Studies on the Constituents of Gueldenstaedtia multiflora

Yuki Tsunoda,^a Masafumi Okawa,^b Junei Kinjo,^b Tsuyoshi Ikeda,^a and Toshihiro Nohara*,^c

^a Faculty of Medical & Pharmaceutical Sciences, Kumamoto University; 5–1 Oe-honmachi, Kumamoto 862–0973, Japan: ^b Faculty of Pharmaceutical Sciences, Fukuoka University; 8–19–1 Nanakuma, Johnan-ku, Fukuoka, Fukuoka 814–0180, Japan: and ^c Faculty of Pharmaceutical Sciences, Sojo University; 22–1–4 Ikeda, Kumamoto 860–0082, Japan. Received March 7, 2008; accepted April 23, 2008; published online May 16, 2008

From the whole plants and the roots of *Gueldenstaedtia multiflora*, which has been used in traditional Chinese medicine, five new oleanane glycosides and one lupane glycoside were isolated together with eight known oleanane glycosides and a medicarpin derivative. These structures were determined based on MS and 2D-NMR spectra.

Key words Gueldenstaedtia multiflora; oleanane glycoside; lupane glycoside

In North China and Mongolia, *Gueldenstaedtia multiflora* BGE. (Leguminosae) is used as an internal or external antiphlogistic, analgesics, and antiicterus agent. Only one reference¹⁾ describing the isolation of soyasapogenols B and E, and flavonoids from *G. multiflora* was found. Therefore, since details are required for our systematic search for constituents of leguminous plants to discover new compounds,²⁾ we have started to isolate the constituents in this plant and obtained 15 compounds (GM-1—GM-15) including six new triterpene glycosides from the whole plants and roots.

Results and Discussion

The MeOH extract of the whole plants of G. mulutiflora (1.27 kg) was separated using Diaion HP-20 to give fr. 1 (60% MeOH eluate) and 2 (80% MeOH eluate). The 60% eluate was subjected to HPLC (ODS) to afford GM-11. The 80% MeOH was chromatographed on a Sephadex LH 20 column with 80% MeOH to provide the total isoflavonoid fraction and total saponin fraction, the latter of which was then separated by using MCI gel (60% MeOH-80% MeOH), ODS, and silica gel chromatography to give GM-1-GM-10. The MeOH extract (111.35g) of the roots of this plant (1.5 kg) was passed through Diaion HP-20 (eluted first with water and next MeOH). A part (10g) of the MeOH eluate (43.35 g) was subjected to MCI gel chromatography (eluted successively with 40% MeOH-50% MeOH-60% MeOH-70% MeOH-80% MeOH). The 60% MeOH eluate was further separated with ODS, silica gel and Sephadex LH-20 chromatography to afford GM-3, GM-12, GM-13, and GM-14. The 70% MeOH eluate gave GM-1 and GM-3 upon ODS separation. From the 80% MeOH eluate, GM-1 and GM-15 were obtained by using silica gel separation. GM-1, GM-2, GM-3, GM-4, GM-6, GM-7, GM-12, GM-13, and GM-15 were identified as soyasaponin I, azukisaponin V, comploside II, kudzusaponin SB₁, 22-dehydroazukisaponin V, dehydrosoyasaponin I, medicalpin $3-O-\beta$ -D-glucopyranoside, subproside V, and soyasaponin Eg, respectively, by comparison with the various data including the 13 C-NMR spectral data.^{2—8)}

GM-5 was obtained as an amorphous powder showing $[\alpha]_D + 48.9^{\circ}$ (pyridine) and a peak at m/z 1219 due to $[M-H]^-$ in the negative FAB-MS. The ¹H-NMR spectrum showed five singlet signals at δ 0.86, 0.97, 0.98, 1.12, 1.73 (each 3H, s, 5×*tert*-Me), one exomethylene signal at δ 4.73, 4.86 (each 1H, br s), five sugar-anomeric proton signals at δ

4.89 (1H, d, J=7.3 Hz), 5.14 (1H, d, J=5.5 Hz), 5.67 (1H, s), 5.98 (1H, s), and 6.24 (1H, d, J=7.3 Hz). The sugar mixture of the acid hydrolysate was derived into the corresponding trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine-4*R*-carboxylates, and their absolute configurations were determined using GCL.9) This method was also adopted for the other glycosides. The ¹³C-NMR spectrum exhibited two terminal α -L-rhamnopyranosyl moietties at δ 102.5, 72.1, 72.2, 73.5, 70.3, 18.3, 101.5, 72.3, 73.5, 73.7, 69.8, and 18.3; a 2-O-sugar-substituted α -L-arabinopyranosyl moiety at δ 103.7, 76.0, 73.7, 63.5, and 64.5; a 4-O-sugar-substituted β -D-glucopyranosyl moiety at δ 104.5, 74.9, 76.7, 76.2, 78.6, and 61.2; and a 6-O-sugar-substituted β -D-glucoyranosyl moiety at δ 95.1, 73.7, 78.2, 70.5, 77.7, and 69.2. When these sugar-originating signals were deducted, the remainder was composed of 30 carbon signals due to triterpene sapogenols at δ 13.5, 14.9, 16.4, 16.9, 18.1, 19.4, 21.2, 26.1, 26.3, 30.1, 30.8, 32.2, 34.2, 36.8, 36.9, 38.3, 39.2, 41.1, 42.8, 43.5, 47.4, 47.7, 49.8, 50.9, 57.0, 63.9, 81.0, 110.0, 150.9, and 175.2; and five anomeric-carbon signals at δ 95.1, 101.5, 102.5, 103.7, and 104.5. The HMBC (Fig. 1) between H₃-24 at δ 0.97 and C-23 at δ 63.9, between H₃-30 at δ 1.73 and C-29 at δ 110.0, and between H-18 at δ 1.70 and C-28 at δ 175.2 led to the structural assignment of 23-hydroxybetulic acid.10)

Moreover, in the sugar region, the HMBC between the terminal rhamnosyl H-1 at δ 5.98 and the glucosyl C-4 at δ 76.4, the glucosyl H-1 at δ 4.89 between the inner glucosyl C-6 at δ 69.2, and between the inner glucosyl H-1 at δ 6.16 and the C-28 of the sapogenol at δ 175.2, another terminal rhamnosyl H-1 at δ 5.67 and the arbinosyl C-2 at δ 76.0, and between the arabinosyl H-1 at δ 5.14 and the C-3 of the sapogenol at δ 81.0 were observed. Therefore the structure of GM-5 was represented as 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl 23-hydroxybeturic acid 28-O- α -Lrhamnopyranosyl-(1 \rightarrow 4)-glucopyranosyl-(1 \rightarrow 6)-glucopyranosyl ester.

