Steroidal Saponins from the Roots of *Smilax aspera* **subsp.** *mauritanica*

Zineddine BELHOUCHET,^{*a*} Marc SAUTOUR,^{*a*} Tomofumi MIYAMOTO,^{*b*} and Marie-Aleth LACAILLE-DUBOIS*, *^a*

^a Laboratoire de Pharmacognosie, Unité UMIB UPRES-EA 3660, Faculté de Pharmacie, Université de Bourgogne; 7 Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France: and ^b Graduate School of Pharmaceutical Sciences, Kyushu University; Fukuoka, 812–8582, Japan. Received March 15, 2008; accepted June 9, 2008; published online June 11, 2008

Two new steroidal saponins (1, 2) were isolated from the roots of *Smilax aspera* **subsp.** *mauritanica* **(POIR.) ARCANG. (Liliaceae), together with the known curillin G (3), asparagoside E (4), asparoside A (5), asparoside B (6) and the phenolic compound resveratrol (7). Their structures were established mainly on the basis of 600 MHz 2D-NMR spectral data. 3 exhibited antifungal activity against the human pathogenic yeasts** *Candida albicans***,** *C. glabrata* and *C. tropicalis* (minimum inhibitory concentrations of 25, 25 and 50 μ g/ml, respectively) whereas **the other compounds were inactive.**

Key words *Smilax aspera* subsp. *mauritanica*; Liliaceae; steroidal saponin; resveratrol; 2D-NMR; antifungal activity

The genus *Smilax* contains 350 species, which are distributed widely mainly in tropical regions of east Asia, and South and North America. Several *Smilax* species have already been studied chemically and found to contain steroidal saponins. $1-6$) From a biological point of view, some species were documented to exhibit antiinflammatory, $\frac{7}{7}$ NO-modulat $ing⁸$ and antileprosic⁹ activity and recently, antifungal steroidal saponins were isolated from the rhizome of *S. medica*. 5,6) As part of our ongoing search for new antifungal steroid saponins, $5,6,10$ -12) we have investigated the roots of *Smilax aspera* subsp. *mauritanica*. The present paper reports the isolation and characterization of two new steroidal saponins (**1**, **2**) along with four known saponins (**3**—**6**) and the phenolic compound resveratrol (**7**). Their structures were determined by spectroscopic methods including 1D and 2D NMR experiments and FAB-MS and HR-ESI-MS. Furthermore, their antifungal activity was tested against three human pathogenic yeasts (*Candida albicans*, *C. glabrata*, and *C. tropicalis*).

The *n*-BuOH-soluble fraction of the MeOH–H₂O $(7:3)$ extract of the roots of *S. aspera* subsp. *mauritanica* was purified by precipitation with diethyl ether to give a crude saponin mixture. This mixture was submitted to multiple chromatographic steps involving vacuum-liquid chromatography (VLC) on reversed-phase C_{18} silica gel and mediumpressure liquid chromatography (MPLC) on normal silica gel to yield compounds **1**—**6**. The diethyl ether fraction was submitted to multiple MPLC to give the pure phenolic compound **7**.

Compound **1**, a white amorphous powder, exhibited in FAB-MS (negative-ion mode) a quasimolecular ion peak at m/z 885 [M-H]⁻, indicating a molecular weight of 886. Its molecular formula was established as $C_{45}H_{74}O_{17}$ by the positive ion-mode HR-ESI-MS showing a pseudo-molecular ion peak at m/z 909.5392 [M+Na]⁺ (Calcd for $C_{43}H_{70}O_{17}Na$: 909.5352). Other fragment ion peaks were observed at *m*/*z* 739 $[(M-H)-146]$ ⁻ and 577 $[(M-H)-146-162]$ ⁻, corresponding to the successive loss of one deoxy-hexosyl and one hexosyl moieties. Acid hydrolysis of **1** yielded glucose, rhamnose (TLC) and their absolute configuration was determined to be D and L by GC analysis of chiral derivatives of the sugars in the acid hydrolysate (see Experimental). The

