(22) Cycloaddition Reaction of Alkyl Enol Ethers with Acrylates by *in Situ* **Generated Silyl Triflic Imide Catalyst**

Kiyosei Takasu,^{*,*a,b*} Yuta Miyakawa,^b Masataka Ihara,^{b,c} and Hidetoshi Tokuyama^b

^a Graduate School of Pharmaceutical Sciences, Kyoto University; Yoshida, Sakyo-ku, Kyoto 606–8501, Japan: ^b Graduate School of Pharmaceutical Sciences, Tohoku University; Aobayama, Sendai 980–8678, Japan: and ^c Faculty of Pharmaceutical Science, Hoshi University; 2–4–41 Ebara, Shinagawa, Tokyo 142–8501, Japan. Received April 17, 2008; accepted May 26, 2008; published online June 5, 2008

We describe here (22) cycloaddition reaction of alkyl enol ethers with acrylates catalyzed by triethylsilyl triflic imide (Et3SiNTf2), which was *in situ* **generated from triethylsilane and triflic imide. The reaction efficiently provides substituted cyclobutanes bearing alkoxy function in a stereoselective manner.**

Key words $(2+2)$ cycloaddition; cyclobutane; triflic imide; silane

Although cyclobutane ring is one of the fundamental carbocyclic skeletons, only a limited number of synthetic methods exists for the synthesis.^{1—3)} As one of the solutions, we have reported $(2+2)$ cycloaddition reaction of silyl enol ethers with α , β -unsaturated esters catalyzed by EtAlCl₂ (*ca.*) 20 mol% catalyst loading) to produce substituted cyclobutanes bearing siloxy moiety with high stereoselectivity. $4-6$) Recently, Corey's group developed its asymmetric variant giving enantiomerically enriched cyclobutanes using a chiral oxazaborolidine-AlBr₃ catalyst.⁷⁾ In the course of our continuous study directed to develop the practical process, we have found trifluoromethenesulfonimide (Tf_2NH) efficiently catalyses the $(2+2)$ cycloaddition reaction.^{8,9)} The method displays several synthetic advantages, such as high stereoselectivity, wide substrate scope, low catalyst loading (*ca.* 0.1 mol%), and applicability for multi-gram scale synthesis. In the cycloaddition reaction, silyl triflic imide (R_3SiNTf_2) in $situ$ generated from Tf_2NH and silyl enol ether substrate is recognized as an actual catalyst showing strong Lewis acidity.^{10—14)} Actually, we observed pre-assembled R_3 SiNTf₂ activates the cycloaddition reaction. However, our reported method using Tf₂NH includes the following problems. First, if R_3 SiNTf₂ is used, it is hard to handle the catalyst owing to its air sensitivity. Second, only silyl enol ethers can be used as substrates for the Tf₂NH-catalyzed (2+2) cycloaddition reaction. R₃SiNTf₂ does not *in situ* formed with the other electron-rich olefins, such as alkyl enol ethers. In this paper, we wish to report $(2+2)$ cycloaddition reaction of alkyl enol ethers with acrylates in the presence of pre-assembled silyl triflic imide from silyl hydride and Tf_2NH .

First of all, we examined $(2+2)$ cycloaddition reaction of 1-methoxycyclohexene (**1a**) with benzyl acrylate (**2a**) in the presence of either Tf_2NH or trimethylsilyl triflic imide $(Me₃SiNTf₂)$. TMSNTf₂ was prepared from trimethylsilyl chloride and silver triflic imide $(AgNTf₂)$ and isolated according as Ghosez's method (Chart 1).¹⁰⁾ In the presence of Tf₂NH (10 mol%), no reaction occurred in CH₂Cl₂. On the contrary, Me₂SiNTf₂ (10 mol%) promoted (2+2) cycloaddition reaction to furnish cycloadduct **3aa** as a single diastereomer at -78 °C in 44% yield. The relative steteochemistry of **3aa** was tentatively assigned by comparison of the spectral data with structurally related compounds.⁴⁾ Although reaction time was prolonged, chemical yield of **3aa** does not increased and **1a** was still remained.

