
Introduction of matrix tablet as sustained release (SR) has
given a new breakthrough for novel drug delivery system
(NDDS) in the field of pharmaceutical technology.1,2) It ex-
cludes complex production procedures such as coating and
pelletization during manufacturing and drug release rate
from the dosage form is controlled mainly by the type and
proportion of polymer used in the preparations.

In the development of a sustained release tablet dosage
form, an important issue is to design an optimized formula-
tion with an appropriate dissolution rate in a short time pe-
riod and minimum number of trials. Many statistical experi-
mental designs have been recognized as useful techniques to
optimize the process variables. Artificial neural networks
(ANNs) have seen an explosion of interest over the last few
years, and are being successfully applied in the field of phar-
maceutical development and optimizing of dosage forms by
predicting the nonlinear relationship between casual factors
and response variables.3—7) Compared with classical sta-
tistical optimization techniques, such as response surface
methodology where theoretical relationships between re-
sponse variables and casual factors are not clear, ANN shows
superiority as a modeling technique for data sets showing
nonlinear relationships, and thus for both data fitting and pre-
diction abilities.8—10)

ANN is a learning based system on a computational tech-
nique that can simulate the neurological processing ability of
the human brain and can be applied to quantify a nonlinear
relationship between causal factors and pharmaceutical re-
sponses by means of iterative training of data obtained from
a designed experiment.11)

Metformin HCl is an orally administered biguanide, which
is widely used in the management of type-2 diabetes, a com-

mon disease that combines defects of both insulin secretion
and insulin action.12) It improves hepatic and peripheral tis-
sue sensitivity to insulin without the problem of serious lactic
acidosis commonly found with its analogue, phenformin. It
has three different actions: it slows the absorption of sugar in
our small intestine; it also stops our liver from converting
stored sugar into blood sugar; and it helps our body use our
natural insulin more efficiently. It is a hydrophilic drug and is
slowly and incompletely absorbed from the gastrointestinal
tract and the absolute bioavailability of a single 500 mg dose
is reported to be 50—60%.13) An obstacle to more successful
use of metformin therapy is the high incidence of concomi-
tant gastrointestinal symptoms, such as abdominal discom-
fort, nausea, and diarrhea that especially occur during the ini-
tial weeks of treatment. Also the compound has relatively
short plasma elimination half-life of 2 to 4 h.14) Side effects
and the need for administration two or three times per day
when larger doses are required can decrease patient compli-
ance. Sustained release (SR) formulation that would maintain
plasma levels of drug for 8 to 12 h might be sufficient for
once daily dosing for metformin. SR products are needed for
metformin to prolong its duration of action and to improve
patient compliance.15)

The aim of the present study was to apply the simultane-
ous optimization method incorporating ANN using Multi-
layer Perceptrons (MLP) model to the development of a met-
formin HCl 500 sustained release matrix tablet with an opti-
mized in vitro release profile using HPMC K15M and PVP
K30 as casual factors.

ANN Using Multilayer Perceptrons (MLP) A com-
mercial Microsoft Window’s based neural network software
package, STATISTICA 7 (Stat soft) was used throughout the
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study with a Pentium 4 personal computer. For real world
problem solving, ANN is classified to the different models.
Among them most frequently used models are mentioned
below:

· Multilayer Perceptrons (Feed forward)
· Radial Basis Function Networks
· Probabilistic Neural Networks (PNNs)
· Generalized Regression Neural Networks (GNNs)
Multilayer Perceptrons (MLP) is perhaps the most popular

network architecture in use today, due originally to Rumel-
hart et al.16) and discussed at length in most neural network
textbooks.17) In overview, an MLP is composed of different
layers of processing units that are interconnected through
weighted connections (Fig. 1). The first layer consists of the
input variables. The last layer consists of the output variables
representing the output class. Intermediate layers called hid-
den layer receive the entire input pattern that is modified by
the passage through the weighted connections. The hidden
layer provides the internal representation of neural pathways.