GM-8 was obtained as an amorphous powder showing $[\alpha]_D - 17.3^\circ$ (pyridine) and a peak at m/z 1121 due to $[M+H]^+$ in the positive FAB-MS. The ¹H-NMR spectrum displayed seven singlet signals at δ 0.70, 0.90, 1.16, 1.26, 1.29, 1.41, and 1.44 (each 3H, s, $6 \times tert$ -Me), characteristic tof an oleanane-type triterpene, a methylpentosyl methyl signal at δ 1.81 (3H, d, J=6.1 Hz), and four sugar-anomeric proton sig-

nals at δ 5.23 (1H, d, J=7.9 Hz), 5.44 (1H, br s), 5.69 (1H, d, J=7.3 Hz), and 6.19 (1H, s). Meanwhile, the ¹³C-NMR signals indicated the occurrence of one β -fabatriosyl moiety [α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-galactopyranosyl-(1 \rightarrow 2)- β -D-glucuronopyranosyl moiety at δ 102.2, 72.1, 72.3, 74.2, 69.3, 18.8, 101.8, 77.3, 76.3, 70.9, 76.3, 61.5, 105.3, 78.1, 76.8, 73.5, 77.6, 172.4] and one terminal β -D-glucopyranosyl moiety at δ 104.8, 76.2, 78.8, 70.1, 78.3, and 62.7. The 30 remaining signals were due to triterpene sapogenols at δ 15.7, 16.8, 18.5, 22.0, 22.5, 23.0, 24.0, 26.2, 26.3, 26.6, 28.2, 31.2, 33.0, 36.1, 36.4, 38.6, 39.4, 40.1, 41.9, 43.9, 44.5, 47.3, 47.8, 56.0, 63.5, 73.5, 91.0, 91.3, 122.7, and 141.6. This sa-

Fig. 1. Key HMBC of GM-5

at C-22 was downshifted to δ 91.3 in comparison with that of soyasapogenol A. Therefore the structure of GM-8 was represented as 3-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-galactopy-ranosyl-(1 \rightarrow 2)- β -D-glucurono-pyranosyl soyasapogenol A 22-*O*- β -D-glucopyranoside.

pogenol moiety was regarded as soyasapogenol A by com-

paring its ¹H- and ¹³C-NMR spectra. The HMBC between glcA H-1 at δ 5.23 and C-3 at δ 91.0, and the chemical shift

GM-9 was obtained as an amorphous powder showing $[\alpha]_{\rm D}$ –13.5° (pyridine) and a peak at m/z 1107 due to [M+ H]⁺ in the positive FAB-MS. The ¹H-NMR spectrum showed six singlet signals at δ 0.69, 0.93, 2×1.34, 1.38, and 1.42 (each 3H, s, $6 \times tert$ -Me); an olefinic proton at δ 5.32 (1H, brs); methylpentosyl methyl signals at δ 1.78 (3H, d, J= 6.1 Hz), four sugar-anomeric proton signals at δ 4.85 (1H, d, J=7.3 Hz), 4.95 (1H, d, J=7.1 Hz), 5.62 (1H, d, J=7.3 Hz), and 6.12 (1H, s). The ¹³C-NMR spectrum displayed 30 signals due to triterpene sapogenols at δ 15.7, 16.8, 17.3, 18.5, 22.9, 23.0, 24.1, 26.5, 26.5, 26.7, 27.6, 33.0, 36.1, 38.7, 39.2, 40.2, 40.8, 41.3, 41.8, 43.5, 43.9, 47.7, 56.1, 63.4, 69.6, 70.3, 91.3, 92.8, 122.5, and 144.5, which suggested an oleanene skeleton possessing two hydroxymethyl groups and three secondary hydroxyl groups, reminiscent of kudzusapogenol A.^{11,12)} A comparative study of its ¹H- and ¹³C-NMR data with those of kudzusaponin $A3^{11}$ previously obtained from Puerariae Radix indicated both to be almost identical except for the occurrence of an α -L-arabinopyranosyl moiety in GM-9. The arabinopyranosyl anomeric proton signal at δ 4.85 (1H, d, J=7.3 Hz) correlated with the C-22 at δ 92.8 of the sapogenol in the HMBC spectrum. Therefore this structure could be represented as 3-O- α -L-rhamnopyranosyl- β -D-

Table 1. ¹³C-NMR Data for Sapogenols of GM-1—11 and GM-13—15 (in pyridine- d_5)