aglycon was identified as sarsapogenin $[(25S)$ -5 β -spirostane- 3β -ol]^{13,14}) from the 1D and 2D NMR spectral data of 1 (see Table 1). The A/B *cis*-ring fusion was confirmed by observation of the signals at δ_c 35.3 (C-5), 39.8 (C-9), and 23.6 (C-19), indicating that the aglycon is a 5β -steroidal sapogenin.¹⁵⁾ The 25*S* stereochemistry of the 27-methyl group was deduced based on the presence of the two proton signals $[\delta_{\rm H}]$ 3.34 (1H, d, $J=10.9$ Hz) and 4.00 (1H, m)], which corresponded to the H_2 -26 in the 1 H-NMR¹⁶⁾ and the higher field resonance of C-27 (δ _C 15.8) when compared to the ¹³C-NMR shift of 25*R*-spirostanes (δ_c 17.1–17.2).¹⁷ The ¹H-NMR spectrum of **1** displayed signals for three anomeric protons at $\delta_{\rm H}$ 4.84, 5.54 (d, J=7.5 Hz) and 6.0 (s), which gave correlations, in the HSQC spectrum, with ¹³C-NMR signals at δ_c 100.0, 101.2 and 101.9, respectively. Evaluation of chemical shifts and spin–spin couplings allowed the identification of two β -glucopyranosyl units (Glc I, Glc II) and one α rhamnopyranosyl units (Rha I). The sequence of the oligosaccharide chain was determined from the HMBC and NOESY spectra. Correlations observed in the HMBC spectrum between the ¹H-NMR signal at δ_H 4.84 (Glc I H-1) and the ¹³C-NMR signal at δ_c 74.7 (Agly C-3), and in the NOESY spectrum between δ_H 4.84 (Glc I H-1) and δ_H 4.26 (m) (Agly H-3) proved the Glc I to be linked at C-3 of the aglycon. The correlation in the HMBC spectrum between the 1 H-NMR signal at δ_H 5.54 (d, J=7.5 Hz) (Glc II I H-1) and δ_C 78.2 (Glc I C-2) and a NOESY cross-peak between $\delta_{\rm H}$ 5.54 (d, $J=7.5$ Hz) (Glc II H-1) and δ_H 4.34 (Glc I H-2), revealed a $(1\rightarrow 2)$ linkage between these two sugars. The linkage of Rha I to the 2-position of Glc II was deduced by the HMBC correlation observed between $\delta_{\rm H}$ 6.0 (s) (Rha I H-1) and $\delta_{\rm C}$ 79.4 (Glc II C-2) and the NOESY cross-peak between $\delta_{\rm H}$ 6.0 (s) (Rha I H-1) and δ_H 3.94 (Glc II H-2). On the basis of the above results, the structure of 1 was established as $(25S)$ -5 β spirostane-3 β -ol 3-*O*- α -L-rhamnopyranosyl-(1→2)- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranoside.

Compound **2** was isolated as a white amorphous powder. Its HR-ESI-MS (positive-ion mode) exhibited a pseudo-molecular ion peak at m/z 1089.5195 $[M + Na]$ ⁺ (Calcd for $C_{51}H_{86}O_{23}Na$: 1045.5245), ascribable to a molecular formula $C_{51}H_{86}O_{23}$. Its FAB-MS spectrum (negative-ion mode) showed a quasi-molecular ion peak at m/z 1065 $[M-H]$ ⁻ indicating a

Fig. 1. Chemical Structures of **1**—**3**

molecular weight of 1066. A fragment ion peak was observed at m/z 919 $[(M-H)-146]$ ⁻ corresponding to the loss of one deoxy-hexosyl moiety. The comparison of NMR data of **2** (Table 1) with literature data allowed the identification of the aglycon as the previously reported $(25S)$ -3 β ,5 β ,22 α furostane-3,22,26-triol (the aglycon of aspafilioside D).¹⁸⁾ The 25*S* stereochemistry of the Me-27 group was deduced from the resonances of protons and carbons at C-25 (δ_c 33.1), C-26 (δ_c 74.5), and C-27 (δ_c 17.0) in comparison with literature data.^{19,20} The differences observed in 1 H-NMR chemical shifts of the geminal protons H-26a and H-26b $(\delta_a - \delta_b = 0.58)$ supported a 25*S* furostane-type steroid since this difference is usually more than 0.57 ppm in 25*S* compounds and less than 0.48 ppm in 25R compounds.^{19,20)} The ¹ H-NMR spectrum of **2** displayed signals for four anomeric protons at $\delta_{\rm H}$ 4.90 (d, *J*=7.5 Hz), 5.60 (d, *J*=7.5 Hz), 6.06 (s) and 4.70 (d, $J=7.6$ Hz), which gave correlations, in the HSQC spectrum, with ¹³C-NMR signals at δ_c 99.4, 101.6, 101.9 and 104.3, respectively. Evaluation of chemical shifts and spin–spin couplings allowed the identification of three β -glucopyranosyl units (Glc I, Glc II, Glc III) and one α -rhamnopyranosyl unit (Rha I). The sequence of the oligosaccharide chain was determined from the HMBC and the NOESY spectra. ${}^{1}H$ - and ${}^{13}C$ -NMR signals of the oligoside at C-3 were superimposable with those of **1** revealing the same sequence of sugars as described above. The linkage of the sugar at the C-26 position was indicated by the correlation in the NOESY spectrum between the anomeric proton of Glc III at δ_H 4.70 (d, J=7.9 Hz) and δ_H 3.42 (Agly C-26). On the basis of the above results, the structure of **2** was established as $(25S)$ -3 β ,5 β ,22 α -furostane-3,22,26-triol $3-O-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl 26-*O*- β -D-glucopyranoside.