Training means a search process for the optimized set of
weight values, which can minimize the squared error be-
tween the estimated and experimental data of units in the
output layer. Training is a long iterative process and ANN
often gets stuck in a local minima. Certain empirical tech-
niques have been reported to improve the convergence of
ANN in the global minima.11,18) The network is trained using
different algorithms (Back propagation, Conjugate gradient
descent, Quasi-Newton, Levenberg-Marquardt, Quick propa-
gation, Delta-bar-delta etc.).18—21) Back propagation learning
algorithm is widely used in multilayer feed forward networks.
The calculations begin at the output layer and progress back-
ward through the network to the input layer. A method called
momentum decreases back propagation’s sensitivity to small
details in the error surface. This helps the network avoid get-
ting stuck in local minima, which would prevent the network
from finding a lower error solution. The momentum helps the
network to overcome obstacles (local minima) in the error
surface and settles down at or near the global minima (solu-
tion with lowest possible error). Another essential approach
is to use an extended Kalman filter algorithm for ANN train-
ing.22—25) We can greatly reduce the length of iterative train-
ing by using the extended Kalman filter algorithm and also
can avoid to a certain extent, ANN getting stuck in a local
minima. Although multiple layers can be set between the
input layer and the output layer, many ANNs consist of only
one hidden layer.26) One layer is usually sufficient to provide
adequate prediction even if continuous variables are adopted
as the units in the output layer.25—27)

Experimental
Materials Metformin HCl was received from Deys Medical, Kolkata,

India, as donated sample. Hydroxy propyl methyl cellulose (HPMC K15M)
was a gift sample received from M/S Colorcon Asia Pvt. Ltd., Mumbai,
India. MCC (Avicel PH 101), PVP K30 (polyvinyl pyrrolidone K30) were
purchased from S. D. Fine Chemicals Ltd., Mumbai, India. Magnesium
stearate and talc were procured from Mohanlal Dayaram and Company, Hy-
derabad, India. All other chemicals/reagents used were of analytical grade,
except for those used in HPLC analysis, which were of HPLC grade.

Preparation of Sustained Release Matrix Tablets Table 1 enlists the
composition of different trial formulations prepared using varying amounts
of HPMC K15M as release controlling polymer and PVP K30 as binder
along with fixed quantity of talcum and magnesium stearate as lubricant.
MCC was used as filler. HPMC K15M polymer at different ratio was
blended with metformin HCl, MCC and PVP K30 in a planetary mixer for
5 min after passing all the materials through a 60 mesh (250 mm). There
after the powders were granulated with isopropyl alcohol, sieved using a 12
mesh (1700 mm) and dried at 50 °C for about 2 h with residual moisture 
content of 2 to 3% w/w. The dried granules were sized by an 18 mesh
(1000 mm) and mixed with magnesium stearate and talc for 2 min. All gran-
ules were weighed finally to adjust the final weight of individual tablet con-
sidering its loss during operational handling. Granules thus obtained were
compressed into 1150 mg tablets to average hardness of 6 to 8 kg/cm2 on an
8 station rotary tablet machine (CIP Machineries Pvt. Ltd., Ahmedabad,
India) with 19.5�8.9 mm caplet tooling at a rotational speed of 72 rpm.

Drug Release Study Drug release from 6 tablets of each formulation, in
triplicate, was determined using the USP I (basket) apparatus (Electrolab,
TDT 06P, USP XXIII) where 900 ml of 0.1 N HCl and phosphate buffer of
pH 6.8 were used as dissolution media maintained at 37 °C (�0.5 °C) at
100 rpm. The release rates from the tablets were conducted in a dissolution
medium of 0.1 N HCl for 2 h and thereafter in phosphate buffer of pH 6.8 for
6 h. Five milliliters of aliquot were withdrawn at 1, 2, 4 and 8 h with replace-
ment of fresh media. Solution samples were analyzed by high performance
liquid chromatography (HPLC) method mentioned below:

Column: Hypersil BDS C18 (250�4.6 mm, 5 mm particle size)
Mobile phase: 10 mM phosphate buffer of pH 6.0 : acetonitrile�50 : 50

(v/v)
Detector: UV detection with 232 nm
Loop size: 20 m l
Drug Release Kinetics In order to propose a possible release mecha-

nism, drug release from HPMC matrix tablets was fitted to the following
equations:

Higuchi’s equation28):

Q�kHt1/2 (1)

Where, Q is the amount of drug release at time t, and kH is the Higuchi rate
constant.

