Lupane Glycosides from the Leaves of *Acanthopanax koreanum*

Hyun-Sik CHOI, *^a* Hyoung Ja KIM, *^b* Sang-Gil NAM, *^a* In-Seon KIM, *^a* Kyung-Tae LEE, *a* Chang-Soo YOOK, *^a* and Yong Sup LEE*,*^a*

aKyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy and Department of Life and Nanopharmaceutical Science, Kyung Hee University; 1 Hoegi-dong, Dongdaemun-ku, Seoul 130–701, Korea: and ^b Life Sciences Division, Korea Institute of Science and Technology; P. O. Box 131, Cheongryang, Seoul 130–650, Korea. Received July 11, 2008; accepted August 26, 2008

Three new lupane-type saponins, acankoreosides F—H (1—3) were isolated from the methanol extract of the leaves of *Acanthopanax koreanum* **NAKAI. The structures of these three saponins were established by chemical and spectroscopic analysis as 3**a**,30-dihydroxylup-20(29)-en-23,28-dioic acid 28-***O***-[**a**-L-rhamnopyranosyl-(1**→**4)** b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranosyl] ester (1), 3**a**,30-dihydroxylup-23-al-20(29)-en-28-oic acid 28-***O***- [**a**-L-rhamnopyranosyl-(1**→**4)-**b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranosyl] ester (2), and (20***S***) 3**a**-hydroxylup-23-al-28,29-dioic acid 28-***O***-[**a**-L-rhamnopyranosyl-(1**→**4)-**b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranosyl] ester (3), respectively. The effects of the isolates (1—3) on the lipopolysaccharide-induced production of nitric** oxide and prostaglandin E_2 were evaluated in RAW 264.7 macrophages.

Key words *Acanthopanax koreanum*; Araliaceae; lupane glycoside; acankoreoside

Acanthopanax koreanum is a shrub that belongs to the Araliaceae family and is found in Northeast Asia. *Acanthopanax* species, such as, *A. senticosus*, *A. gracilistylus*, *A. obovatus*, and *A. giraldii* have been used to treat rheumatism, allergies, and diabetes, $1-4$) and the root and stem bark of *A*. *koreanum* are used as a tonic, as a prophylactic, and to treat rheumatism, paralysis, hepatitis, and diabetes by practitioners of oriental medicine.^{5,6)} The biological activities of lignans and diterpenes from the roots and stems of *A. koreanum* have been well established. $7-11$ In addition, our group has previously reported on lupane-triterpene glycosides, such as, acankoreosides A—E, obtained from the leaves of *A. koreanum*. 12—14)

During our on-going investigation of the bioactive principles of *A. koreanum*, we isolated and determined the structures of three lupane-type saponins, 3α , 30-dihydroxylup-20(29)-en-23,28-dioic acid $28-O$ - $[\alpha$ -L-rhamnopyranosyl-(1→4)- $β$ -D-glucopyranosyl-(1→6)- $β$ -D-glucopyranosyl] ester (**1**), 3a,30-dihydroxylup-23-al-20(29)-en-28-oic acid 28-*O*- α -L-rhamnopyranosyl-(1→4)- β -D-glucopyranosyl-(1→6)- β - D -glucopyranosyl] ester (2), and (20*S*) 3 α -hydroxylup-23al-28,29-dioic acid 28-*O*-[α -L-rhamnopyranosyl- $(1\rightarrow4)$ - β -Dglucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl] ester (3), which we refer to as acankoreosides F—H, respectively. In addition, we evaluated their anti-inflammatory activities in RAW 264.7 macrophages.

Results and Discussion

Compound **1** was obtained as a white amorphous powder of molecular formula $C_{48}H_{75}O_{20}$, as determined by HR-FAB-MS (molecular ion at m/z 971.4863 attributed to $[M-H]$). The structure of **1** was established by comparing its chemical shifts to those of acankoreoside A 4 in ¹H-NMR spectra,¹²⁾ **1** differed from acankoreoside A due to a hydroxylated methylene group at δ 4.42 and 4.47 (each d, $J=15.3$ Hz) rather than the secondary methyl group at C-30 in acankoreoside A. The position of this methylene group (C-30) was elucidated due to correlations in the HMBC spectrum between C-20 at δ 156.5 and H-18 (δ 1.91), H-19 (δ 3.33), H-29 (δ 5.08) and H-30 (δ 4.42, 4.47) of 1. The ¹H-NMR spectrum of 1