Compounds **3**—**7** were identified by interpretation of their spectral data, mainly FAB-MS and 2D-NMR (COSY, TOCSY,

Table 1 ¹H- and ¹³C-NMR Data^{*a*}) of the Aglycone Part of **1—2**, δ in ppm (*J* in Hz)

	1		$\overline{2}$	
	$\delta_{\rm C}$	$\delta_{\rm H}^{,c)}$	$\delta_{\scriptscriptstyle\rm C}$	$\delta_{\rm H}^{,c)}$
$\mathbf{1}$	30.2	$1.28b)$ nd	29.4	$1.201b)$ nd
2	26.4	1.52^{b} , 1.80^{b}	26.5	1.10^{b} , 1.84^{b}
3	74.7	4.26 _m	74.5	4.29 m
$\overline{4}$	29.6	$1.70b$ nd	29.4	$1.201b)$ nd
5	35.3	2.35^{b}	35.2	2.36^{b}
6	25.6	1.30^{b} , 1.40^{b}	30.3	$1.801b)$ nd
7	25.8	nd, nd	26.4	$1.10b$ nd
8	35.1	1.30 _m	34.9	1.33 m
9	39.8	1.28^{b}	39.9	$1.20^{b)}$
10	34.8		34.8	
11	20.7	$1.10b)$ nd	21.6	nd
12	39.9	1.00^{b} , 1.60^{b}	39.9	1.20^{b} , 1.65^{b}
13	40.5		40.9	
14	56.0	1.00^{b}	55.9	0.98^{b}
15	31.6	1.30^{b} , 1.62^{b}	31.8	nd
16	81.1	4.55 m	81.0	4.94 m
17	62.2	1.80 dd (6.7, 8.8)	63.2	1.92^{b}
18	16.1	0.74 s	16.3	0.79 s
19	23.6	0.88s	23.6	0.90 s
20	42.1	1.84 m	40.2	2.16 m
21	14.4	1.10 d(6.7)	16.0	1.26^{b}
22	109.7		110.5	
23	31.6	1.25^{b} , 1.95^{b}	36.4	1.96^{b} , 2.07^{b}
24	26.3	1.30^{b} , 2.08^{b}	27.8	1.63^{b} , 1.97^{b}
25	26.9	1.80	33.1	1.86 m
26	64.9	3.34 d (10.9), 4.00 ^{b)}	74.5	3.42 ^{b)} 4.00 ^{b)}
27	15.8	0.99 d(6.9)	17.0	0.98 d(6.5)

a) Measured at 600 MHz for ¹H and 150 MHz for ¹³C with reference to pyridine- d_5 . *b*) Overlapping ¹ H-NMR signals are reported without designated multiplicities. *c*) nd: not determined.