Korsmeyer et al.’s equation29):

Mt/M��ktn (2)

Where, Mt is the amount of drug released at time t, M� is the amount of drug
released after infinite time, Mt/M� is the fractional drug release percentage at
time t, k is a constant related to the properties of the drug delivery system,
and n is the release exponent indicative of the drug release mechanism.

Design of Experiment A central composite design (CCD) with a�1
was employed as per the standard protocol.30,31) The amounts of HPMC
K15M (X1) and PVP K30 (X2) were selected as the input variables, studied at
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Fig. 1. Artificial Neural Network (ANN) with Multilayer Perceptrons
(MLP)

X1 and X2 are two units of input layer. Y1, Y2, Y3 and Y4 are four units of output layer.
Hidden layer contains five units.

Table 1. Composition of 500 mg Metformin HCl Sustained Release Ma-
trix Tableta)

Ingredient Amount (mg)

Metformin HCl 500 mg
HPMC K15M 240 to 480 mg
PVP K30 50 to 150 mg
Magnesium stearate 5 mg
Talcum powder 5 mg
MCC (Avicel PH 101) qs to 1150 mg

a) qs: quantity sufficient; HPMC K15M: hydroxypropyl methyl cellulose of K15M
viscosity grade; PVP K30: polyvinyl pyrrolidone of K30 viscosity grade; MCC: micro-
crystalline cellulose.



3 levels each. The central point (0, 0) was studied in quintuplicate. The range
of HPMC K15M (240 to 480 mg) and PVP K30 (50 to 150 mg) was selected
based on pre-formulation trial to prepare 500 mg metformin HCl sustained
release tablet. Beyond that level of polymer and binder, the drug release rate
was too slow whereas below those levels, the release rate was too high.
That’s why the range of HPMC K15M and PVP K30 was fixed at 240 to
480 mg and 50 to 150 mg respectively. All other formulation and processing
variables were kept invariant throughout the study. Table 2 summarizes an
account of the 13 experimental runs studied, their factor combinations, and
the translation of the coded levels to the experimental units employed during
the study. The percentage of drug released at 1 h (Y1), the percentage of drug
released at 2 h (Y2), the percentage of drug released at 4 h (Y3) and the per-
centage of drug released at 8 h (Y4) were taken as the output variables.

Model Training, Validation and Optimization Commercially avail-
able STATISTICA Neural Network software (StatSoft Inc., Tulsa, OK,
U.S.A.) was used throughout the study. Multilayer perceptrons (MLP) with
feed forward back propagation method16,32) was used in modeling and opti-
mization of metformin sustained release tablets. ANN with MLP works in
three phases.

First phase: an input vector is presented to the network, which leads via
the forward pass to the activation of the network as a whole. This generates a
difference (error) between the output of the network and the desired output.

Second phase: compute the error factor (signal) for the output unit and
propagates this factor successively back through the network (error back-
ward pass).

Third phase: compute the changes for the connection weights by feeding
the summed squared errors from the output layer back through the hidden
layers to the input layer.

This process is continued until the connection weights in the network have
been adjusted so that the network output has converged, to an acceptable
level, with the desired output.

Important issues in MLP design include specification of the number of
hidden layers and the number of units in these layers.17,20) Too few hidden
layers lead to under fitting. Two many hidden layers can lead the system to-
wards memorizing the patterns in the data.26) According to Kolmogorov’s
theorem, it is understood that twice the number of input nodes plus one is
sufficient to compute any arbitrary continuous function. Input variables and
output variables were used to train the network until it can approximate a
function, associate input variables with specific output variables. Initially
one hidden layer was used and the number of units in the layer was varied
from 1 to 10, using 100 iterations. When the training is over, the network is
given the new data and processing and flow of information through the acti-
vated network should lead to the assignment of the input data to the output
class.