∗ To whom correspondence should be addressed. e-mail: kyslee@khu.ac.kr © 2008 Pharmaceutical Society of Japan

showed signals due to four tertiary methyl groups at δ 0.89, 0.92, 1.17 and 1.44 (each 3H, s), one secondary methyl group at δ 1.69 (3H, d, $J=6.0$ Hz), which was assigned to H-6 of rhamnose, three anomeric protons due to two hexosyl residues at δ 6.30 (1H, d, $J=8.0$ Hz) and 4.96 (1H, d, $J=7.9 \text{ Hz}$), and one 6-deoxyhexosyl residue at δ 5.82 (1H, br s); as detailed in Tables 1 and 2. Furthermore, the $\mathrm{^{1}H}$ -NMR spectrum of **1** showed characteristic signals for H-19 at δ 3.33 (1H, dt, *J*=3.6, 11.5 Hz), H-13 at δ 2.61 (1H, m), H-5 at δ 2.48 (1H, br d, $J = 11.0$ Hz), and H-3 at δ 4.21 (1H, overlapped), which suggested an aglycone with a 3α -hydroxylupan-28-oic acid skeleton. The 13C-NMR spectrum of **1** showed signals at δ 175.1 and 181.2, indicating the presence of an ester carboxyl group at C-28 and a free carboxylic acid at C-23 on the triterpene moiety. The assignment of the α hydroxyl group at C-3 was performed by comparing spectral data to literature values.^{14—16} Observed chemical shifts of C- $1(\delta 33.2)$, C-5 (δ 45.4) and C-24 (δ 18.2) in the aglycone of **1** confirmed the axial α -position of the 3-hydroxyl group by comparing the corresponding signals of the 3β -epimer derivative $[\delta$ value for 39.4 (C-l), 52.4 (C-5) and 11.3 (C-24)].¹⁶⁾

Table 1. NMR Data of Acankoreosides F-H (1-3) (125, 500 MHz, Pyridine- d_5)

No.	$\mathbf{1}$		$\boldsymbol{2}$		3	
	$\delta_{\rm H}$ (mult., Hz)	$\delta_{\rm C}$	$\delta_{\rm u}$ (mult., Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (mult., Hz)	$\delta_{\rm C}$
$\mathbf{1}$	$1.44, 1.81$ (m)	33.2	$1.45, 1.94$ (m)	33.1	$1.49, 1.80$ (m)	33.1
$\overline{\mathbf{c}}$	$1.93, 1.98$ (m)	26.1	$1.75, 1.94$ (m)	26.7	$1.76, 1.93$ (m)	26.7
$\overline{\mathbf{3}}$	4.21 (overlapped)	72.8	4.01 (br s)	73.0	4.02 (brs)	73.0
$\overline{4}$		51.8		52.5		52.5
5	2.48 (brd, 11.0)	45.4	2.40 (brd, 12.1)	44.0	2.42 (brd, 13.3)	44.0
6	$1.58, 1.81$ (m)	21.7	$1.16, 1.45$ (m)	20.9	$1.10, 2.15$ (m)	21.1
$\overline{7}$	$1.31, 1.69$ (m)	34.5	$1.23, 1.57$ (m)	34.1	$1.25, 1.59$ (m)	34.1
$\,$ 8 $\,$		41.8		41.8		41.8
9	1.61 (m)	51.0	1.57(m)	50.6	1.66 (m)	50.2
10		37.4		36.9		36.9
11	$1.31, 1.45$ (m)	21.0	$1.07, 1.33$ (m)	21.0	$1.19, 1.48$ (m)	20.8
12	$1.17, 1.68$ (m)	27.1	$1.16, 1.33$ (m)	27.0	$1.21, 1.86$ (m)	26.9
13	2.61 (m)	38.3	2.64 (m)	38.3	2.70 (m)	38.2
14		42.8		42.8		43.0
15	$1.17, 2.01$ (m)	30.2	$1.16, 1.98$ (m)	30.1	$1.18, 2.01$ (m)	30.0
16	$1.44, 2.61$ (m)	32.2	$1.45, 2.64$ (m)	32.1	$1.46, 2.65$ (m)	32.1
17		57.0		56.9		57.3
18	1.91(m)	50.2	1.95 (m)	50.2	1.55 (t, 11.0)	48.9
19	3.33 (dt, 3.6, 11.5)	43.2	3.34 (dt, 4.0, 11.5)	43.2	3.53 (m)	40.6
20		156.5		156.5	2.98 (dq, 2.7, 6.9)	42.1
21	$1.58, 2.30$ (m)	32.7	$1.57, 2.30$ (m)	32.7	$1.88, 2.11$ (m)	25.0
22	$1.58, 2.19$ (m)	36.8	$1.57, 2.18$ (m)	36.7	$1.41, 2.19$ (m)	37.3
23		181.2	9.93(s)	209.8	10.0(s)	209.9
24	1.44(s)	18.2	1.09(s)	14.6	1.10(s)	14.6
25	0.92(s)	16.8	0.85(s)	16.4	0.87(s)	16.3
26	1.17(s)	16.7	1.14(s)	16.5	1.16(s)	16.5
27	0.89(s)	14.9	0.94(s)	14.8	0.94(s)	14.9
28		175.1		175.0		174.9
29	5.08, 5.49 (br s)	106.1	$5.10, 5.50$ (br s)	106.1		180.0
30	4.42, 4.47 (each d, 15.3)	64.3	4.42, 4.47 (each d, 15.3)	64.3	1.28 (d, 6.9)	10.0