	GM-1	GM-2	GM-3	GM-4	GM-5	GM-6	GM-7	GM-8	GM-9	GM-10	GM-11	GM-13	GM-14	GM-15
C-1	38.7	38.7	38.7	38.5	39.2	38.6	38.6	38.6	38.7	39.0	39.5	38.5	39.4	38.6
2	26.3	26.3	26.1	25.0	26.1	26.6	26.6	26.6	26.5	26.5	26.8	26.2	26.5	26.1
3	91.3	91.3	91.3	90.8	81.0	91.7	91.0	91.0	91.3	90.5	90.3	90.9	90.1	90.8
4	43.9	43.9	43.9	43.6	43.5	43.8	43.9	43.9	43.9	43.5	44.0	43.6	43.6	43.7
5	56.3	56.3	56.2	55.9	47.7	56.3	56.0	56.0	56.1	55.6	56.0	55.9	55.8	56.0
6	18.5	18.5	18.5	18.3	18.1	18.6	18.5	18.5	18.5	17.7	18.0	18.2	17.8	18.3
7	33.3	33.3	33.3	33.1	34.2	33.1	33.0	33.0	33.0	32.8	33.4	33.1	32.9	33.1
8	39.9	39.9	39.8	39.5	42.8	39.9	39.8	40.1	40.2	43.8	43.8	39.5	43.8	39.7
9	47.8	47.8	47.8	47.5	50.9	48.0	47.9	47.8	47.7	61.5	61.8	47.5	62.1	47.6
10	36.4	36.4	36.4	36.2	36.9	36.5	36.4	36.1	36.1	36.5	37.0	36.1	36.7	36.2
11	24.0	24.0	24.0	23.7	21.2	24.0	24.0	24.0	24.1	199.8	199.3	23.7	199.8	23.8
12	122.4	122.4	122.5	122.3	26.3	124.0	123.6	122.7	122.5	128.0	128.6	122.7	128.4	122.3
13	144.7	144.7	144.5	144.2	38.3	141.9	141.6	141.6	144.5	169.8	169.3	144.1	169.6	144.5
14	42.4	42.4	42.3	42.0	41.1	42.1	42.0	41.9	41.8	44.5	45.3	42.0	45.7	42.2
15	26.5	26.5	26.6	26.3	30.1	25.3	25.4	26.3	26.5	26.7	26.4	26.2	26.5	26.2
16	28.8	28.8	28.6	28.3	32.2	27.3	27.3	28.2	27.6	27.3	27.3	28.3	27.9	28.6
17	37.9	37.9	37.4	37.1	57.0	47.8	47.7	39.4	39.2	37.0	37.9	38.5	37.3	47.4
18	45.5	45.5	45.9	45.6	49.8	47.7	47.6	44.5	43.5	45.2	45.3	45.3	45.4	47.6
19	46.8	46.8	46.6	46.3	47.4	46.8	46.6	47.3	40.8	46.7	45.1	42.0	45.5	46.6
20	30.8	30.8	30.5	30.2	150.9	34.1	34.0	36.4	41.3	30.2	30.7	36.1	36.5	33.9
21	42.0	42.0	37.5	36.2	30.8	51.0	50.8	73.5	69.6	35.1	37.3	38.5	34.8	50.7
22	75.6	75.6	82.7	82.4	36.8	215.5	214.9	91.3	92.8	78.7	81.4	75.7	78.9	216.5
23	22.9	22.9	22.9	22.6	63.9	22.9	23.0	23.0	23.0	22.3	22.8	22.7	22.6	22.7
24	63.3	63.3	63.4	63.1	13.5	63.5	63.5	63.5	63.4	63.0	63.3	63.2	63.2	63.2
25	15.7	15.7	15.8	15.5	16.9	15.6	15.8	15.7	15.7	16.4	16.8	15.6	16.6	15.6
26	17.0	17.0	17.0	16.7	16.4	16.8	15.8	16.8	16.8	18.3	18.7	16.7	18.5	16.8
27	25.5	25.5	25.3	25.1	14.9	25.3	25.3	26.2	26.7	23.0	22.9	26.2	22.6	25.3
28	28.7	28.7	28.7	28.4	175.2	21.0	20.9	22.5	22.9	21.7	21.7	20.8	21.1	20.7
29	32.9	32.9	32.4	32.1	110.0	31.9	31.8	22.0	70.3	32.5	32.4	28.3	33.0	31.6
30	20.9	20.9	21.0	20.8	19.4	25.3	25.4	31.2	17.3	27.0	28.3	77.7	28.7	25.1

galactopyranosyl- $(1 \rightarrow 2)$ - β -D-glucuronopyranosyl kudzusapogenol A 22-O- α -L-arabinopyranoside.

GM-10 was isolated as an amorphous powder showing $[\alpha]_{\rm D}$ +4.5° (pyridine) and a peak at m/z 955 due to [M-H]⁻ in the negative FAB-MS. The ¹H-NMR spectrum showed seven singlet signals at δ 0.86, 0.96, 0.97, 1.09, 1.12, 1.39, and 1.41 (each 3H, d, s, $7 \times tert$ -Me), one methylpentosyl methyl signal at δ 1.70 (3H, d, J=6.1 Hz); three sugaranometic proton signals at δ 4.91 (1H, d, J=7.9 Hz), 5.34 (1H, s), and 5.51 (1H, d, J=7.9 Hz); and one olefinic proton at δ 5.72 (1H, s). On the other hand, the ¹³C-NMR spectrum exhibited 30 signals due to triterpene sapogenols at δ 16.4, 17.7, 18.3, 21.7, 22.3, 23.0, 26.5, 26.7, 27.0, 27.3, 30.2, 32.5, 32.8, 35.1, 36.5, 37.0, 39.0, 43.5, 43.8, 44.5, 45.2, 46.7, 55.6, 61.5, 63.0, 78.7, 90.5, 128.0, 169.8, and 199.8. The above olefinic proton correlated with a carbonyl carbon at δ 199.8, a quaternary sp^2 carbon at δ 169.8, a quaternary carbon at δ 44.5, and a methine carbon at δ 36.5. Taking this HMBC into consideration, it was revealed that the location of this olefinic proton was restricted to C-12, the carbonyl group located at C-11, and the double bond lied between C-12 and C-13 on the oleanane slkeleton. Regarding to the sugar moieties, three anomeric-carbon signals were observed at δ 97.6, 104.0, and 104.3, and the terminal galactosyl anomeric proton at δ 5.51

correlated with the C-2 of the inner glucuronic acid at δ 80.7, the glucuronosyl anomeric proton at δ 4.91 correlated with the C-3 of the sapogenol at δ 90.5, and the terminal rhamnosyl anomeric proton at δ 5.34 correlated with the C-22 of the sapogenol at δ 78.7 in the HMBC. The HMBC also revealed that C-22 was hydroxylated, and therefore this sapogenol was characterized as complogenin,⁸⁾ which is a characteristic sapogenol similar to glycyrrhetinic acid because it carries an α,β -unsaturated carbonyl system on the C-ring. Consequently the structure of GM-10 was characterized as 3- $O-\beta$ -D-galactopyranosyl-(1 \rightarrow 2)- β -D-glucuronopyranosyl complogenin 22- $O-\alpha$ -L-rhamnopyranoside.

