Two Labdane Diterpene and Megastigmane Glycosides from *Aquilegia* hybrida

Hitoshi Yoshimitsu,*,a Makiko Nishida, b and Toshihiro Nohara

^a Faculty of Pharmaceutical Sciences, Sojo University; 4–22–1 Ikeda, Kumamoto 862–0082, Japan: and ^b Faculty of Home Economics, Kyushu Women's University; 1–1 Jiyugaoka, Yahatanishi-ku, Kitakyushu 807–8586, Japan. Received February 5, 2008; accepted March 19, 2008; published online April 21, 2008

Two new labdane diterpene glycosides, named aquosides A and B, and a new megastigmane glycoside, named aquoside C, have been isolated from the air-dried aerial parts of *Aquilegia hybrida* together with three known compounds comprising a phenolic glycoside and two flavone C-glycosides. Their structures were determined on the basis of spectroscopic data and chemical evidence.

Key words Aquilegia hybrida; labdane diterpene glycoside; megastigmane glycoside; aquoside; Ranunculaceae

Aquilegia hybrida hort. (Japanese name, seiyouodamaki) is cultivated as a garden plant. Previously, we have reported on the isolation and structural elucidation of ten new cycloartane glycosides, aquilegiosides A and B from *A. flabellata* SIEB. *et* ZUCC. var. *flabellata*¹⁾ (Japanese name, odamaki) and aquilegiosides A, B, C, D, E, F, G, H, I, and J from *A. vul-garis* L.^{2,3)} (Japanese name, seiyouodamaki). A search of the literature showed that no chemical investigation has been done on *A. hybrida*.

During our investigation on the chemical constituents in the Ranunculaceous plant,^{4,5)} we have now isolated two new labdane diterpene glycosides, aquosides A (1) and B (2), and a new megastigmane glycoside, aquoside C (3), from the airdried aerial parts of *A. hybrida* together with three known compounds (4–6). In this paper, we describe the isolation and stereostructure elucidation based on 2D NMR spectroscopic analysis and hydrolysis.

Results and Discussion

The methanolic extract of the air-dried aerial parts of *A*. *hybrida* was partitioned into an ethyl acetate–water solvent system. The water-soluble portion was subjected to MCI gel CHP20P and silica gel column chromatographies and finally HPLC to give aquosides A (1), B (2), C (3), and thalicto-side⁶ (4); the insoluble portion was subjected to silica gel column chromatography to give isocytisoside⁷ (5) and isovitexin⁸ (6).

Aquoside A (1) was obtained as an amorphous powder. The molecular formula of 1, $C_{25}H_{44}O_8$, was established by

 $H_{2} = \begin{pmatrix} 3 & 0 & 0 & 0 \\ H_{2} & 0 & 0 & 0 \\ H_{2} & 0 & 0 & 0 \\ H_{3} & H_{1} & R_{2} & 0 \\ H_{3} & R_{1} & R_{2} & 0 \\ R_{1} & R_{2} & R_{1} & 0 \\ R_{2} & R_{1} & R_{2} & R_{2} & 0 \\ R_{1} & R_{2} & R_{2} & R_{2} & R_{2} \\ R_{2} & R_{2} & R_{2} & R_{2} & R_{2} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_$

