The Enantioselective Total Synthesis of a β -Carboline Alkaloid, (S)-(-)-Dichotomine C

Kana Omura, Tominari Choshi, Shiroh Watanabe, Yuhsuke Satoh, Junko Nobuhiro, and Satoshi Hibino*

Graduate School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University; Fukuyama, Hiroshima 729–0292, Japan. Received October 31, 2007; accepted November 27, 2007; published online November 28, 2007

The first enantioselective synthesis of a β -carboline alkaloid, dichotomine C, possessing antiallergic effects, was achieved by constructing a β -carboline framework based on the microwaveassisted thermal electrocyclic reaction of a 1-azahexatriene system, followed by the Sharpless asymmetric dihydroxylation.

Key words (S)-(-)-dichotomine C; first synthesis; enantioselective synthesis; aza-electrocyclic reaction; microwave

Six new β -carboline alkaloids, dichotomines A, B, C and D, and dichotomides I and II, possessing antiallergic effects, were isolated from *Stellaria dichotoma* by Yoshikawa and co-workers in 2004 (Fig. 1).¹⁾ The structures of the new compounds were determined by spectroscopic and chemical analyses. The absolute configuration of the C14-position in dichotomines A—D were determined to be the *S*-form using

the modified Mosher's method. Furthermore, examination of the antiallergic effects of the isolated compounds on the release of the β -hexosaminidase in RBL-2H3 cells indicated that dichotomine C had inhibitory activity.

In the course of our studies, we developed a synthesis of biologically active condensed heterocyclic compounds, including natural products, based on a thermal electrocyclic reaction²⁻⁴⁾ of either hexatriene⁵⁻⁷⁾ or azahexatriene^{5,6,8)} systems incorporating a principal aromatic or heteroaromatic moiety. Here, we describe the first total synthesis of dichotomine C (1) by applying pyrido-annelation and the Sharpless asymmetric dihydroxylation. In a retro-synthetic analysis (Chart 1), we speculated that dichotomine C (1) could be derived from 1-chloro- β -carboline 3 through asymmetric dihydroxylation of 1-ethenyl- β -carboline 2. We also speculated that alkyl β -carboline-3-carboxylate 4 could be obtained by a thermal electrocyclic reaction of 3-alkenylindole-2-carbaldehyde oxime 5 as an application of the synthesis of the β -carboline framework using the 1-azahexatriene system.

The required β -carboline **4** was prepared in three steps starting from *N*-methoxymethyl(MOM)-3-iodoindole-2-carbaldehyde⁹⁾ (**6**) (Chart 2). The Heck reaction¹⁰⁾ between the aldehyde **6** and methyl acrylate in the presence of Pd(OAc)₂ in dimethylformamide gave the 3-alkenylindole-2-carbaldehyde **7** (85%). Subsequent treatment of the alkenylindole **7** with hydroxylamine produced the oxime **5** (75%) as the 1azahexatriene system, which was subjected to a microwaveassisted thermal electrocyclic reaction in 1,2-dichlorobenzene to yield methyl β -carboline-3-carboxylate **4** (94%).

Table 1. Physical and Spectroscopic Data of Dichotomine C (1)¹⁵⁾

	Natural product $(1)^{a}$	Synthetic dichotomine C^{b} (+)-1 from AD-mix- α	Synthetic dichotomine C^{b} (-)-1 from AD-mix- β
¹ H-NMR (pyridine- <i>d</i> ₅)	3.97 (3H, s)	3.96 (3H, s)	3.96 (3H, s)
	4.61 (2H, m)	4.55—4.72 (2H, m)	4.54—4.71 (2H, m)
	5.94 (1H, m)	5.90—5.96 (1H, m)	5.91—5.94 (1H, m)
	7.39 (1H, m)	7.36—7.43 (1H, m)	7.37—7.42 (1H, m)
	7.60 (1H, m)	7.56—7.63 (1H, m)	7.56—7.63 (1H, m)
	7.75 (1H, d, $J=7.3$ Hz)	7.74 (1H, d, J = 7.3 Hz)	7.72 (1H, d, $J=7.3$ Hz)
	8.34 (1H, d, J=7.3 Hz)	8.35 (1H, d, J=7.3 Hz)	8.35 (1H, d, J=7.3 Hz)
	9.09 (1H, s)	9.10 (1H, s)	9.12 (1H, s)
	12.60 (1H, br s)	12.64 (1H, br s)	12.62 (1H, br s)
MS m/z	286	286	286
mp °C	_	200—202	196—198
$IR(cm^{-1})$	3300, 1723	3267, 1720	3345, 1716
$[\alpha]_{\rm D}^{27}$	-16.6° (<i>c</i> =0.50, MeOH)	$+11.9^{\circ}$ (c=0.50, MeOH)	-17.9° (<i>c</i> =0.02, MeOH)

a) 500 MHz, b) 300 MHz.