GM-11 was obtained as an amorphous powder showing $[\alpha]_D + 13.2^\circ$ (pyridine) and a peak at m/z 1105 $[M+H]^+$ in the positive FAB-MS. The ¹H-NMR spectrum showed seven singlet signals at δ 0.95, 1.03 1.08, 1.15, 1.17, 1.37, and 1.44; an olefinic proton at δ 5.69 (1H, s); and four sugaranomeric proton signals at δ 4.87 (1H, d, J=7.6 Hz), 5.09 (1H, d, J=7.7 Hz), 5.22 (1H, d, J=7.7 Hz), and 5.55 (1H, d, J=7.0 Hz). On the other hand, the ¹³C-NMR spectrum exhibited 30 signals due to triterpene sapogenols at δ 16.8, 18.0, 18.7, 21.7, 22.8, 22.9, 26.4, 27.3, 28.3, 30.7, 32.4, 33.4, 37.0, 32.4, 33.4, 37.0, 37.3, 37.9, 39.5, 43.8, 44.0, 45.1, 45.3, 56.0, 61.8, 63.3, 81.4, 90.3, 128.6, 169.3, and 199.3, which were

identified with those of complogenin. The sugar moieties displayed four anomeric-carbon signals at δ 102.6, 102.8, 105.0, and 106.5. The HMBC suggested that the terminal xy-losyl anomeric proton at δ 4.87 (1H, d, J=7.6 Hz) correlated to the C-22 of the sapogenol at δ 81.4, the terminal glucosyl anomeric proton signal at δ 5.55 (1H, d, J=7.0 Hz) correlated with the C-2 of the galactosyl moiety at δ 83.9, and this galactosyl anomeric proton at δ 5.22 (1H, d, J=7.7 Hz) correlated with the C-2 of glucuronosyl moiety at δ 80.3. Moreover, the glucuronosyl anomeric proton at δ 5.09 (1H, d, J=7.7 Hz) correlated with the C-3 of the sapogenol at δ 90.3. Therefore this structure could be represented as 3-*O*- β -D-glucopyranosyl-(1 \rightarrow 2)- α -D-galactopyranosyl-(1 \rightarrow 2)- β -D-glucuronopyranosyl complogenin 22-*O*- β -D-xylopyranoside.

GM-14 was obtained as an amorphous powder showing $[\alpha]_{\rm D}$ +21.0° (pyridine) and a peak at m/z 925 [M+H]⁻ in the negative ESI-MS. The ¹H-NMR spectrum showed seven singlet signals at δ 0.95, 1.03, 1.09, 1.13, 1.16, 1.35, and 1.37 (each 3H, s, *tert*-Me); a methylpentosyl methyl signal at δ 1.70 (3H, d, J=5.5 Hz); one olefinic proton at δ 5.76 (1H, s); and three sugar-anomeric signals at δ 4.82 (1H, d, J=7.9 Hz), 5.13 (1H, d, J=7.7 Hz), and 5.37 (1H, s). On the other hand, the ¹³C-NMR spectrum exhibited 30 signals due to complogenin at δ 16.6, 17.8, 18.5, 21.1, 22.6, 22.6, 26.5, 26.5, 27.9, 28.7, 32.9, 33.0, 34.8, 36.5, 36.7, 37.3, 39.4, 43.6, 43.8, 45.4, 45.5, 45.7, 55.8, 62.1, 63.2, 78.9, 90.1, 128.4, 169.6, and 199.8, and three anomeric-carbon signals at δ 98.0, 104.6, and 104.8. The ¹³C-NMR data also suggested the presence of one terminal rhamnopyranosyl and one terminal xylopyranosyl moiety. The rhamnosyl anomeric proton at δ 5.37 (1H, s) correlated to the C-22 of the sapogenol at δ 78.9 in the HMBC. The terminal xylosyl anomeric proton signal at δ 4.82 (1H, d, J=7.9 Hz) correlated with the C-2 of the glucuronosyl moiety at δ 78.4, moreover, this glucuronosyl anomeric proton at δ 5.13 (1H, d, J=7.7 Hz) correlated with the C-3 of the sapogenol moiety at δ 90.1. Therefore this structure was characterized as 3-O- β -D-xylopyranosyl- $(1\rightarrow 2)$ - β -D-glucuronopyranosyl complogenin 22-O- α -Lrhamnopyranoside.

Here, we isolated one lupane-type triterpene glycoside and 13 oleanane-type triterpene glycosides from the whole plants and the roots of *G. multiflora*, among which the six triterpene glycosides GM-5, GM-8, GM-9, GM-10, GM-11, and GM-14 are regarded as new. The glycosides GM-10, GM-11, and GM-14 are rare naturally occurring triterpene glycosides of complogenin. These oleanane glycosides are expected to exhibit antiinflammatory activity.

Experimental

The optical rotations were measured with a JASCO DIP-1000 (l=0.5) automatic digital polarimeter. ¹H- and ¹³C-NMR spectra were recorded on JEOL- α -500 and JMX-GX 400 NMR spectrometers, and chemical shifts are given on a δ (ppm) scale with tetramethylsilane as an internal standard. The FAB-MS were measured with a JEOL JMS-DX303HF spectrometer and recorded in a glycerol matrix containing NaI. HR FAB-MS were measured with a JEOL JMS to LJMS the JMS T-100LP spectrometer. TLC was performed on silica gel plates (Kieselgel 60 F254, Merck) and RP C₁₈ silica gel plates (Merck). The spots on TLC were visualized under UV light (254/366 nm) and spraying with 10% H₂SO₄, followed by heating. HPLC was carried out using a pL-6200 ump (Hitachi), L-4000 UV detector (Hitachi), and L-5020 column heater: L-5020 (Hitachi). The HPLC conditions for the preparative experiment were as follows: column, Mightysil RP-18 GP (5 mm, 250—4.6 mm); and solvent, 30% CH₃CN. Column chromatography was carried out on Diaion HP-20, MCI gel CHP 20P (Mitsubishi Chemical Industries), Sephadex

LH-20 (Pharmacia), Bondapak ODS (Waster), and silica gel 60 (spherical, 40-100 mm, and 230-400 mesh ASTM, Kanto Chemical Co., Inc.).