Table 2. The Sugar Moieties of Acankoreosides F-H (1-3) (125, 500 MHz, Pyridine- d_5)

a) Overlapping signals.

In the NOESY spectrum, the presence of cross-peaks between H-24 and H-25 as well as H-3 indicated that the methyl group (H-24) was axial, which in turn suggested that the carboxyl group at C-4 was α -positioned. In the HMBC spectrum, the carbonyl carbon signal at δ 175.1 (C-28) showed a ¹H-¹³C long range correlation with signals at δ 1.91 (H-18), δ 1.58, and 2.19 (H-22). The other carbonyl signal at δ 181.2 (C-23) was correlated with signals at δ 1.44 (H-24) and 2.48 (H-5). These data indicate that the carbonyl groups of **1** are located at C-17 and C-4. In addition, HMBC correlations of 1 were observed between glc H-1' (δ 6.30) and the C-28 of the triterpene moiety (δ 175.1), between glc H-1" (δ 4.96) and glc C-6' (δ 69.3), and between rha H-1"" (δ 5.82) and glc C-4" (δ 78.3), which supported glycoside sequence. Two anomeric proton signals at δ 6.30 (d, $J=8.0\,\text{Hz}$) and 4.96 (d, $J=7.9$ Hz) indicated a β -configuration based on coupling constants, and the α -anomeric configuration of rhamnose was assigned based on the 13C-NMR chemical shift of rhamnosyl C-3 (δ 72.7) and C-5 (δ 70.3).¹⁷⁾ Acid hydrolysis of **1** provided the monosaccharide components of Lrhamnose and D-glucose (identified using authentic samples). Accordingly, the structure of 1 was elucidated to be $3\alpha,30$ dihydroxylup-20(29)-en-23,28-dioic acid $28-O$ - α -L-rhamnopyranosyl- $(1\rightarrow4)$ - β -D-glucopyranosyl- $(1\rightarrow6)$ - β -D-glucopyranosyl] ester, which we named acankoreoside F.

Compound **2** was obtained as a white amorphous powder of molecular formula $C_{48}H_{75}O_{19}$, as determined by HR-FAB-MS (molecular ion m/z 955.4899 attributed to $[M-H]$ ⁻). The ¹H- and ¹³C-NMR spectra of 2 indicated structural features similar to those of acankoreoside F (**1**) except for the presence of an aldehyde group at C-23. In the 1 H-NMR spectrum of 2, a singlet signal at δ 9.99 corresponded to an aldehyde proton and signals at δ 4.42 and 4.47 (each d, $J=15.3 \text{ Hz}$) were assigned to hydroxylated methylene protons of H-30. The 13C-NMR spectrum of **2** showed 48 signals including 18 sugar moiety signals, four tertiary methyl groups at δ 14.6 (C-24), 16.4 (C-25), 16.5 (C-26) and 14.8 (C-27), olefinic carbons at δ 156.5 (C-20) and 106.1 (C-29), and an aldehyde signal at δ 209.8 (C-23). Two anomeric proton signals at δ 6.32 (d, *J*-8.2 Hz) and 4.95 (d, *J*-7.6 Hz) were characteristic of a β -configuration based on their coupling constants, and the α -anomeric configuration of rhamnose was assigned based on the ¹³C-NMR chemical shift of rhamnosyl C-3 (δ 72.7) and C-5 (δ 70.3).¹⁷⁾ In the HMBC spectrum, the aldehyde signal at δ 209.8 was correlated with the proton signal of a methyl group (H-24) at δ 1.09. In addition, HMBC correlations of 2 were observed between glc H-1' (δ 6.32) and the C-28 of the triterpene moiety (δ 175.0), between glc H-1" (δ 4.95) and glc C-6' (δ 69.3), and between rha H-1''' (δ 5.82) and glc C-4" (δ 78.3), which the glycoside sequence. In the NOESY spectrum, the presence of cross-peaks between H-24 and H-25 as well as H-3 indicated that the methyl group (H-24) was axially orientated, which in turn suggested that the carboxyl group at C-4 was α -positioned. According to 2D NMR analysis, the structure of **2** was elucidated to be 3a,30-dihydroxylup-23-al-20(29)-en-28-oic acid 28-*O*-a-Lrhamnopyranosyl- $(1\rightarrow4)$ - β -D-glucopyranosyl- $(1\rightarrow6)$ - β -Dglucopyranosyl ester, which was named acankoreoside G.