In order to validate the ANN model, the model was trained again using 13
trial formulations and withholding one formulation. Once the ANN model
was trained, the model predicted the four output variables (Y1, Y2, Y3 and Y4)
for the withhold formulation. This process was repeated 13 times, each time

withholding a different trial formulation from the training set. This valida-
tion method is called the “leave-one-out method.” A regression plot was then
constructed for the predicted output variables and observed output variables
to obtain a slope and R2. The determination of the final optimized model was
based on the slope and R2 values for all 13 formulations.

Once the ANN model was trained, the model was optimized by choosing
optimum formulation based on optimum release criteria33,34) fixed as given
below:

Release at 1 h: 25 to 30% [optimum value�(25�30)/2�27.5]
Release at 2 h: 45 to 50% [optimum value�(45�50)/2�47.5]
Release at 4 h: 65 to 70% [optimum value�(65�70)/2�67.5]
Release at 8 h: 95 to 100% [optimum value�(95�100)/2�97.5]
The optimization of the 500 mg metformin HCl tablet was performed ac-

cording to the generalized distance function method35) as per following
equation.

(3)

where S is the distance function generalized by the standard deviation, SDt,
of the observed values for each response variable, FDt is the optimum values
of each response optimized individually over the experimental region and
FOt is the simultaneous optimum value. The simultaneous optimum can be
estimated by minimizing S under the restriction of the experimental region.

After training was completed, ANN gave the optimum composition of
HPMC K15M and PVP K30 according to distance function method defined
in Eq. 3. The tablets were prepared according to the optimal formulation,
and their dissolution tests were performed. Observed release profile was
compared with the predicted release profile as per Eq. 3 to optimize the
ANN model. For every pair of observed/predicted drug release profiles for
optimal formulation, difference ( f1) and similarity ( f2) factors were calcu-
lated and slopes of regression curves of the observed versus predicted re-
lease profiles. According to the US Food and Drug Administration’s guide
for industry,36) generally f1 values up to 15 (0—15) and f2 values greater than
50 ensures sameness of the 2 curves.

Results and Discussion
In Vitro Drug Release Studies Dissolution samples

were analyzed by HPLC method described in Experimental.
The retention time of metformin was at 2.367 min. Table 3
lists the mean values (N�3) various dissolution parameters
computed for all the matrix formulations. To know the mech-
anism of drug release from the trial formulations, the data
were treated according to Higuchi’s28) (cumulative percentage
of drug released versus square root of time) and Korsmeyer
et al.’s29) (log cumulative percentage of drug released versus
log time) equations. In our experiments the in vitro release
profiles of drug from all the formulations could be best ex-
pressed by Higuchi’s28) equation as the correlation coefficient
values (R2) presented in Table 3 had high linearity (R2: 0.990
to 0.999, with kH 25.85 to 38.52). In the current study, the
values of release rate exponent (n), calculated as per the
equation proposed by Korsmeyer et al.,29) ranged between
0.4993 and 0.5874 (Table 3). For matrix tablets, an n value of
near 0.5 indicates diffusion control, and an n value of near
1.0 indicates erosion or relaxation control. Intermediate val-
ues suggest that diffusion and erosion contribute to the over-
all release mechanism.37,38) In our experiments the results of
n clearly indicated that the diffusion is the dominant mecha-
nism of drug release from these formulations. Diffusion is
related to transport of drug from the dosage matrix into the
in vitro study fluid depending on the concentration of the hy-
drophilic polymer. As gradient varies, the drug is released,
and the distance for diffusion increases. This could explain
why the drug diffuses at a comparatively slower rate as the
distance for diffusion increases.
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Table 2. Factor Combinations as per the Chosen Experimental Design

Coded factor levels
Trial No.

X 1 X 2

I �1 �1
II �1 0
III �1 1
IV 0 �1
V 0 0
VI 0 1
VII 1 �1
VIII 1 0
IX 1 1
X 0 0
XI 0 0
XII 0 0
XIII 0 0
Translation of coded levels in actual units
Coded level �1 0 1
X 1: HPMC K15M (mg) 240 360 480
X 2: PVP K30 (mg) 50 100 150



Total amount of metformin released from all the formula-
tions up to 8 h ranged between 73.11% and 100.21%. Rate of
drug release (until 8 h) tended to decrease with increase in
the content of either HPMC or PVP K30. This is in agree-
ment with literature findings39,40) that the viscosity of the gel
layer around the tablet increases with increase in the hydro-
gel concentration, thus limiting the release of active ingredi-
ent. The gel formed during the penetration of dissolution
media into the matrix structure, consists of closely packed
swollen particles. With further increase in polymer amount,
thicker gel forms inhibiting dissolution media penetration
more strongly, resulting in significant reduction in the values
of release at 8 h indicating slower drug release.