the high-resolution (HR)-ESI-MS [m/z 495.2972, (M+ Na)⁺]. The ¹H-NMR (pyridine- d_5 , Table 1) spectrum contained signals for four quaternary methyl protons at δ 0.86, 0.94, 1.37, and 1.46, an anomeric proton at δ 4.87 (d, J= 6.3 Hz), and three olefinic protons at δ 5.09 (1H, dd, J= 1.7, 10.9 Hz), 5.54 (1H, dd, J=1.7, 17.2 Hz), and 6.25 (1H, dd, J=10.9, 17.2 Hz). Three signals at δ 5.09, 5.54, and 6.25 were due to a vinyl group. 1 was hydrolyzed with 2 M hydrochloric acid to afford L-arabinopyranose, the structure of which was confirmed by the ¹H-NMR coupling pattern and optical rotation using chiral detection in the HPLC analysis. The aglycon decomposed under an acid condition. The ¹³C-NMR (pyridine-d₅, Table 1) spectrum gave twenty carbon signals due to the aglycon moiety together with an L-arabinopyranosyl unit (δ 97.6, 72.8, 74.5, 69.0, 65.7). The structural assignment was achieved by the ¹H–¹H correlation spectroscopy (COSY), heteronuclear multiple quantum coherence (HMQC), and heteronuclear multiple bond connectivity (HMBC) experiments. The ¹H–¹H COSY and HMBC experiments led us to the plane structure of 1 as labda-14en-3,8,13,18-tetraol 8-O-L-arabinopyranoside (Fig. 1). The anomeric center of the L-arabinopyranosyl unit was determined to be α -configuration from the ${}^{3}J_{\rm H1-H2}$ value. The presence of an α -L-arabinopyranosyl (⁴C₁) unit was shown by comparison of the carbon chemical shifts for monosaccharide. The relative stereostructure of the aglycon moiety was characterized by a nuclear Overhauser and exchange spectroscopy (NOESY) experiment, which showed nuclear Overhauser effect (NOE) correlations between the following proton pairs (3 α -H and 5 α -H; 5 α -H and 9 α -H; 5 α -H and 18- H_3 ; 11-H and 17- H_3 ; 17- H_3 and 20- H_3 ; 19- H_3 and 20- H_3) (Fig. 2). Meanwhile, the B ring and the side chain of the aglycon moiety were superimposable on that of sclareol⁹⁾ (13*S*-type) or 13-*epi*-sclareol⁹⁾ (13*R*-type). A comparative study of the ¹³C-NMR (CDCl₃, Table 1) spectrum of **1** with that of sclareol (13S-type) revealed identical signals due to C-13, C-14, C-15, and C-16 on the side chain. Therefore, the absolute configuration at the 13-position was assigned as S. The structure of 1 was elucidated except for the absolute configurations at the 3-, 5-, and 8-10- positions.

Aquoside B (2) was obtained as an amorphous powder. The HR-ESI-MS of 2 showed a peak at m/z 657.3490 corresponding to the molecular formula $[C_{31}H_{54}O_{13}Na]^+$ (Calcd for 657.3462). The ¹H-NMR spectrum (pyridine- d_5 , Table 1)