Extraction and Isolation The MeOH extract (142.8 g) of the whole plants (1.27 kg) of G. multiflora was separated on a Diaion HP-20 column to give fra. 1 (60% MeOH eluate) and 2 (80% MeOH eluate). The 60% eluate was subjected to HPLC (ODS) to afford GM-11 (17 mg). The 80% MeOH eluate was chromatographed on a Sephadex LH 20 column with 80% MeOH to provide the total isoflavonoid fraction and total saponin fraction, the latter of which was then separated by using MCI gel (60% MeOH-80% MeOH) ODS, and silica gel to give GM-1 (2 mg), GM-2 (5 mg), GM-3 (20 mg), GM-4 (26 mg), GM-5 (108 mg), GM-6 (9 mg), GM-7 (5 mg), GM-8 (17 mg), GM-9 (7 mg), and GM-10 (5 mg). On the other hand, the MeOH extract (111.35 g) of the roots of this plant (1.5 kg) was passed through a Diaion HP-20 column (elutted first with water and next MeOH). A part (10g) of the MeOH eluate (43.35 g) was subjected to MCI gel (eluted successively with 40% MeOH-50% MeOH-60% MeOH-70% MeOH-80% MeOH). The 60% MeOH eluate was further separated with ODS, silica gel, and Sephadex LH-20 chromatography to afford GM-3 (3.8 mg), GM-12 (13.8 mg), GM-13 (64.4 mg), and GM-14 (9.5 mg). The 70% MeOH eluate gave GM-1 (6 mg) and GM-3 (18.7 mg) upon ODS separation. From the 80% MeOH eluate, GM-1 (44.4 mg) and GM-15 (69.4 mg) were obtained after silica gel separation

GM-1 (Soyasaponin I) An amorphous powder, $[\alpha]_D = -16.7^\circ$ (c=0.1 MeOH). Negative FAB-MS: m/z 941 [M–H]⁻, 795 [M–H–rha]⁻, 633 [M–H–rha–gal]⁻. ¹H-NMR (pyridine- d_3) δ : 0.71, 0.95, 1.00, 1.22, 2× 1.28, 1.45 (each 3H, s, *tert*-Me), 1.79 (3H, d, J=5.5 Hz, rha H₃-6), 4.96 (1H, d, J=6.7 Hz, glc A H-1), 5.31 (1H, s, H-12), 5.71 (1H, d, J=7.3 Hz, gal H-1), 6.35 (1H, s, rha H-1). ¹³C-NMR (in pyridine- d_5) δ : glc A part, 105.2 (C-1), 78.1 (C-2), 76.3 (C-3), 73.5 (C-4), 77.7 (C-5), 172.8 (C-6), gal part; 101.7 (C-1), 76.8 (C-2), 76.7 (C-3), 70.9 (C-4), 77.5 (C-5), 61.5 (C-6), rha part; 102.1 (C-1), 72.1 (C-2), 72.3 (C-3), 74.1 (C-4), 69.2 (C-5), 18.7 (C-6).

GM-2 (Azukisaponin V) An amorphous powder, $[\alpha]_D - 17.2^{\circ}$ (c=0.1, MeOH). Negative FAB-MS: m/z 941 [M+H]⁻, 794 [M-H-rha]⁻, 633 [M-H-rha-glc]⁻. ¹H-NMR (pyridine- d_5) δ : 0.87, 089, 0.99, 1.07, 1.12, 1.17, 1.30 (each 3H, s, *tert*-Me), 1.70 (3H, d, J=6.1 Hz, rha H₃-6), 4.56 (1H, d, J=7.3 Hz, glc H-1), 4.98 (1H, d, J=7.9, glc A H-1), 5.12 (1H, s, H-12), 6.21 (1H, s, rha H-1). ¹³C-NMR (in pyridine- d_5) δ : glc part; 101.8 (C-1), 78.7 (C-2), 76.1 (C-3), 69.9 (C-4), 78.1 (C-5), 61.3 (C-6), rha part; 101.9 (C-1), 72.1 (C-2), 72.3 (C-3), 74.0 (C-4), 69.3 (C-5), 18.7 (C-6).

GM-3 (Comploside II) An amorphous powder, $[\alpha]_D - 6.2^\circ$ (*c*=0.1 MeOH). Negative FAB-MS: *m/z* 1126 [M+Na-H]⁻. ¹H-NMR (pyridine-*d*₅) δ : 0.70, 0.90, 0.99, 1.17, 1.22, 1.24, 1.44 (each 3H, s, *tert*-Me), 1.08 (3H, d, *J*=6.1 Hz, tha H₃-6), 4.85 (1H, d, *J*=7.9 Hz, glc A H-1), 5.25 (1H, s, H-12), 5.74 (1H, d, *J*=7.9 Hz, gal H-1), 6.15 (1H, s, rha H-1). ¹³C-NMR (in pyridine-*d*₅) δ : glc A part, 105.3 (C-1), 78.1 (C-2), 76.3 (C-3), 73.5 (C-4), 77.7 (C-5), 172.8 (C-6); gal part, 101.7 (C-1), 76.8 (C-2), 76.7 (C-3), 70.9 (C-4), 77.5 (C-5), 61.5 (C-6); rha part, 102.1 (C-1), 72.1 (C-2), 72.3 (C-3), 74.1 (C-4), 69.2 (C-5), 18.7 (C-6); 61.5 (C-5), 62.8 (C-6).

GM-4 (Kuszusaponin SB₁) An amorphous powder, $[\alpha]_D - 4.0^\circ (c=0.1 \text{ MeOH})$. Negative FAB-MS: m/z 1096 [M+Na-H]⁻. ¹H-NMR (pyridine- d_5) δ : 0.73, 0.90, 0.99, 1.15, 1.20, 1.23, 1.44 (each 3H, s, *tert*-Me), 1.77 (3H, d, J=6.1 Hz, rha H₃-6), 4.85 (1H, d, J=7.9 Hz, glc A H-1), 4.99 (1H, d, J=7.3 Hz, xyl H-1), 5.25 (1H, s, H-12), 5.38 (1H, d, J=7.3 Hz, gal H-1), 6.15 (1H, s, rha H-1). ¹³C-NMR (in pyridine- d_5) δ : glc A part, 105.3 (C-1), 78.0 (C-2), 76.3 (C-3), 73.5 (C-4), 77.7 (C-5), 172.8 (C-6); gal part, 101.7 (C-1), 76.8 (C-2), 76.7 (C-3), 70.9 (C-4), 77.5 (C-5), 61.5 (C-6); rha part, 102.1 (C-1), 72.1 (C-2), 72.3 (C-3), 74.0 (C-4), 69.2 (C-5), 18.7 (C-6); xyl part, 101.8 (C-1), 75.1 (C-2), 78.1 (C-3), 70.0 (C-4), 66.5 (C-5).