Figure 2 exhibits the dissolution profiles obtained for vari-
ous trial formulations, prepared as per CCD. The formula-
tions with lower levels of polymer and binder exhibited ini-
tially higher rate of drug release. This result could be attrib-
uted to the dissolution of drug present initially at the surface
of the matrices and rapid penetration of dissolution media to
the matrix structure. However, the formulations showed little
burst effect at higher polymer levels, ratifying better sub-
stance of drug release. Overall, all the formulations showed
quite regulated drug release from 4 h onwards.

MLP Structure Two casual factors corresponding to
three levels of HPMC K15M (X1) and PVP K30 (X2) were
used as each unit of the input layer in the MLP. In vitro re-
lease at four different time points mentioned below were
used as 4 output units

· Y1: the percentage of metformin released at 1 h
· Y2: the percentage of metformin released at 2 h
· Y3: the percentage of metformin released at 4 h
· Y4: the percentage of metformin released at 8 h
Above mentioned input and output variables were fed into

STATISTICA 7 software using MLP with feed forward back
propagation method. Several training sessions were con-
ducted with different numbers of units (1—10) in the hidden
layer in order to determine the optimal MLP structure.41,42)

For selecting the number of units in the hidden layer, we
started with 1 hidden unit and we gradually increased the
number of units. The learning period was completed at 5000
iterative training processes when minimum root mean square
(RMS) was reached:

(4)

Where yi
p is experimental (observed) response, yi

m is calcu-
lated (predicted) response, and n is number of experiments.

Based on the above criteria the selected optimal MLP
structure was with 3 layers (Fig. 1): the first layer with 2
input units and the second layer with 5 hidden units. A third
layer had four output units. Training was completed when
RSM reached 0.000097, which is an acceptable value. Fur-
ther increase in hidden nodes produced high error, when the
network was validated with another set of trial data. The de-
veloped ANN was cross-validated utilizing “leave-one out”
method. Correlation plots were constructed for predicted ver-
sus observed values of drug release for all trial formulations.
Predicted values of all release parameters based on the opti-
mal ANN were coincided well with the experimental values
as depicted in Fig. 3. The MLP model yielded a regression
plot with squared coefficients (R2) that were close to a value
of 1.0 (for all formulations �0.99), which indicated that the
optimal MLP model was reached.

Optimization Figure 4 (A to D) shows the three-dimen-
sional diagrams of each response variable as a function of
HPMC K15M and PVP K30 obtained from optimal ANN.
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Table 3. Mean Drug Release Parameters of Various Trial Formulations Prepared as per the Experimental Design (N�3)a)

Factor amount (mg)
Trial No. Y1 Y2 Y3 Y4 n kH R2

X1 X2

I 240 50 35.21 56.14 75.14 100.15 0.4993 35.43 0.994
II 240 100 34.17 53.41 73.12 100.21 0.5117 35.78 0.998
III 240 150 33.21 52.21 71.65 99.12 0.5145 35.20 0.998
IV 360 50 32.35 51.14 69.32 99.16 0.5263 35.72 0.999
V 360 100 30.47 49.52 68.3 99.19 0.5513 36.45 0.997
VI 360 150 27.65 47.35 64.23 85.32 0.5259 30.75 0.995
VII 480 50 29.56 43.38 67.54 99.11 0.5824 37.92 0.995
VIII 480 100 25.25 46.12 60.59 80.59 0.5387 29.31 0.990
IX 480 150 23.15 38.67 51.17 73.11 0.5314 25.85 0.997
X 360 100 28.18 47.15 67.54 99.14 0.5874 37.58 0.995
XI 360 100 30.41 48.17 67.45 98.47 0.5528 36.39 0.998
XII 360 100 28.75 47.68 69.71 99.31 0.5813 37.42 0.995
XIII 360 100 27.98 46.68 68.59 100.15 0.5998 38.52 0.995

a) X1: HPMC K15M; X2: PVP K30; Y1: release at 1 h; Y2: release at 2 h; Y3: release at 4 h; Y4: release at 8 h; n: release exponent obtained from Korsmeyer et al. equation
(Mt/M��ktn), kH: Higuchi rate constant (Q�kHt1/2); R2: regression coefficient of Higuchi equation.