We were intrigued by *in situ* generation of silyl triflic imide during the reaction can achieve a simple operation protocol for $(2+2)$ cycloaddition reaction of alkyl enol ethers. Ghosez and his co-workers reported $Me₃SiNTf₂$ could be synthesized from trimethylsilane and Tf₂NH at ambient temperature by only mixing under neat conditions.¹¹⁾ Owing to its easier handling and commercially availability, we decided to use triethylsilane $(Et₃SiH)$ for generation of triflic imide. However, when reaction of **1a** with **2a** was carried out in the presence of a catalytic amount of Et_3SH and Tf_2NH at -78 °C, no (2+2) cycloaddition reaction proceeded at all (Table 1, entry 1). Notably, no side reaction, such as reduction of acrylate with $Et₃SiH$, occurred under the conditions. On the contrary, when the reaction was performed at 50° C, only trace amount of **3aa** was formed but oligomerized product of **2a** was observed (entry 2). Next, we examined premixing of Et_3SH and Tf_2NH to prepare $Et_3SiNTf_2^{15}$ in situ (without isolation) before cycloaddition reaction. Namely, after Et₃SiH (15 mol%) was treated with Tf_2NH (10 mol%) in toluene at ambient temperature for 15 min, the solution was added to a mixture of $1a(1.4 \text{ eq})$ and $2a(1.0 \text{ eq})$ in CH₂Cl₂ at -78 °C and stirred for 1h to afford **3aa** as a sole stereoisomer in 47% yield (entry 3). Further optimization study revealed the catalyst was effectively generated in toluene at 50 °C for 10 min (entry 4), which resulted in the formation of **3aa** in 83%. On the other hand, generation of $Et₃SiNTf₂$ in CH₂Cl₂ was not so efficient (entry 5). Although microwave (MW) technique was submitted to prepare the actual catalyst *in situ*, the chemical yield of **3** was not improved (entry 6).

Under the optimal conditions for *in situ* generation of Et₃SiNTf₂ in hand, reaction with methyl acrylate (2b) afforded **3ab** in 84% yield (entry 7, Table 1). Ethyl enol ether **1b** is also employable (entry 8). However, $(2+2)$ cycloaddition reaction was not successful in the reaction of less substi-

Chart 1. $(2+2)$ Cycloaddition Reaction of Alkyl Enol Ether $(1a)$ with Acrylate (**2a**)

a) Standard conditions: (pre-mixing) Et₃SiH (15 mol%), Tf₂NH (10 mol%) in toluene, (cycloaddition reaction) **1** (1.4 eq), **2** (1.0 eq) in CH₂Cl₂ at -78 °C for 1h. Yield was calculated based on 2 . *b*) (pre-mixing) In CH₂Cl₂. *c*) (pre-mixing) Under microwave irradiation.

tuted enol ethers, such as 2-methoxypropene (**1c**) and dihydropyrane (**1d**). In the reaction of **1c**, **1c** was fully consumed by cationic oligomerization (entries 9, 10).

In summary, we have developed $(2+2)$ cycloaddition reaction of alkyl enol ethers catalyzed by silyl triflic imide, which was *in situ* generated from triethylsilane and triflic imide. It provides substituted cyclobutanes bearing alkoxy function in a stereoselective manner.

Experimental

Typical Procedure for the Catalytic (22) Cycloaddition Reaction To a toluene solution of Tf₂NH (0.2 M in toluene, 100μ l, 20μ mol) was added triethylsilane (3.5 mg, 30 μ mol) at 50 °C and stirred for 10 min at the same temperature. After cooled to -78 °C, the mixture was diluted with CH_2Cl_2 (2.0 ml). To the solution were added 1-methoxycyclohexene (1a) (31 mg, 0.28 mmol) and benzyl acrylate (**2a**) (32 mg, 0.20 mmol), and stirred for additional 1 h at -78 °C. The resulting mixture was quenched with Et_3N $(14 \mu l, 0.10 \text{ mmol})$, and then concentrated *in vacuo*. The residue was purified by chromatography on silica gel in hexane–AcOEt (10 : 1) to afford **3aa**

(45 mg, 83% yield) as a single diastereomer.

(1*R**,6*S**,8*R**)-8-(Benzyloxycarbonyl)methoxybicyclo[4.2.0]octane (**3aa**): Coloress oil. IR (neat) cm⁻¹: 2930, 2856, 2829, 1732, 1454. ¹H-NMR (400 MHz, CDCl3) d: 1.17—1.81 (10H, m), 2.35 (1H, m), 3.03 (1H, dd, *J*=8.1, 1.0 Hz), 3.28 (3H, s), 5.09 (1H, d, *J*=12.4 Hz), 5.16 (1H, d, $J=12.4$ Hz), 7.34 (5H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 172.7, 79.7, 51.5, 50.7, 45.6, 36.4, 26.5, 23.9, 21.3, 20.4, 18.8. LR-MS *m*/*z*: 274 (M). HR-MS *m*/*z*: Calcd for C₁₇H₂₂O₃ 274.1569 (M⁺), Found 274.1552.