Isovitexin

(6): OH

Table 1. ¹H- and ¹³C-NMR Chemical Shifts of 1 and 2

	$\delta_{ m H}$			$\delta_{ m C}$		
	1 ^{<i>a</i>)}	1 ^{b)}	2 ^{<i>a</i>)}	1 ^{<i>a</i>)}	$1^{b)}$	2 ^{<i>a</i>)}
1a	1.05 dt (3.5, 13.2)	1.03 m	10.5 dt (3.4, 13.5)	38.5	37.7	38.5
1b	$1.74^{c)}$	1.57^{c}	1.71 ^{c)}			
2a	1.84 m	1.57^{c}	1.89 m	27.5	25.8	25.7
2b	1.89 ^c)	1.57^{c}	2.22 m			
3	4.10 dd (5.2, 11.5)	3.53 dd (8.1, 9.2)	4.25 ^{c)}	73.1	74.3	81.7
4				42.9	41.7	43.5
5	1.55^{c}	1.05 br d (11.5)	1.78 br d (12.0)	48.1	48.2	47.5
6a	1.28^{c}	1.23^{c}	1.29 m	20.4	19.4	20.3
6b	1.20 $1.75^{c)}$	1.20^{-1}	1 82 m	2011		2010
7a	1.89^{c}	1.42^{c}	1.96^{c}	40.0	39.2	40.0
74 7b	$2 11^{c}$	1.87 m	$2 \ 12^{c}$	10.0	57.2	10.0
8	2.11	1.07 III	2.12	81.5	82.1	81.6
9	1 28 ^c)	$1 \ 16^{c}$	1 33 br s	50.0	59.5	59.9
10	1.20	1.10	1.55 01 8	30.8	38.7	30.0
10	1 55 ^c)	$1,22^{c}$	1.56 m	39.0	30.7	39.0 10.7
114	1.33°	1.22	1.50 III 2.02 m	20.0	19.0	19.7
110	1.99 tt (5.3, 12.0)	1.59	2.02 III	16.2	44.2	16.2
12a	1.68 dt (4.6, 12.6)	1.52 m	1.91	46.3	44.3	46.3
126	2.13	1.60°	2.12	72.1	72.1	72.0
13				/3.1	/3.1	/3.2
14	6.25 dd (10.9, 17.2)	5.83 dd (10.9, 17.2)	6.23 dd (10.9, 17.1)	147.5	146.0	147.6
15a	5.09 d (10.9)	4.91 d (10.9)	5.14 d (10.9)	111.0	110.7	111.0
15b	5.54 d (17.2)	5.11 d (17.2)	5.61 d (17.1)			
16	1.46 s	1.17 s	1.49 s	28.4	25.2	28.4
17	1.37 s	1.16 s	1.41 s	22.0	20.9	22.1
18a	3.60 d (10.9)	3.25 d (10.9)	3.66 d (10.7)	67.6	68.9	64.6
18b	4.09 d (10.9)	3.48 d (10.9)	4.35 d (10.7)			
19	0.94 s	0.67 s	0.92 s	12.8	11.3	13.3
20	0.86 s	0.80 s	0.86 s	16.4	15.9	16.6
Ara						
1	4.87 d (6.3)	4.33 d (6.9)	4.89 d (6.4)	97.6	96.1	97.6
2	4.30 dd (6.3, 8.6)	3.41 dd (6.9, 8.6)	4.32 dd (6.4, 8.6)	72.8	71.1	72.9
3	4.17 dd (3.5, 8.6)	3.48 dd (2.9, 8.6)	4.18 dd (3.5, 8.6)	74.5	72.8	74.5
4	4.28 ddd (1.8, 3.5, 4.0)	3.78 ddd (1.7, 2.9, 3.5)	4.30 br s	69.0	67.6	69.0
5a	3.69 dd (1.8, 12.1)	3.42 dd (1.7, 12.6)	3.70 dd (1.8, 12.1)	65.7	64.8	65.7
5b	4.21 dd (4.0, 12.1	3.80 dd (3.5, 12.6)	4.25 ^{c)}			
Gle						
1			5 16 d (8 0)			105.8
2			4 03 dd (8 0 8 6)			75.8
3			4 19 dd (8 6 8 6)			78.7
4			4 24 dd (8 6 8 6)			71.6
5			3 93 ddd (2 3 5 2 8 6)			78.4
5			4.41 dd (5.2, 11.5)			62.8
6h			4.53 dd (2.3, 11.5)			02.0
00			ч.55 uu (2.5, 11.5)			

a) Measured in pyridine-d₅. b) Measured in CDCl₃. c) Overlapped.

Fig. 1. ¹H-¹H COSY and HMBC Correlations of 1

Fig. 2. NOE Correlations of 1

of **2** was identical with that of **1**, with the exception of an additional anomeric proton [δ 5.16 (d, J=8.0 Hz)]. A comparison of the ¹³C-NMR (pyridine- d_5 , Table 1) spectrum of **2** with that of **1** showed the signal due to C-3, which was shifted remarkably downfield by 8.1 ppm, and additional six carbon signals (δ 105.8, 78.7, 78.4, 75.8, 71.6, 62.8). On acid hydrolysis, **2** afforded L-arabinopyranose and D-glucopyranose. The anomeric center of the D-glucopyranosyl unit was determined to be β -configuration from the ${}^{3}J_{\rm H1-H2}$ value. The presence of a β -D-glucopyranosyl (${}^{4}C_{1}$) unit was shown by comparison of the carbon chemical shifts for monosaccharide. The ${}^{1}\rm{H}-{}^{1}\rm{H}$ COSY and HMBC experiments led us to the same plane structure as that of 1 except that the β -D-glucopyranosyl unit linked the hydroxyl group at C-3. The fore-

going evidence indicated that the 8-position of 2 and 1 showed the selfsame absolute configuration, because glycosylation shifts at C-7 (β -C), C-8 (α -C), and C-9 (β' -C) were caused by α -L-arabinopyranose.¹⁰⁾ In a NOESY experiment, NOE due to the aglycon moiety of 2 showed the same correlations as that of 1. This result suggested that the aglycon moiety of 2 had the same absolute configuration as 1 had. Meanwhile, a comparative study of the ¹³C-NMR (pyridine d_5 , Table 1) spectrum of 2 with that of 1 revealed that the 2position (β -C) and 4-position (β' -C) of the former were shifted to a higher field by 1.8 ppm and to a lower field by 0.6 ppm, respectively, to the latter (glycosylation shifts^{11,12}). Consequently, the 3-position of 2 determined *S* configuration. The absolute stereostructure was elucidated to be $3-O-\beta$ -Dglucopyranosyl (3S,5R,8R,9R,10S,13S)-labda-14-en-3,8,13,18tetraol 8-O- α -L-arabinopyranoside.

