sum of p→p* resonance energy
in catechol ring of the compounds 7 and 4a are 114.93 and
38.48 kcal mol�1, respectively (Table 1).

In addition, NBO results are used to study frontier molec-
ular orbitals. Energetic gap of HOMO and LUMO for com-
pounds 1a, 7 and 4a showed that this gap of energy for the
compound 1a, 7 and 4a are 0.21472, 0.13590 and 0.14435,
respectively (Table 2).

Decreased gap of energy for the compounds 7 and 4a
against the compound 1a revealed that the conjugated double
bonds in these molecules increased (aromatic substituted

groups) against compound 1a and also showed that conjuga-
tion in the compound 7 is very greater than the compound
4a.

Experimental
Reaction equipments are described in earlier papers.14—21) All chemicals

were reagent-grade materials. Sodium acetate, solvents and reagents were of
pro-analysis. These chemicals were used without further purification. 4-Mer-
captocoumarin (4-mercapto-2H-chromen-2-one) was prepared by the proce-
dure reported previously.24)

Electroorganic Synthesis A solution (ca. 80 ml) of sodium acetate so-
lution (c�0.2 M) in water/acetonitrile (50/50) containing 1 mmol of cate-
chols (1a—d) and 1 mmol of 4-mercaptocoumarin (3) was electrolyzed in an
undivided cell equipped with graphite anode (an assembly of four rods with
30 cm2 area) and a large stainless steel gauze cathode at 25 °C under con-
stant-current density of 1.5 mA/cm2. The electrolysis was terminated when
the anodic peak that corresponds to the oxidation of catechol (1a—d) (A1 in
Fig. 1) in cyclic voltammetry disappears (after consumption of 2.9 F/mol,
current efficiency 69%). The process was interrupted during the electrolysis,
and the graphite anode was washed in acetone in order to reactivate it. At the
end of electrolysis, to achieve better precipitation, a few drops of acetic acid
were added to the solution and the cell was placed in a refrigerator
overnight. The solid precipitated was collected by filtration and was washed
several times with water.

Characteristic of Products (4a—d). 4-(3,4-Dihydroxyphenylthio)-
2H-chromen-2-one (C15H10O4S) (4a) mp 245—247 °C (dec.). IR (KBr)
cm�1: 3421, 3297, 3048, 1715, 1604, 1548, 1447, 1387, 1341, 1271, 1158,
943, 822, 759, 743, 652. 1H-NMR (300 MHz, acetone-d6) d : 5.52 (s, 1H, C9-
H), 7.08 (d, J�1.3 Hz, 2H, aromatic), 7.14 (t, J�1.1 Hz, 1H, aromatic), 7.41
(m, J�7.9 Hz, 2H, aromatic), 7.68 (t, J�8.1 Hz, 1H, aromatic), 7.91 (dd,
J�8.1, 1.6 Hz, 1H, aromatic) and 8.66 (broad, 2H, –OH). 13C-NMR
(75.4 MHz, DMSO-d6) d : 107.9, 115.1, 117.3, 117.4, 118.0, 122.8, 124.0,
124.6, 128.8, 132.9, 147.1, 148.7, 152.7, 158.6, 158.9. MS (EI): m/z (rela-
tive intensity): 286 [M]�· (71), 268 (58), 253 (32), 235 (48), 203 (25), 192
(13), 178 (24), 145 (59), 121 (52), 108 (81), 89 (93), 77 (71), 63 (66), 43
(100).

4-(3,4-Dihydroxy-5-methylphenylthio)-2H-chromen-2-one (4b) and 4-
(3,4-Dihydroxy-2-methylphenylthio)-2H-chromen-2-one (C16H12O4S)
(5b) (Isomers A and B) mp 257—261 °C (dec.). IR (KBr) cm�1: 374,
2925, 2855, 1718, 1684, 1603, 1547, 1447, 1342, 1290, 1182, 1122, 1024,
943, 844, 820, 759, 743, 706. 1H-NMR (300 MHz, acetone-d6) d : 2.28 (s,
3H, methyl), 2.32 (s, 3H, methyl), 5.39 (s, 1H, C9-H), 5.57 (s, 1H, C9-H),
6.93 (m, J�8.6 Hz, 1H, aromatic), 7.06 (m, J�8.6 Hz, 1H, aromatic), 7.37
(m, J�9.1 Hz, 2H, aromatic), 7.43 (m, J�9.1 Hz, 2H, aromatic), 7.67 (m,
J�2.9 Hz, 2H, aromatic), 7.77 (m, J�2.9 Hz, 2H, aromatic), 7.89 (dd,
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Table 2. NBO Calculated Energetic Gap of Frontier Molecular Orbital,
Based on the B3LYP/6-31G* Calculated Geometries

B3LYP/6-31G*
Energy

Compound 1a Compound 7 Compound 4a

HOMO �0.20665 �0.19811 �0.21724
LUMO 0.09807 �0.06221 �0.07289
DE 0.21472 0.13590 0.14435

Fig. 5. Numbering Used for Structure of Compounds 1a, 7, and 4a

Fig. 6. B3LYP/6-31G* Calculated Structure of Compounds 7 and 4a

Table 1. NBO Stabilization Energies (E2) of Electronic Delocalization
p→p* Molecular Orbital, Based on the B3LYP/6-31G* Calculated Geome-
tries