GM-5 (23-Hydroxybeturic acid) An amorphous powder, $[\alpha]_{\rm D}+48.9^{\circ}$ (c=0.1 MeOH). Negative FAB-MS: m/z 1219 [M+H]⁻. ¹H-NMR (pyridine- d_5) δ : 0.86, 0.97, 0.98, 1.12, 1.73 (each 3H, s, *tert*-Me), 1.63 (6H, d, J=6.1 Hz, rha H₃-6×2), 4.73, 4.86 (each 1H, br s, H₂-29), 4.89 (1H, d, J=7.3 Hz, glc' H-1), 5.14 (1H, d, J=5.5 Hz, ara H-1), 5.67 (1H, s, rha H-1), 5.98 (1H, s, rha' H-1), 6.15 (1H, d, J=7.3 Hz, glc H-1). ¹³C-NMR (in pyridine- d_5) δ : rha part, 102.5 (C-1), 72.1 (C-2), 72.2 (C-3), 73.5 (C-4), 70.3 (C-5), 18.3 (C-6); rha' part, 101.5 (C-1), 72.3 (C-2), 73.5 (C-3), 73.7 (C-4), 69.8 (C-5), 18.3 (C-6); glc part, 95.1 (C-1), 73.7 (C-2), 78.2 (C-3), 70.5 (C-4), 77.7 (C-5), 69.2 (C-6); glc' part, 104.5 (C-1), 74.9 (C-2), 73.7 (C-3), 68.5 (C-4), 78.2 (C-5). A small amount of GM-5 was hydrolyzed with 2 N HCI in a hot bath (80 °C) for 1.5 h. Its filtrate was passed through Amberlite IRA400 and the eluate was concentrated to dryness *in vacuo* to give a residue, which was dissolved in dry pyridine, and then L-cysteine methyl

ester hydrochloride was added to the solution. The reaction mixture was heated at 60 °C for 2 h and concentrated to dryness using N₂. To the residue was added trimethylsilylimidazole, and the mixture was heated at 60 °C for 1 h. The reaction mixture was concentrated to dryness, and the residue was extracted with a mixture of *n*-hexane and H₂O, and the organic layer was analyzed using GLC under the following conditions: column, OV-17 (0.32 mm×30 m); detector, FID; column temperature, 230 °C; injector temperature, 270 °C; carrier gas, He (2.2 kg/cm²). Each peak was observed at *t*_R (min): 17'16" (D-glc), 16'54" (D-gal), 11'71" (L-rha), 9'82" (D-xyl), 8'32" (L-ara). Other glycosides of GM-8—11 and GM-14 were also analogously examined.

GM-6 (22-Dehydroazukisaponin V) An amorphous powder, $[\alpha]_D$ -48.3° (c=0.5 pyridine). Positive FAB-MS: m/z 941 [M+H]⁺. ¹H-NMR (pyridine- d_5) δ : 0.69, 0.85, 0.86, 0.96, 1.17, 1.29, 1.48 (each 3H, s, *tert*-Me), 1.79 (3H, d, J=6.1 Hz, rha H₃-6), 5.00 (1H, d, J=7.9 Hz, glc A H-1), 5.24 (1H, br s, H-12), 6.41 (1H, s, rha H-1). ¹³C-NMR (in pyridine- d_5) δ : glc A part, 105.2 (C-1), 78.3 (C-2), 77.3 (C-3), 73.7 (C-4), 77.9 (C-5), 172.5 (C-6); rha part, 102.0 (C-1), 72.3 (C-2), 72.8 (C-3), 74.4 (C-4), 69.5 (C-5), 19.0 (C-6).

GM-7 (Dehydrosoyasaponin I) An amorphous powder, $[\alpha]_D -98.3^{\circ}$ (*c*=0.5 pyridine). Positive FAB-MS: *m/z* 941 [M+H]⁺. ¹H-NMR (pyridined₅) δ : 0.70, 0.86, 0.87, 0.97, 1.17, 1.31, 1.45 (each 3H, s, *tert*-Me), 1.79 (3H, d, *J*=6.1 Hz, rha H₃-6), 4.62 (1H, d, *J*=7.3 Hz, glc A H-1), 5.25 (1H, br s, H-12), 5.80 (1H, d, *J*=6.7 Hz, gal H-1), 6.30 (1H, s, rha H-1). ¹³C-NMR (in pyridine-d₅) δ : glc A part, 105.2 (C-1), 78.3 (C-2), 76.4 (C-3), 73.6 (C-4), 77.6 (C-5), 173.4 (C-6); gal part, 101.6 (C-1), 77.2 (C-2), 76.4 (C-3), 71.1 (C-4), 76.8 (C-5), 61.7 (C-6); rha part, 102.1 (C-1), 72.2 (C-2), 72.6 (C-3), 74.3 (C-4), 69.3 (C-5), 18.9 (C-6).

GM-8 An amorphous powder, $[\alpha]_D - 17.3^\circ$ (*c*=0.5 pyridine). Positive FAB-MS: *m/z* 1121 [M+H]⁺. ¹H-NMR (pyridine-*d*₅) δ : 0.70, 0.90, 1.16, 1.26, 1.29, 1.41, 1.44 (each 3H, s, *tert*-Me), 1.81 (3H, d, *J*=6.1 Hz, rha H₃-6), 5.23 (1H, d, *J*=7.9 Hz, glc A H-1), 5.44 (1H, br s, H-12), 5.69 (1H, d, *J*=7.3 Hz, gal H-1), 6.19 (1H, s, rha H-1). ¹³C-NMR (in pyridine-*d*₅) δ : glc A part, 105.3 (C-1), 78.1 (C-2), 76.8 (C-3), 73.5 (C-4), 77.6 (C-5), 172.4 (C-6); gal part, 101.8 (C-1), 77.3 (C-2), 76.3 (C-3), 70.9 (C-4), 76.3 (C-5), 61.5 (C-6); rha part, 102.2 (C-1), 72.1 (C-2), 78.8 (C-3), 70.1 (C-4), 78.3 (C-5), 62.7 (C-6).