Aquoside C (3) showed a clustered molecular ion at m/z543.2817 $[C_{25}H_{44}O_{11}Na]^+$ in the HR-ESI-MS. The ¹H-NMR (CD₂OD) spectrum showed three quaternary methyl groups (δ 0.88, 0.99, 2.13), a secondary methyl group [δ 0.92 (d, J=6.9 Hz)], and two anomeric protons [δ 4.26 (d, J=7.5 Hz), 4.73 (d, J=1.7 Hz)]. Acid hydrolysis of 3 gave L-rhamnopyronose and D-glucopyronose, together with several unidentified artificial aglycons. The anomeric configuration of L-rhamonopyranose could not be deduced from the ${}^{3}J_{\rm H1-H2}$ value. However, the ¹³C shifts of the L-rhamonopyranose were superimposable on those of methyl α -L-rhamonopyranoside. Therefore, a terminal α -L-rhamonopyranosyl unit showed ${}^{1}C_{4}$ conformation. The ¹H-¹H COSY and HMBC experiments indicated that the plane structure of 3 was identical with that of sedumoside G¹³ (Fig. 3). However, a comparison of the ¹³C-NMR (CD₃OD) spectrum of 3 with that of sedumoside G revealed different signals on the fringe of the 3-position. Meanwhile, the relative stereostructure of the aglycon moiety was characterized by a NOESY and nuclear Overhauser effect difference spectroscopy (NOEDS) experiment, which showed NOE correlations between the following proton pairs (2 β -H and 11-H₃; 2 α -H and 3 α -H; 3 α -H and 4 α -H; 4a-H and 13-H₃; 5β-H and 11-H₃; 6α-H and 12-H₃; 6α-H and 13-H₃; 7-H and 11-H₃) (Fig. 4). These NOE correlations suggested the configuration of the 3-hydroxyl as β . Consequently, 3 was elucidated to be isosarmentol G 3-O- α -Lrhamnopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside.

The plant of *A. hybrida* has not previously been the subject of phytochemical analysis. In regard to the chemical con-

Fig. 3. ¹H-¹H COSY and HMBC Correlations of 3

Fig. 4. NOE Correlations of 3

stituents of the genus *Aquilegia* plants, ten cycloartan-type triterpene glycosides have been elucidated from *A. flabellate* and *A. vulgaris*. Two labdane-type diterpene glycosides and megastigmane-type glycoside were isolated from the genus *Aquilegia* plants for the first time.

Experimental

General Procedure Optical rotations were taken with a JASCO DIP-1000 automatic digital polarimeter. The NMR spectra were measured with a JEOL ECA 500 NMR spectrometer. Chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. The HR-ESI-MS was recorded with a JEOL JMS-T100LP spectrometer. HPLC was carried out using the TSK gel-120A (7.8 mm i.d.×300 mm) column with a Tosoh CCPM pump, Tosoh RI-8010 detector, and JASCO OR-2090 detector. TLC was performed on pre-coated Kieselgel 60 F₂₅₄ (Merck), and detection was achieved by spraying with 10% H₂SO₄ followed by heating. Column chromatography was carried out on Kieselgel (230—400 mesh, Merck) and MCI gel CHP20P (Mitsubishi Chemical Ind.)

Plant Material The plant seeds defined as those of *Aquilegia hybrida* hort. were provided by Sakata Seed Corp., Kanagawa, Japan. They were cultivated at the Botanical Garden of Kumamoto University.