Compound **3** was obtained as a white amorphous powder of molecular formula $C_{48}H_{75}O_{20}$, as determined by HR-FAB-MS (molecular ion at m/z 971.4863 attributed to $[M-H]$ ⁻).

The ¹H- and ¹³C-NMR spectra of **3** indicated a structure similar to that of acankoreoside E^{14} Its ¹³C-NMR spectrum exhibited five tertiary methyl groups at δ 14.6 (C-24), 16.3 (C-25), 16.5 (C-26), 14.7 (C-27) and 10.0 (C-30). The C-23 signal (δ 209.9) of **3** was significantly shifted by 5.3 ppm downfield as compared with that of acankoreoside E and the its carboxylic acid (C-29) at δ 180.0 was shifted by 1.8 ppm upfield, indicating the change in the functional groups at C-23 and C-29. Two anomeric proton signals at δ 6.33 (d, $J=8.0$ Hz) and 4.90 (d, $J=7.8$ Hz) were assigned to the β configuration based on their coupling constants, and the α anomeric configuration of rhamnose was assigned based on the ¹³C-NMR chemical shifts of rhamnosyl C-3 (δ 72.6) and C-5 (δ 70.3).¹⁷⁾ In the NOESY spectrum, the presence of cross-peaks between H-24 and H-25 as well as H-3 indicated that the methyl group (H-24) was axially orientated, which in turn suggested an α -position for the carboxyl group at C-4. In the HMBC spectrum, the aldehydic carbonyl signal at δ 209.9 (C-23) was correlated with signals at δ 1.10 (s, H-24) and 2.42 (br d, $J=13.3$ Hz, H-5), and the carbonyl signal at δ 180.0 (C-29) with proton signals at δ 2.98 (dq, J=2.7, 7.0 Hz, C-20) and 1.28 (d, J=6.9 Hz, H-30), indicating that the aldehyde and carboxylic acid groups were present at C-4 and C-20 of the aglycone, respectively. In addition, HMBC correlations of **3** were observed between glc H-1' (δ 6.33) and the C-28 of the triterpene moiety (δ 174.9), between glc H-1" (δ 4.90) and glc C-6' (δ 69.3), and between rha H-1"" (δ 5.81) and glc C-4" (δ 78.2), which supported the glycoside sequence. The downfield shift of the signal at δ 10.0 (assigned to C-30) in comparison with that of acankoreoside E $(\delta_{C-30}: 7.0)$ also supported the above assignments. The absolute stereochemistry at C-20 was established using reported data for a similar compound.18,19) The *S* configuration at C-20 was established based on literature values for the chemical shifts of the carbonyl carbon at C-29 in (20*S*) 3β acetoxylupan-29-oic acid (δ_{C-30} : 9.6) and (20*R*) 3 β -acetoxylupan-29-oic acid (δ_{C-30} : 17.2). The carbon chemical shift difference between C-30 of (20*S*) and (20*R*) 3 β -acetoxylupan-29-oic acid was large enough to allow the differentiation. The chemical shift of C-30 (δ _{C-30}: 10.0) in **3** was similar to that of $(20S)$ 3 β -acetoxylupan-29-oic acid. Thus, compound **3** was found to be $(20S)$ 3 α -hydroxylup-23-al-28,29-dioic acid 28-*O*- α -L-rhamnopyranosyl- $(1\rightarrow4)$ - β -D-glucopyranosyl- $(1\rightarrow6)$ - β -D-glucopyranosyl ester, which we named acankoreoside H.