NOESY, HSQC and HMBC) as well by comparison with literature data as curillin G (3) ,²¹⁾ asparagoside E (4) ,²²⁾ asparoside A (5) ,²³⁾ asparoside B (6) ²³⁾ and resveratrol (7) ,²⁴⁾ re-

	$\mathbf{1}$		$\overline{2}$	
	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\scriptscriptstyle\rm H}$
Glc I				
1	100.0	4.84^{b}	99.4	4.90 d(7.5)
\overline{c}	78.2	4.34^{b}	78.4	4.39^{b}
3	79.4	4.02	79.2	4.52
$\overline{4}$	71.0	3.94^{b}	71.1	4.04^{b}
5	77.6	3.82 brd (9.3)	77.6	3.85^{b}
6	62.8	4.12 ^{b)} 4.50 ^{b)}	62.1	4.20 ^{b)} 4.40 ^{b)}
Glc II				
1	101.2	5.54 d(7.5)	101.6	5.60 $d(7.5)$
\overline{c}	79.4	3.94^{b}	79.4	4.00 dd $(9.3, 9.8)$
3	78.3	4.02 dd $(8.6, 8.8)$	78.4	4.08^{b}
4	72.1	3.78(8.6, 9.8)	72.2	3.84^{b}
5	77.6	3.84 m	77.6	3.84^{b}
6	61.7	4.12, ^{b)} 4.32 ^{b)}	62.9	4.19, ^{b)} 4.52 ^{b)}
Rha I				
1	101.9	6.0s	101.9	6.06 s
$\overline{2}$	71.6	4.63 br s	71.7	4.57 br s
3	71.7	4.52^{b}	71.7	4.57 dd $(7.6, 11.2)$
4	73.5	4.22^{b}	73.1	4.26 dd (9.9, 9.1)
5	68.7	4.86 dq (5.9, 9.3)	68.8	4.89^{b}
6	18.4	1.70 d(6.2)	18.5	1.72 d (4.5)
Glc III				
$\mathbf{1}$			104.3	4.70 d(7.6)
\overline{c}			73.7	3.92^{b}
3			77.6	4.18 dd $(8.1, 8.3)$
4			71.1	3.97 dd (8.6, 8.3)
5			77.6	3.85^{b}
6			62.9	4.19, ^{<i>b</i>)} 4.38 ^{<i>b</i>)}

Table 2. ¹ H- and 13C-NMR Data of the Sugar Moieties of **1**—**2** (in Pyridine- d_5),^{*a*),*b*),*c*)} δ in ppm (*J* in Hz)

spectively. The presence of resveratrol in some plants species was of no interest until 1992 when it was reported the occurence of this compound as a potent antioxidant.²⁵⁾ This compound was previously isolated in some Liliaceae such as *Veratrum* sp.26) or *Yucca* sp.27) but to our knowledge, this is the first account of the isolation of resveratrol from the *Smilax* genus.

The antifungal activity of compounds **1**—**6** was evaluated at concentrations less than $200 \mu g/ml$ against strains of *Candida albicans*, *C. glabrata* and *C. tropicalis* (Table 3). According to our previous observations, saponins having a furostan skeleton (**2**, **4**, **5**, **6**) were devoid of activity against the tested fungi.^{5,6,10—12)} Concerning the spirostanol saponins, only compound **3**, having two sugars for the osidic chain showed an antifungal activity against the yeast tested with minimum inhibitory concentration (MIC) values between 25 and 50 μ g/ml (Table 4). Antifungal activities were also observed previously with SS_1 which differ of **3** by the (1→6) linkage of the second glucose. Sautour *et al.* showed that spirostanol saponins (SS₂ and SS₃) from *Smilax medica* having three sugars for the osidic chain exhibited antifungal activities with MIC values between 12.5 to 50 μ g/ml.⁵⁾ In the present study, compound **1** was devoid of activity. The difference between the osidic part of **1** and other saponins having three sugars $(SS_2$ and $SS_3)$ is the presence of a rhamnose unit, but espacially the number of saccharides connected at Glc I. Indeed, SS_2 and SS_3 possess a branched-chain

Table 3. Antifungal Activity of **1**—**6** and Ketoconazole against *Candida* Species Given as MIC $(\mu g/ml)^{a}$

Compounds		Candida albicans Candida glabrata Candida tropicalis	
	>200	>200	>200
$\mathbf{2}$	>200	>200	>200
3	25	25	50
$4 - 6$	>200	>200	>200
Ketoconazole ^{b)}	1.56	1.56	3.12

a) Compounds with MIC values $>$ 200 μ g/ml are considered not active. *b*) Positive control.