GM-9 An amorphous powder, $[\alpha]_D - 13.5^{\circ}$ (c=0.5 pyridine). Positive FAB-MS: m/z 1107 [M+H]⁺. ¹H-NMR (pyridine- d_5) δ : 0.69, 0.93, 2×1.34, 1.38, 1.42 (each 3H, s, *tert*-Me), 1.78 (3H, d, J=6.1 Hz, rha H₃-6), 4.85 (1H, d, J=7.3 Hz, ara H-1), 4.95 (1H, d, J=7.1 Hz, glc A H-1), 5.32 (1H, br s, H-12), 5.62 (1H, d, J=7.3 Hz, gal H-1), 6.12 (1H, s, rha H-1). ¹³C-NMR (in pyridine- d_5) δ : glc A part, 105.2 (C-1), 78.3 (C-2), 76.3 (C-3), 73.6 (C-4), 77.5 (C-5), 172.5 (C-6); gal part, 101.9 (C-1), 77.5 (C-2), 76.8 (C-3), 70.9 (C-4), 76.8 (C-5), 61.6 (C-6); rha part, 102.0 (C-1), 72.1 (C-2), 72.3 (C-3), 74.1 (C-4), 69.3 (C-5), 18.8 (C-6); ara part, 108.4 (C-1), 73.6 (C-2), 75.5 (C-3), 69.0 (C-4), 69.6 (C-5).

GM-10 An amorphous powder, $[\alpha]_D + 4.5^\circ$ (c=0.5 pyridine). Negative FAB-MS: m/z 955 [M+H]⁻. ¹H-NMR (pyridine- d_5) δ : 0.86, 0.96, 0.97, 1.09, 1.12, 1.39, 1.41 (each 3H, s, *tert*-Me), 1.70 (3H, d, J=6.1 Hz, rha H₃-6), 4.91 (1H, d, J=7.9Hz, glc A H-1), 5.34 (1H, s, rha H-1), 5.51 (1H, d, J=7.9 Hz, gal H-1), 5.72 (1H, s, H-12). ¹³C-NMR (in pyridine- d_5) δ : glc A part, 104.3 (C-1), 80.7 (C-2), 75.3 (C-3), 73.3 (C-4), 77.9 (C-5), 172.5 (C-6); gal part, 104.0 (C-1), 73.3 (C-2), 75.3 (C-3), 69.7 (C-4), 77.7 (C-5), 61.4 (C-6); rha part, 97.6 (C-1), 72.0 (C-2), 72.3 (C-3), 73.4 (C-4), 70.0 (C-5), 18.1 (C-6).

GM-11 An amorphous powder, $[\alpha]_D + 13.2^{\circ}$ (c=0.5 pyridine). Positive FAB-MS: m/z 1105 $[M+H]^+$. ¹H-NMR (pyridine- d_5) δ : 0.95, 1.03, 1.08, 1.15, 1.17, 1.37, 1.44 (each 3H, d, *tert*-Me), 4.87 (1H, d, J=7.6 Hz, xyl H-1), 5.09 (1H, d, J=7.7 Hz, glc A H-1), 5.22 (1H, d, J=7.7 Hz, gla H-1), 5.55 (1H, d, J=7.0 Hz, glc H-1), 5,69 (1H, s, H-12). ¹³C-NMR (in pyridine- d_5) δ : sapogenol part, 39.5 (C-1), 26.8 (C-2), 90.3 (C-3), 44.0 (C-4), 56.0 (C-5), 18.0 (C-6), 33.4 (C-7), 43.8 (C-8), 61.8 (C-9), 37.0 (C-10), 199.3 (C-11), 128.6 (C-12), 169.3 (C-13), 45.3 (C-14), 26.4 (C-15), 27.3 (C-16), 37.9 (C-7), 45.3 (C-24), 16.8 (C-25), 18.7 (C-26), 22.9 (C-27), 21.7 (C-28), 32.4 (C-29), 28.3 (C-30); glc A part, 105.0 (C-1), 80.3 (C-2), 77.6 (C-3), 72.4 (C-4), 77.8 (C-5), 172.3 (C-6); gal part, 102.8 (C-1), 83.9 (C-2), 74.4 (C-3),

69.4 (C-4), 76.5 (C-5), 63.0 (C-6); glc part, 106.5 (C-1), 76.5 (C-2), 78.4 (C-3), 71.7 (C-4), 78.9 (C-5), 63.2 (C-6); xyl part, 102.6, 75.3, 77.8, 72.1, 67.0.

GM-12 (Medicarpin 3-*O*-β-D-Glucopyranoside) Colorless needles, $[\alpha]_D - 73.8^\circ (c=0.05 \text{ pyridine})$. Negative ESI-MS: $m/z 431.13 \text{ [M-H]}^-$ and HR negative ESI-MS: $m/z 431.1342 \text{ [M+H]}^-$ (Calcd for $C_{22}H_{24}O_4$: 431.1344). ¹H-NMR (pyridine- d_5) δ: 3.74 (1H, m, H-6a), 3.75 (1H, d, $J=7.3 \text{ Hz}, \text{ H}_3-6$), 3.75 (3H, s, $-\text{OCH}_3$), 4.37 (1H, d, J=4.2 Hz, H-11a), 6.62 (1H, dd, J=2.4 Hz, H-10), 6.68 (1H, s, H-8), 7.03 (1H, s, H-4), 7.12 (1H, dd, J=2.4 Hz, H-2), 7.33 (1H, d, J=8.5 Hz, H-7), 7.55 (1H, d, J=8.6 Hz, H-1). ¹³C-NMR (in pyridine- d_5) δ: 132.3 (C-1), 111.0 (C-2), 156.8 (C-3), 105.0 (C-4), 156.8 (C-4a), 66.6 (C-6), 39.7 (C-6a), 119.6 (C-6b), 125.3 (C-7), 97.0 (C-8), 161.3 (C-9), 106.5 (C-10), 160.9 (C-10a), 78.6 (C-11a), 111.0 (C-11b), 55.3 (OMe), 101.6 (glc C-1), 74.3 (glc C-2), 78.2 (glc C-3), 70.7 (glc C-4), 78.2 (glc C-5), 61.7 (glc C-6).