The three isolates (**1**—**3**) were assessed for anti-inflammatory activity by examining their effects on nitric oxide (NO) and prostaglandin E_2 (PGE₂) by lipopolysaccharide (LPS)-induced in RAW 264.7 cells.²⁰⁾ L- N^6 -(1-iminoethyl) lysine (L-NIL, 10 μ M) and NS-398 were used as positive NO and PGE₂ production inhibitor controls, respectively. Acankoreoside F (1) at 200 μ m most potently inhibited PGE₂ (59%) and NO (42%) production (data not shown).

Experimental

General Experimental Procedures Optical rotations were recorded on a JASCO D-1010 spectropolarimeter and an Autopol III Automatic polarimeter (Rudolph Research Flanders, NJ, U.S.A.). NMR spectra were measured in pyridine- d_5 on a Varian UI-500 spectrometer and chemical shifts are quoted relative to tetramethylsilane (TMS). HR-FAB-MS spectra were recorded on a JEOL JMS-700 instrument using glycerol as a matrix in negative ion mode. Diaion HP-20 (Mitsubishi Chem. Co.), Sephadex LH-20 (Pharmacia Biotech), silica gel 60 (0.04—0.063 mm, Merck) and LiChro-

prep RP-18 (40—63 μ m, Merck) were used for open column chromatography. TLC was performed using silica gel 60 F_{254} plate (Merck).

Plant Material The leaves of *A. koreanum* NAKAI were collected from the Medical Plant Garden at Kyung Hee University during October 2003. Emeritus Professor Chang-Soo Yook (Department of Pharmacognosy at Kyung Hee University), one of the authors, identified the species. A voucher specimen (3-002-0067) was deposited at the Museum of Oriental Medicine in Kyung Hee University.

Extraction and Isolation Dried leaves (1.0 kg) were extracted twice with 1.5 l of hot MeOH to provide 152.1 g of dried extract, which was chromatographed on a Diaion HP-20 column using $H₂O/30$ %, 50%, 70%, and 90% MeOH mixes. The 70% MeOH fraction was subsequently chromatographed on a silica gel column using CHCl₃–MeOH–H₂O (8:2:0.2→ $7:3:0.5$) as eluent to give 8 fractions (Frs. $1-8$). Fraction 4 (6.46 g) was then subjected to gel filtration chromatography on a Sephadex LH-20 column using MeOH as eluent. The saponin fraction (5.95 g) so obtained was chromatographed on a silica gel column using $CHCl₃–MeOH–H₂O$ $(7:3:0.2)$ as eluent and then by gradient chromatography on a LiChroprep RP-18 column using $H₂O/50%$ to 90% MeOH as eluent to yield compounds **2** (acankoreoside G, 63.8 mg, yield 0.006%) and **3** (acankoreoside H, 44 mg, yield 0.004%). Fraction 7 (2.73 g) was subjected to Sephadex LH-20 column chromatography to give two fractions (Fr. 7-1 and Fr. 7-2). Fraction 7-2 (1.08 g) was purified by silica gel using CHCl₃–MeOH–H₂O (8:2:0.2→ 6 : 4 : 0.5) as an eluent and finally LiChroprep RP-18 column chromatographed using a gradient solvent system (50→90% MeOH) to yield compound **1** (acankoreoside F, 30 mg, yield 0.003%).

Acankoreoside F (1): White powder; $[\alpha]_D^{25}$ -43.0 (c =0.50, MeOH); ¹Hand ¹³C-NMR data, see Tables 1 and 2; HR-FAB-MS m/z [M-H]^{-971.4863} (Calcd for $C_{48}H_{75}O_{20}$ 971.4852).

Acankoreoside G (2): White powder; $[\alpha]_D^{25}$ -58.0 (c =0.50, MeOH); ¹Hand ¹³C-NMR data, see Tables 1 and 2; HR-FAB-MS m/z [M-H]⁻ 955.4899 (Calcd for $C_{48}H_{75}O_{19}$ 955.4903).