(1*R**,6*S**,8*R**)-8-(Methoxycarbonyl)methoxybicyclo[4.2.0]octane (**3ab**): Colorless oil. IR (neat) cm⁻¹: 2932, 2858, 1732, 1435, 1219, 1182, 1103, 1080. ¹H-NMR (400 MHz, CDCl₃) δ: 1.25—1.87 (m, 10H), 2.38 (m, 1H), 3.0 (dd, J=7.9, 1.0 Hz, 1H), 3.32 (s, 3H), 3.68 (s, 3H); ¹³C-NMR (100 MHz, CDCl3) d: 172.7, 79.7, 51.5, 50.7, 45.6, 36.4, 26.5, 23.9, 21.3, 20.4, 18.8. LR-MS m/z : 198 (M⁺). HR-MS m/z : Calcd for C₁₁H₁₈O₃ 198.1256 (M⁺), Found 198.1247.

(1*R**,6*S**,8*R**)-8-(Benzyloxycarbonyl)ethoxybicyclo[4.2.0]octane (**3ba**): Colorless oil. IR (neat) cm⁻¹: 2927, 2850, 2828, 1730, 1455. ¹H-NMR (400 MHz, CDCl3) d: 1.2 (t, *J*8 Hz, 3H), 1.25—1.91 (m, 10H), 2.35 (m, 1H), 3.02 (dd, J=8.2, 1.0 Hz, 1H), 3.33 (q, J=8.0 Hz), 5.08 (d, J=12 Hz, 1H), 5.15 (d, *J*=12 Hz, 1H), 7.65 (m, 5H). ¹³C-NMR (100 MHz, CDCl₃) δ: 172.1, 135.9, 128.5, 128.4, 128.2, 128,1, 128.0, 79.9, 66.1, 50.7, 45.7, 36.2, 26.3, 23.8, 21.3, 20.2, 18.8. LR-MS m/z : 286 (M⁺). HR-MS m/z : Calcd for $C_{18}H_{24}O_3$ 288.1725 (M⁺), Found 288.1738.

Acknowledgements This work was supported by a Grant-in-Aid for a Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- 1) Baldwin J. E., "Comprehensive Organic Synthesis," Vol. 5, ed. by Trost B. M., Fleming I., Pergamon Press, Oxford, 1991, pp. 63—84.
- 2) Crimmins M. T., "Comprehensive Organic Synthesis," Vol. 5, ed. by Trost B. M., Fleming I., Pergamon Press, Oxford, 1991, pp. 123—150.
- 3) Lee-Ruff E., Mladenova G., *Chem. Rev.*, **103**, 1449—1483 (2003).
- 4) Takasu K., Ueno M., Inanaga K., Ihara M., *J. Org. Chem.*, **69**, 517— 521 (2004).
- 5) Takasu K., Nagao S., Ueno M., Ihara M., *Tetrahedron*, **60**, 2071— 2078 (2004).
- 6) Inanaga K., Takasu K., Ihara M., *J. Am. Chem. Soc.*, **126**, 1352—1353 (2004)
- 7) Canales E., Corey E. J., *J. Am. Chem. Soc.*, **129**, 12686—12687 (2007).
- 8) Inanaga K., Takasu K., Ihara M., *J. Am. Chem. Soc.*, **127**, 3669—3670 (2005).
- 9) Takasu K., Ishii T., Inanaga K., Ihara M., *Org. Synth.*, **83**, 193—199 (2006).
- 10) Mathieu B., Ghosez L., *Tetrahedron Lett.*, **38**, 5497—5500 (1997).
- 11) Mathieu B., Ghosez L., *Tetrahedron*, **58**, 8219—8226 (2002).
- 12) Ishihara K., Hiraiwa Y., Yamamoto H., *Synlett*, **2001**, 1851—1854 (2001).
- 13) Boxer M. B., Yamamoto H., *J. Am. Chem. Soc.*, **128**, 48—49 (2006).
- 14) Takasu K., Hosokawa N., Inanaga K., Ihara M., *Tetrahedron Lett.*, **47**, 6053—6056 (2006).
- 15) Mikami K., Jpn. Kokai Tokkyo Koho, JP 10330293 (1988) [*Chem. Abstr.*, **130**, 81199].