GM-13 (Subproside V) An amorphous powder, $[\alpha]_D - 8.9^\circ$ (c=0.05 pyridine). Negative FAB-MS: m/z 1119 [M+H]⁻. ¹H-NMR (pyridine- d_5) δ : 0.68, 0.89, 1.00, 1.17, 1.23, 1.24 (each 3H, s, *tert*-Me), 1.60 (3H, d, J=6.1 Hz, rha H₃-6), 5.24 (1H, s, H-12), 4.87 (1H, d, J=7.3 Hz, glc A H-1), 5.70 (1H, d, gal H-1), 6.16 (1H, s, rha H-1). ¹³C-NMR (in pyridine- d_5) δ : glc A part, 104.8 (C-1), 78.0 (C-2), 77.3 (C-3), 73.7 (C-4), 77.7 (C-5), 175.0 (C-6); gal part, 101.9 (C-1), 77.3 (C-2), 76.1 (C-3), 70.8 (C-4), 76.1 (C-5), 61.4 (C-6); rha part, 102.1 (C-1), 72.0 (C-2), 72.0 (C-3), 73.0 (C-4), 69.0 (C-5), 18.5 (C-6); glc part, 104.8 (C-1), 75.7 (C-2), 77.7 (C-3), 71.5 (C-4), 77.7 (C-5), 62.5 (C-6).

GM-14 An amorphous powder, $[\alpha]_D + 21.0^{\circ}$ (c=0.05 pyridine). Negative ESI-MS: m/z 925 [M+H]⁻, 794 [M-H-xyl]⁻, 780 [M-H-rha]⁻. ¹H-NMR (pyridine- d_5) δ : 0.95, 1.03, 1.09, 1.13, 1.16, 1.35, 1.37 (each 3H, s, *tert*-Me), 1.70 (3H, d, J=5.5 Hz, rha H₃-6), 4.82 (1H, d, J=7.9 Hz, xyl H-1), 5.13 (1H, d, J=7.7 Hz, glc A H-1), 5.37 (1H, s, rha H-1), 5.76 (1H, s, H-12). ¹³C-NMR (in pyridine- d_5) δ : glc A part, 104.8 (C-1), 78.4 (C-2), 75.5 (C-3), 73.3 (C-4), 79.9 (C-5), 172.3 (C-6); rha part, 98.0 (C-1), 72.1 (C-2), 72.3 (C-3), 73.3 (C-4), 69.9 (C-5), 18.7 (C-6); xyl part, 104.6 (C-1), 75.5 (C-2), 77.9 (C-3), 70.7 (C-4), 67.3 (C-5).

GM-15 (Soyasaponin Eg) An amorphous powder, $[\alpha]_D - 4.8^\circ$ (c=0.5 pyridine). Negative ESI-MS: m/z 909 [M+H]⁻. ¹H-NMR (pyridine- d_5) δ : 0.69, 0.89, 0.94, 1.01, 1.23, 1.28, 1.42 (each 3H, s, *tert*-Me), 1.78 (3H, d, J=5.5 Hz, rha H₃-6), 4.89 (1H, d, J=7.9 Hz, glc A H-1), 5.31 (1H, s, H-12), 5.46 (1H, d, J=7.3 Hz, ara H-1), 6.13 (1H, s, rha H-1). ¹³C-NMR (in pyridine- d_5) δ : glc A part, 104.8 (C-1), 77.8 (C-2), 77.1 (C-3), 75.2 (C-4), 77.3 (C-5), 175.3 (C-6); rha part, 101.9 (C-1), 72.2 (C-2), 71.9 (C-3), 73.7 (C-4), 70.0 (C-5), 18.5 (C-6).

Acknowledgments This work was supported by a Grant-in-Aid from the Takeda Foundation for the Promotion of Science and the Japan Society for the Promotion of Science (JSPS Asian Core Program).

References

- 1) Zhu R., Chin. Trad. Herbal Drugs, 15, 1-2 (1984).
- Ohana P., Delmer D. P., Carlson R. W., Glushka J., Azadi P., Bacic T., Benziman M., *Plant Cell Physiol.*, 39, 144–152 (1998).
- Arao T., Kinjo J., Nohara T., Isobe R., Chem. Pharm. Bull., 45, 362– 266 (1997).
- Mohamed K. M., Ohtani K., Kasai R., Yamasaki K., *Phytochemistry*, 40, 1237–1242 (1996).
- Kitagawa I., Taniyama T., Mutakami T., Yoshihara M., Yoshikawa M., Yakugaku Zasshi, 108, 547—554 (1988).
- Ding Y., Tian R., Takeshita T., Kinjo J., Nohara T., Chem. Pharm. Bull., 40, 1831–1834 (1992).
- Tsukamoto C., Kikuchi A., Harada K., Kitamura K., Okubo K., *Phytochemistry*, 34, 1351–1356 (1993).
- Cui B., Inoue J., Takeshita T., Kinjo J., Nohara T., *Chem. Pharm. Bull.*, 40, 3330–3333 (1992).
- Hara S., Okabe H., Mihashi K., Chem. Pharm. Bull., 35, 501-507 (1987).
- 10) Ikuta A., Itokawa H., Phytochemistry, 27, 2813-2815 (1988).
- Kinjo J., Kishida F., Watanabe K., Hashimoto F., Nohara T., *Chem. Pharrm. Bull.*, 42, 1874–1878 (1994).
- Ding Y., Takeshita T., Yokoyama K., Kinjo J., Nohara T., Chem. Pharm. Bull., 40, 139–142 (1992).