B3LYP/6-31G*
Resonance energy

Compound 1a Compound 7 Compound 4a

p1–2→p*3–4 19.58 19.80 —
p1–2→p*5–6 18.71 19.21 —
p3–4→p*1–2 17.89 18.08 —
p3–4→p*5–6 18.22 17.48 —
p5–6→p*1–2 20.24 19.09 —
p5–6→p*3–4 20.36 21.27 —
p2–3→p*1–6 — — 18.54
p1–6→p*2–3 — — 18.98
Lp S→p*1–6 — — 0.96



J�8.4, 1.7 Hz, 1H, aromatic), 7.96 (dd, J�8.4, 1.7 Hz, 1H, aromatic). 13C-
NMR (75.4 MHz, acetone-d6) d : 10.8, 13.9, 107.5, 107.9, 114.3, 117.3,
120.2, 124.0, 124.1, 124.6, 128.8, 129.1, 130.2, 131.5, 132.8, 132.9, 133.0,
145.4, 146.1, 146.9 148.0, 152.7, 152.8, 157.8, 158.5, 158.6, 159.0, 167.5.
MS (EI): m/z (relative intensity): 300 [M]�· (100), 288 (31), 282 (51), 267
(41), 239 (11), 178 (70), 150 (36), 145 (47), 121 (45), 110 (26), 89 (59), 77
(20), 63 (33).

4-(3,4-Dihydroxy-5-methoxyphenylthio)-2H-chromen-2-one
(C16H12O5S) (4c) mp 228—230 °C (dec.). IR (KBr) cm�1: 3438, 3176,
2927, 1673, 1599, 1544, 1505, 1343, 1309, 1239, 1196, 1175, 1107, 952,
843, 824, 762. 1H-NMR (300 MHz, acetone-d6) d : 3.90 (s, 3H, methoxy),
5.61 (s, 1H, C9-H), 6.86 (s, 2H, aromatic), 7.41 (m, J�8.8 Hz, 2H, aro-
matic), 7.70 (m, J�8.5 Hz, 1H, aromatic), 7.91 (dd, J�8.3, 1.6 Hz, 1H, aro-
matic) and 9.2 (broad, about 2H, –OH). 13C-NMR (75.4 MHz, acetone-d6) d :
56.3, 108.0, 111.4, 114.5, 117.2, 117.3, 118.0, 123.9, 124.6, 132.9, 137.4,
147.1, 149.7, 152.7, 158.5, 158.7. MS (EI): m/z (relative intensity): 316
[M]�· (100), 283 (60), 178 (74), 145 (50), 121 (41), 89 (53), 63 (34).

4-(4,5-Dihydroxy-2-methylphenylthio)-2H -chromen-2-one
(C16H12O4S) (4d) mp 273—275 °C (dec.). IR (KBr) cm�1: 3344, 1686,
1600, 1546, 1519, 1445, 1414, 1344, 1320, 1270, 1187, 1158, 950, 869,
841, 824,767, 743. 1H-NMR (300 MHz, acetone-d6) d : 2.29 (s, 3H, methyl),
5.41 (s, 1H, C9-H), 7.01 (s, 1H, aromatic), 7.10 (s, 1H, aromatic), 7.44 (m,
J�8.1 Hz, 2H, aromatic), 7.69 (t, J�9.2 Hz, 1H, aromatic), 7.94 (d,
J�8.4 Hz, 1H, aromatic), 8.5 (broad, 2H, –OH). 13C-NMR (75.4 MHz, ace-
tone-d6) d : 19.2, 107.3, 113.4, 117.2, 118.1, 118.7, 123.5, 124.2, 124.6,
132.9, 135,6, 145.0, 148.9, 152.9, 157.5, 158.5. MS (EI): m/z (relative inten-
sity): 300 [M]�· (38), 272 (8), 267 (16), 178 (24), 145 (30), 121 (44), 89
(100), 77 (40), 63 (78), 39 (50).

Computational Details DFT (density functional theory) calculations
were carried out using B3LYP/6-31G*//B3LYP/6-31G*, level of theory with
the GAUSSIAN 98 package of programs25) implemented on a Pentium-PC
computer with a 2.6 GHz processor. Initial estimation of the structural
geometry of the compounds 1a, 7 and 4a was obtained by a molecular me-
chanic program PCMODEL (88.0),26) and for further optimization of geom-
etry, we used the PM3 method of the MOPAC 7.0 computer program.27,28)

The GAUSSIAN 98 package of programs were finally used to perform DFT
calculations at the B3LYP/6-31G* level. Energy-minimum molecular
geometries were located by minimizing energy, with respect to all geometri-
cal coordinates without imposing any symmetrical constraints. The nature of
the stationary points for the compounds 1a, 7 and 4a has been fixed by
means of the number of imaginary frequencies. For minimum state struc-
ture, only real frequency values, and in the transition-state, only single imag-
inary frequency values, were accepted.29,30) NBO analysis was then per-
formed at the B3LYP/6-31G* level by the NBO 3.1 program31,32) included in
the GAUSSIAN 98 package of programs.
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