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The first enantioselective synthesis of a bb-carboline alkaloid,
dichotomine C, possessing antiallergic effects, was achieved by
constructing a bb-carboline framework based on the microwave-
assisted thermal electrocyclic reaction of a 1-azahexatriene sys-
tem, followed by the Sharpless asymmetric dihydroxylation.
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Six new b-carboline alkaloids, dichotomines A, B, C and
D, and dichotomides I and II, possessing antiallergic effects,
were isolated from Stellaria dichotoma by Yoshikawa and co-
workers in 2004 (Fig. 1).1) The structures of the new com-
pounds were determined by spectroscopic and chemical
analyses. The absolute configuration of the C14-position in
dichotomines A—D were determined to be the S-form using

the modified Mosher’s method. Furthermore, examination of
the antiallergic effects of the isolated compounds on the re-
lease of the b-hexosaminidase in RBL-2H3 cells indicated
that dichotomine C had inhibitory activity.

In the course of our studies, we developed a synthesis of
biologically active condensed heterocyclic compounds, in-
cluding natural products, based on a thermal electrocyclic re-
action2—4) of either hexatriene5—7) or azahexatriene5,6,8) sys-
tems incorporating a principal aromatic or heteroaromatic
moiety. Here, we describe the first total synthesis of di-
chotomine C (1) by applying pyrido-annelation and the
Sharpless asymmetric dihydroxylation. In a retro-synthetic
analysis (Chart 1), we speculated that dichotomine C (1)
could be derived from 1-chloro-b-carboline 3 through asym-
metric dihydroxylation of 1-ethenyl-b-carboline 2. We also
speculated that alkyl b-carboline-3-carboxylate 4 could be
obtained by a thermal electrocyclic reaction of 3-alkenylin-
dole-2-carbaldehyde oxime 5 as an application of the synthe-
sis of the b-carboline framework using the 1-azahexatriene
system.

The required b-carboline 4 was prepared in three steps
starting from N-methoxymethyl(MOM)-3-iodoindole-2-car-
baldehyde9) (6) (Chart 2). The Heck reaction10) between the
aldehyde 6 and methyl acrylate in the presence of Pd(OAc)2

in dimethylformamide gave the 3-alkenylindole-2-carbalde-
hyde 7 (85%). Subsequent treatment of the alkenylindole 7
with hydroxylamine produced the oxime 5 (75%) as the 1-
azahexatriene system, which was subjected to a microwave-
assisted thermal electrocyclic reaction in 1,2-dichloroben-
zene to yield methyl b-carboline-3-carboxylate 4 (94%).
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Fig. 1 Chart 1

Table 1. Physical and Spectroscopic Data of Dichotomine C (1)15)

Natural product (1)a) Synthetic dichotomine Cb) Synthetic dichotomine Cb)

(�)-1 from AD-mix-a (�)-1 from AD-mix-b

1H-NMR (pyridine-d5) 3.97 (3H, s) 3.96 (3H, s) 3.96 (3H, s)
4.61 (2H, m) 4.55—4.72 (2H, m) 4.54—4.71 (2H, m)
5.94 (1H, m) 5.90—5.96 (1H, m) 5.91—5.94 (1H, m)
7.39 (1H, m) 7.36—7.43 (1H, m) 7.37—7.42 (1H, m)
7.60 (1H, m) 7.56—7.63 (1H, m) 7.56—7.63 (1H, m)
7.75 (1H, d, J�7.3 Hz) 7.74 (1H, d, J�7.3 Hz) 7.72 (1H, d, J�7.3 Hz)
8.34 (1H, d, J�7.3 Hz) 8.35 (1H, d, J�7.3 Hz) 8.35 (1H, d, J�7.3 Hz)
9.09 (1H, s) 9.10 (1H, s) 9.12 (1H, s)
12.60 (1H, br s) 12.64 (1H, br s) 12.62 (1H, br s)

MS m/z 286 286 286
mp °C — 200—202 196—198
IR (cm�1) 3300, 1723 3267, 1720 3345, 1716
[a]D

27 �16.6° (c�0.50, MeOH) �11.9° (c�0.50, MeOH) �17.9° (c�0.02, MeOH)

a) 500 MHz, b) 300 MHz.



The key compound 2 was synthesized from the N-MOM-
b-carboline 4 in four steps. Namely, treatment of 4 with m-
chloroperbenzoic acid (mCPBA) followed by chlorination
with oxalyl chloride11) in CH2Cl2 yielded the N-MOM-1-
chloro-b-carboline 9 (79% from 4). Cleavage of the MOM
group of 9 with trifluoromethanesulfonic acid in the presence
of methanol and trimethyl orthformate in nitromethane12) af-
forded the 1-chloro-b-carboline 10 (99%). The key com-
pound 2 was synthesized in 86% yield from 10 and vinyl
tributyltin in the presence of PdCl2(PPh3)2 in dimethylfor-
mamide by the Stille reaction. Finally, asymmetric dihydrox-
ylation of the 1-ethenyl-b-carboline 2 with AD-mix-a and -b
was examined. Contrary to the Sharpless rule,13) (�)-di-
chotomine C (�)-(1) (43%, [a]D

27 �17.9°, c�0.02 in MeOH,
99.8%ee14)) and its enantiomer (�)-(1) (66%, [a]D

27 �11.9°,
c�0.5 in MeOH, 80%ee14)) were obtained by AD-mix-b and
AD-mix-a , respectively. The physical and spectroscopic data
of synthetic dichotomine C (1) were identical to those of nat-
ural dichotomine C (1), as shown in Table 1.

In conclusion, an enantioselective total synthesis of the
1,3-disubstituted b-carboline alkaloid (S)-(�)-dichotomine C
(1) and its enantiomer (�)-(1) was achieved in an eight-step
sequence (17% overall yield from 6 to (�)-1) by a mi-
crowave-assisted thermal electrocyclic reaction of the 1-aza-
hexatriene system involving the indole 2,3-bond, followed by
the Sharpless dihydroxylation. Further studies in this series
are in progress.
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