Chart 2

The key compound 2 was synthesized from the N-MOM- β -carboline 4 in four steps. Namely, treatment of 4 with *m*chloroperbenzoic acid (mCPBA) followed by chlorination with oxalyl chloride¹¹⁾ in CH₂Cl₂ yielded the N-MOM-1chloro- β -carboline 9 (79% from 4). Cleavage of the MOM group of 9 with trifluoromethanesulfonic acid in the presence of methanol and trimethyl orthformate in nitromethane¹²⁾ afforded the 1-chloro- β -carboline 10 (99%). The key compound 2 was synthesized in 86% yield from 10 and vinyl tributyltin in the presence of PdCl₂(PPh₃)₂ in dimethylformamide by the Stille reaction. Finally, asymmetric dihydroxylation of the 1-ethenyl- β -carboline 2 with AD-mix- α and - β was examined. Contrary to the Sharpless rule,¹³⁾ (-)-di-chotomine C (-)-(1) (43%, $[\alpha]_D^{27} - 17.9^\circ$, c=0.02 in MeOH, 99.8%ee¹⁴) and its enantiomer (+)-(1) (66%, $[\alpha]_D^{27} + 11.9^\circ$, c=0.5 in MeOH, 80%ee¹⁴) were obtained by AD-mix- β and AD-mix- α , respectively. The physical and spectroscopic data of synthetic dichotomine C (1) were identical to those of natural dichotomine C (1), as shown in Table 1.

In conclusion, an enantioselective total synthesis of the 1,3-disubstituted β -carboline alkaloid (S)-(-)-dichotomine C (1) and its enantiomer (+)-(1) was achieved in an eight-step sequence (17% overall yield from 6 to (-)-1) by a microwave-assisted thermal electrocyclic reaction of the 1-aza-hexatriene system involving the indole 2,3-bond, followed by the Sharpless dihydroxylation. Further studies in this series are in progress.

Acknowledgement We wish to thank Professor Masayuki Yoshikawa, Kyoto Pharmaceutical University, for providing valuable information. This work was supported in part by Grants-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science, and Technology in Japan.

References and Notes

1) Sun B., Morikawa T., Matsuda H., Tewtrakul S., Wu L. J., Harima S.,

Yoshikawa M., J. Nat. Prod., 67, 1464-1469, (2004).

- Woodward R. B., Hoffmann R., "The Conservation of Orbital Symmetry," Chap. 5, Verlag Chemie, Weinheim, 1970.
- Marvel E. N., "Thermal Electrocyclic Reactions," Chap. 2, Academic Press, New York, 1980.
- Okamura W. H., de Lera A. R., "Comprehensive Organic Synthesis," Vol. 5, ed. by Trost B. M., Fleming I., Paquette L. A., Pergamon Press, New York, 1991, pp. 699—750.
- Hibino S., Sugino E., "Advances in Nitrogen Heterocycles," Vol. 5, ed. by Moody C. J., JAI Press, Greenwich, CT, 1995, pp. 699–750.
- 6) Choshi T., Yakugaku Zasshi, 121, 487-495 (2001).
- Choshi T., Uchida Y., Kubota Y., Nobuhiro J., Takeshita M., Hatano T., Hibino S., *Chem. Pharm. Bull.*, 55, 1060–1064 (2007) and related references cited therein.
- Kumemura T., Choshi T., Yukawa J., Hirose A., Nobuhiro J., Hibino S., *Heterocycles*, 66, 87–90 (2005) and related references cited therein.
- Choshi T., Sada T., Fujimoto H., Nagayama C., Sugino E., Hibino S., J. Org. Chem., 62, 2535—2543 (1997).
- 10) Heck R. F., Org. Reactions, 27, 345 (1982).
- Yan H., Kerns J. K., Jin Q., Zhu C., Barnette M. S., Callahan J. F., Hay D. W. P., Jolivette L. J., *Synth. Commun.*, 35, 3105–3112 (2005).
- Kuwada T., Fukui M., Hirayama M., Nobuhiro J., Choshi T., Hibino S., *Heterocycles*, 58, 325–332 (2002).
- 13) Sharpless K. B., Amberg W., Bennani Y. L., Crispino G. A., Hartung J., Jeong K. S., Kwong H. L., Morikawa K., Wang Z. M., Xu D., Zhang X. L., *J. Org. Chem.*, **57**, 2768—2771 (1992).
- 14) The enantiomeric excess of the synthetic (S)-(-)-dichotomine C (1) and its enantiomer (+)-(1) were determined by the ¹H-NMR ratio of their (R)-MaNP esters, which was synthesized by esterification of the C15-primary hydroxy group in dichotomine C (1) with pivaloyl chloride, followed by treatment of the C14-secondary hydroxy group with (R)-2-methoxy-2-(1-naphthyl)propionic acid (MaNP acid) in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine.
- 15) Although DMSO-d₆ as the measurement solvent for the ¹H-NMR spectrum of natural (-)-dichotomine C (1) was described in ref. 1, the ¹H-NMR spectrum data of synthetic (-)-1 by DMSO-d₆ were not identical with those of natural (-)-1: ¹H-NMR (300 MHz, DMSO-d₆) δ: 3.77-3.87 (2H, m), 3.89 (3H, s), 4.83 (1H, t, J=5.9 Hz), 5.04-5.12 (1H, m), 5.91 (1H, d, J=4.4 Hz), 7.27 (1H, t, J=7.3 Hz), 7.56 (1H, t, J=7.3 Hz), 7.72-7.76 (1H, m), 8.35 (1H, d, J=7.3 Hz), 8.82 (1H, s), 11.61 (1H, s). The ¹H-NMR spectrum of synthetic (-)-1 was measured again in pyridine d₆ by the corrected information from Professor M. Yoshikawa.