Acankoreoside H (3): White powder; $[\alpha]_D^{25} - 37.4$ ($c = 0.50$, MeOH); ¹Hand ¹³C-NMR data, see Tables 1 and 2; HR-FAB-MS m/z [M-H]^{-971.4863} (Calcd for $C_{48}H_{75}O_{20}$ 971.4852).

Acid Hydrolysis of 1 Compound **1** (25 mg) was hydrolyzed in 5% H_2SO_4 under reflux for 3 h. After neutralization with NH₄OH followed by extraction with CHCl₃, the aqueous layer was evaporated *in vacuo* to give a residue (12 mg), which was subjected to silica gel column chromatography $(CHCl₃-MeOH-H₂O=6:4:1)$ to yield p-glucose and L-rhamnose. These sugars were compared with authentic samples on TLC and by measuring optical rotations $(+52.8, +12.5,$ respectively).

Acknowledgements We thank the Korean Basic Science Institute at Korea University for providing NMR and HR-FAB-MS data. This research was supported by the Seoul Research and Business Development Program

(10524). In addition, we thank the Korean Ministry of Education & Human Resources Development for support through the Post-BK21 program. We dedicate this work to the memory of Professor Sang-Yong Park our valued mentor and co-worker.

References

- 1) Kang J. S., Linh P. T., Cai X. F., Kim H. S., Lee J. J., Kim Y. H., *Arch. Pharm. Res.*, **24**, 407—411 (2001).
- 2) Park S. Y., Chang S. Y., Yook C. S., Nohara T., *J. Nat. Prod.*, **63**, 1630—1633 (2000).
- 3) Kang H. S., Kim Y. H., Lee C. S., Lee J. J., Choi I., Pyun K. H., *Cell Immunol.*, **170**, 212—221 (1996).
- 4) Hibasami H., Fujikawa T., Takeda H., Nishibe S., Satoh T., Fujisawa T., Nakashima K., *Oncol. Rep.*, **7**, 1213—1216 (2000).
- 5) Perry L. M., Metzger J., "Medicinal Plants of East and Southeast Asia," MIT Press, Cambridge, 1980, p. 41.
- 6) Bae K., "The Medicinal Plants of Korea," Kyo-Hak Publishing, Seoul, 2000, p. 361.
- 7) Cai X. F., Shen G., Dat N. T., Kang O. H., Kim J. A., Lee Y. M., Lee J. J., Kim Y. H., *Chem. Pharm. Bull.*, **51**, 605—607 (2003).
- 8) Cai X. F., Shen G., Dat N. T., Kang O. H., Lee Y. M., Lee J. J., Kim Y. H., *Arch. Pharm. Res.*, **26**, 731—734 (2003).
- 9) Cai X. F., Lee I. S., Dat N. T., Shen G., Kang J. S., Kim D. H., Kim Y. H., *Arch. Pharm. Res.*, **27**, 738—741 (2004).
- 10) Cai X. F., Lee I. S., Shen G., Dat N. T., Lee J. J., Kim Y. H., *Arch. Pharm. Res.*, **27**, 825—828 (2004).
- 11) Cai X. F., Lee I. S., Dat N. T., Shen G., Kim Y. H., *Phytother. Res.*, **18**, 677—680 (2004).
- 12) Chang S. Y., Yook C. S., Nohara T., *Chem. Pharm. Bull.*, **46**, 163— 165 (1998).
- 13) Chang S. Y., Yook C. S., Nohara T., *Phytochemistry*, **50**, 1369—1374 (1999).
- 14) Park S. Y., Choi H. S., Yook C. S., Nohara T., *Chem. Pharm. Bull.*, **53**, 97—99 (2005).
- 15) Sung T. V., Steglich W., Adam G., *Phytochemistry*, **30**, 2349—2356 (1991).
- 16) Adam G., Lischewski M., Phiet H. V., Preiss A., Schmidt J., Sung T. V., *Phytochemistry*, **21**, 1385—1387 (1982).
- 17) Kasai R., Okihara M., Asakawa J., Mizutani K., Tanaka O., *Tetrahedron*, **35**, 1427—1432 (1979).
- 18) Corbett R. E., Cong A. N. T., *J. Chem. Soc. Perkin Trans. 1*, **1985**, 2051—2056 (1985).
- 19) Corbett R. E., Cong A. N. T., Holland P. T., Wilkins A. L., *Aust. J. Chem.*, **40**, 461—468 (1987).
- 20) Hevel J. M., Marletta M. A., *Methods Enzymol.*, **233**, 250—258 (1994).