Fig. 2. Release Profiles of Metformin from Trial Formulations (I to XIII)
Prepared as per the Experimental Design; the Mean of 6 Determinations



An increase of HPMC K15M along with PVP K30 resulted
in decrease in the percentage of metformin dissolved in 1 to
8 h. This suggests that amount of two input variables acts as
the controlling agent in the release of metformin from matrix
tablets.

After the ANN structure was determined, we examined the
release parameters for 625 formulations provided by ANN
(STATISTICA) to find the optimal formulation based on pre-
determined criteria of release profile (Y1�27.5%, Y2�47.5%,

Y3�67.5% and Y4�97.5%). We selected optimal formulation
according to distance function method defined in Eq. 3,
where composition of HPMC K15M and PVP K30 were
336 mg and 130 mg respectively. The matrix tablet was pre-
pared according to the optimal formulation, and their disso-
lution tests were performed.

Experimentally observed metformin release from this opti-
mal formulation, and the metformin release predicted by
MLP, is presented in Fig. 5. Release profiles predicted by the
MLP coincided well with the experimentally observed values
with f1 and f2 values as 2.19 and 89.79 respectively. The f1

and  f2 values were within the limit of U.S. Food and Drug
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Fig. 3. Plot of Experimentally Observed % Cumulative Release versus
ANN Predicted % Cumulative Release of Metformin from 13 Trial Formula-
tions for 4 Output Variables (Y1, Y2, Y3 and Y4)

Fig. 4A. Response Surface Plot Showing the Influence of HPMC K15M
and PVP K30 on Release at 1 h from the Optimal ANN

HPMC K15M�amount of hydroxypropyl methyl cellulose of K15M viscosity grade
(in mg). PVP K30�amount of polyvinyl pyrrolidone of K30 viscosity grade (in mg).

Fig. 4B. Response Surface Plot Showing the Influence of HPMC K15M
and PVP K30 on Release at 2 h from the Optimal ANN

HPMC K15M�amount of hydroxypropyl methyl cellulose of K15M viscosity grade
(in mg). PVP K30�amount of polyvinyl pyrrolidone of K30 viscosity grade (in mg).

Fig. 4C. Response Surface Plot Showing the Influence of HPMC K15M
and PVP K30 on Release at 4 h from the Optimal ANN

HPMC K15M�amount of hydroxypropyl methyl cellulose of K15M viscosity grade
(in mg). PVP K30�amount of polyvinyl pyrrolidone of K30 viscosity grade (in mg).

Fig. 4D. Response Surface Plot Showing the Influence of HPMC K15M
and PVP K30 on Release at 8 h from the Optimal ANN

HPMC K15M�amount of hydroxypropyl methyl cellulose of K15M viscosity grade
(in mg). PVP K30�amount of polyvinyl pyrrolidone of K30 viscosity grade (in mg).

Fig. 5. Predicted and Experimentally Observed Metformin Release from
Optimal Formulation



Administration’s guide for industry.36)

Conclusions
The satisfactory prediction of the drug release for test and

optimal formulations by the MLP in this study has clearly
shown the applicability of an MLP to modeling sustained re-
lease tablet formulation. Thus ANN application offers a new
dimension of pharmaceutical systems study because of its
unique advantages, such as nonlinear processing capacity
and the ability to model poorly understood systems. It is very
suitable for simulation and optimization and for the exact
study of systems from all points of view, without performing
additional experiments. A nonlinear relationship exists be-
tween the chosen formulation components and the amount of
drug released as response in the formulation studied. Several
combinations of the formulation components can be chosen
to reach desired responses using this technique, which per-
mits several possibilities of optimization.
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