Extraction and Isolation The air-dried aerial part of Aquilegia hybrida (896 g) was extracted with MeOH at room temperature for one month. The MeOH extract (97 g) was partitioned between ethyl acetate-soluble (11 g), water-soluble (79g), and insoluble (7g) portions. The insoluble portion was subjected to silica gel column chromatography [CHCl₃-MeOH-H₂O (7:3:0.5, v/v/v)] to furnish isocytisoside (5, 4.6 g) and isovitexin (6, 80 mg). The water-soluble portion (79 g) was subjected to MCI gel CHP20P column chromatography [MeOH-H₂O ($10:90\rightarrow 30:70\rightarrow 50:50\rightarrow 70:30$, v/v)→MeOH] to afford four fractions [Fractions 1 (2.8 g), 2 (375 mg), 3 (523 mg), and 4 (1.0 g)]. Fraction 1 (2.8 g) was further separated by silica gel column chromatography [CHCl3-MeOH-H2O (7:3:0.5, v/v/v)], followed by HPLC [MeOH-H₂O (15:85, v/v)] to furnish thalictoside (4, 430 mg). Fraction 2 (375 mg) was further separated by silica gel column chromatography [CHCl₃-MeOH-H₂O (8:2:0.2, v/v/v)], followed by HPLC [MeOH-H₂O (50:50, v/v)] to furnish aquoside C (3, 11 mg). Fraction 3 (523 mg) was further separated by silica gel column chromatography [CHCl₃-MeOH-H₂O (6:4:0.5, v/v/v)], followed by HPLC [MeOH-H₂O (50:50, v/v)] to furnish aquoside B (2, 7 mg). Fraction 4 (1.0 g) was further separated by silica gel column chromatography [CHCl3-MeOH-H2O (8:2:0.2, v/v/v)], followed by HPLC [MeOH-H₂O (50:50, v/v)] to furnish aquoside A (1, 13 mg).

Aquoside A (1): Amorphous powder; $[\alpha]_D = -6.1^{\circ}$ (*c*=0.63, MeOH); HR-ESI-MS *m/z* 495.2972 (M+Na; Calcd for C₂₅H₄₄O₈Na, 495.2934); ¹Hand ¹³C-NMR data (Table 1).

Aquoside B (2): Amorphous powder; $[\alpha]_D = -8.5^{\circ}$ (*c*=0.56, MeOH); HR-ESI-MS *m/z* 657.3490 (M+Na; Calcd for C₃₁H₅₄O₁₃Na, 657.3462); ¹Hand ¹³C-NMR data (Table 1).

Aquoside C (3): Amorphous powder; $[\alpha]_D = -36.8^\circ$ (c=0.55, MeOH); HR-ESI-MS m/z 543.2817 (M+Na; Calcd for $C_{25}H_{44}O_{11}Na$, 543.2781); ¹H-NMR (CD₃OD) δ: 0.65 (1H, ddd, J=2.3, 5.7, 8.6 Hz, 6-H), 0.88 (3H, s, 12-H₃), 0.92 (3H, d, J=6.9 Hz, 13-H₃), 0.99 (3H, s, 11-H₃), 1.12 (1H, ddd, $J=2.9, 11.5, 14.3 \text{ Hz}, 4\beta$ -H), 1.25 (3H, d, $J=6.3 \text{ Hz}, \text{ rha } 6\text{-H}_3$), 1.35 (1H, br dd, J=4.1, 13.7 Hz, 2α-H), 1.38 (1H, m, 7-H), 1.74 (1H, m, 7-H), 1.80 (2H, overlapped, 2β -H, 5β -H), 1.90 (1H, ddd, J=3.1, 5.4, 14.3 Hz, 4α -H), 2.13 (3H, s, 10-H₃), 2.46 (1H, ddd, J=5.8, 10.9, 16.6 Hz, 8-H), 2.62 (1H, ddd, J=5.2, 11.5, 16.6 Hz, 8-H), 3.13 (1H, dd, J=7.5, 9.2 Hz, glc 2-H), 3.25 (1H, dd, J=9.2, 9.2 Hz, glc 4-H), 3.33 (1H, dd, J=9.2, 9.2 Hz, glc 3-H), 3.36 (2H, overlapped, glc 5-H, rha 4-H), 3.58 (1H, dd, J=6.3, 11.5 Hz, glc 6-H), 3.65 (1H, m, rha 5-H), 3.67 (1H, dd, J=3.5, 9.8 Hz, rha 3-H), 3.83 (1H, dd, J=1.7, 3.5 Hz, rha 2-H), 3.93 (1H, m, 3-H), 3.96 (1H, dd, J=1.2, 11.5 Hz, glc 6-H), 4.26 (1H, d, J=7.5 Hz, glc 1-H), 4.73 (1H, d, J=1.7 Hz, rha 1-H). ¹³C-NMR (CD₃OD) δ : 35.5 (1-C), 46.8 (2-C), 76.5 (3-C), 40.8 (4-C), 30.2 (5-C), 54.2 (6-C), 24.2 (7-C), 46.5 (8-C), 212.9 (9-C), 30.0 (10-C), 23.4 (11-C), 32.1 (12-C), 21.3 (13-C), 103.2 (glc 1-C), 75.3 (glc 2-C), 78.3 (glc 3-C), 71.9 (glc 4-C), 76.8 (glc 5-C), 68.5 (glc 6-C), 102.4 (rha 1-C), 72.2 (rha 2-C), 72.4 (rha 3-C), 74.0 (rha 4-C), 69.9 (rha 5-C), 18.2 (rha 6-C).

Sugar Analysis A solution of each compound (1, 2, or 3) (1 mg) in 2 M HCl/dioxane (1:1, 2 ml) was heated at 100 °C for 1 h. The reaction mixture was diluted with H₂O and evaporated to remove dioxane. The solution was neutralized with Amberlite MB-3 and passed through a SEP-PAK C_{18} cartridge to give a sugar fraction. The sugar fraction was concentrated to dryness *in vacuo* to give a residue, which was dissolved in CH₃CN/H₂O (3:1,

250 μl). The sugar fraction was analyzed by HPLC under the following conditions: column, Shodex RS-Pac DC-613 (6.0 mm i.d.×150 mm, Showa Denko, Tokyo, Japan); solvent, CH₃CN/H₂O (3 : 1); flow rate, 1.0 ml/min; column temperature, 70 °C; detection, optical rotation (OR). The $t_{\rm R}$ (min) of the sugars was as follows. 1: L-arabinose 6.2 (+), 2: L-arabinose 6.2 (+), p-glucose 7.4 (+), 3: L-rhamnose 4.7 (-), p-glucose 7.4 (+). [reference: L-rhamnose 4.7 (negative optical rotation: -), L-arabiose 6.2 (positive optical rotation: +)].

References

- Yoshimitsu H., Nishida M., Hashimoto F., Nohara T., *Phytochemistry*, 51, 449–452 (1999).
- Nishida M., Yoshimitsu H., Okawa M., Nohara T., Chem. Pharm. Bull., 51, 683–687 (2003).
- Nishida M., Yoshimitsu H., Okawa M., Nohara T., Chem. Pharm. Bull., 51, 956–959 (2003).
- 4) Yoshimitsu H., Nishida M., Nohara T., Tetrahedron, 57, 10247-

10252 (2001).

- Yoshimitsu H., Nishida M., Nohara T., Chem. Pharm. Bull., 55, 789– 792 (2007).
- 6) Ina H., Iida H., Chem. Pharm. Bull., 34, 726–729 (1986).
- 7) Bylka W., Matlawska I., Acta Pol. Pharm., 54, 331-333 (1997).
- Bavoust D., Massias M., Molho D., Org. Magn. Reson., 13, 218–219 (1980).
- Forester P. G., Ghisalberti E. L., Jefferies O. R., *Phytochemistry*, 24, 2991–2993 (1985).
- 10) Mizutani K., Kasai R., Tanaka O., *Carbohydr. Res.*, **87**, 19–26 (1980).
- Kasai R., Suzuo M., Asakawa J., Tanaka O., *Tetrahedron Lett.*, **1977**, 175–178 (1977).
- 12) Seo S., Tomita Y., Tori K., Yoshimura Y., J. Am. Chem. Soc., 100, 3331-3339 (1978).
- Morikawa T., Zhang Y., Nakamura S., Matsuda H., Muraoka O., Yoshikawa M., Chem. Pharm. Bull., 55, 435–441 (2007).