Table 4. Antifungal Activity of **1**, **3** and Other Spirostanol Saponins $(SS₁—SS₃)$ According to the Osidic Part at the Position C-3

Osidic part at the position C-3	MIC values against C. albicans, C. glabrata Ref. and C. tropicalis	
$3 \quad : \beta$ -D-Glc- $(1 \rightarrow 4)$ - β -D-Glc SS_1 : β -D-Glc- $(1\rightarrow 6)$ - β -D-Glc SS_2 : β -D-Glc- $(1\rightarrow 6)$ -[β -D-Glc- $(1\rightarrow 4)$]- β -D-Glc $SS_3 : \beta$ -D-Glc-(1->6)-[β -D-Glc-(1->2)]- β -D-Glc : α -L-Rha- $(1\rightarrow 2)$ - β -D-Glc- $(1\rightarrow 2)$ - β -D-Glc $\mathbf{1}$	25 to 50 μ g/ml 6.25 to 25 μ g/ml 12.5 to 50 μ g/ml 25 to 50 μ g/ml $>$ 200 μ g/ml	6 5 5

trisacharride moiety (Table 4), while the osidic chain of **1** is linear. The primary mode of action of saponins is believed to be through interaction with sterols of the plasma membrane,²⁸⁾ and the presence of a linear-chain trisaccharide moiety at the position C-3 seems to reduce the antifungal activity.

Experimental

General Experimental Methods IR spectra (CHCl₃) were recorded on a Perkin-Elmer 881 spectrophotometer. FAB-MS (negative-ion mode, glycerol matrix) was conducted on a JEOL SX 102 spectrometer. HR-ESI-MS was carried out on a Q-TOF 1 micromass spectrometer. Optical rotations were taken with a AA-10R automatic polarimeter. The 1D and 2D NMR spectra (¹H-¹H COSY, TOCSY, NOESY, HSQC and HMBC) were performed using a UNITY-600 spectrometer at the operating frequency of 600 MHz on a Varian INOVA 600 instrument equipped with a SUN 4 L-X computer system (600 MHz for 1 H and 150 MHz for 13 C spectra). All chemical shifts (δ) are given in ppm and the samples were solubilized in pyridine d_5 (δ _C 150.3, 135.9, 123.9). GC analysis was carried out on a Thermoquest gas chromatograph using a DB-1701 capillary column $(30 \text{ m} \times 0.25 \text{ mm}, \text{i.d.})$ (J & W Scientific), with detection by FID, and the initial temperature maintained at 80 °C for 5 min and then raised to 270 °C at the rate of 15 °C/min; carrier gas: He. Compound isolations were carried out using a medium-pressure liquid chromatography (MPLC) system [Gilson M 305 pump, 25 SC head pump, M 805 manometric module, Büchi column (460×25 mm and 460×15 mm), Büchi precolumn (110 $\times15$ mm)] and silica gel 60 (Merck, 15—40 μ m). Vacuum-liquid chromatography (VLC) was performed on a C_{18} reversed phase (Merck, 25—40 μ m) (12×3 cm). TLC and HPTLC employed precoated silica gel 60 F_{254} plates (Merck). The following TLC solvent systems were used: for saponins (a) $CHCl₃–MeOH–H₂O$ (13:7:2, lower phase); for sapogenins (b) CHCl₃–MeOH (9 : 1); for monosaccharides (c) CHCl₃–MeOH–H₂O (8:5:1). Spray reagents for the saponins were: Komarowsky reagent, a mixture (5 : 1) of *p*-hydroxybenzaldehyde (2% in MeOH) and H_2SO_4 50%; for the sugars: diphenylaminephosphoric acid reagent.

Plant Material The roots of *Smilax aspera* subsp. *mauritanica* (POIR.) ARCANG. were collected in Mas de Jau from Case de Pènes (Roussillon, France) and identified by Gerard Ducerf. A voucher specimen (No. 6624) is deposited in the Herbarium of the Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Burgundy, France.

Extraction and Separation Dried powdered roots (410 g) of *S. aspera* subsp. *mauritanica* were refluxed three times with MeOH–H₂O $(7:3, 21)$,

a) The assignments were based on the DEPT, HSQC and HMBC experiment $(150 \text{ MHz}$ for ¹³C-NMR, 600 MHz for ¹H-NMR). *b*) Overlapping ¹H-NMR signals are reported without designated multiplicities. c ¹H- and ¹³C-NMR chemical shifts of substituted residues are italicized.

evaporated to dryness yielding a MeOH-H₂O extract. This was partitioned successively with hexane, CH₂Cl₂ and *n*-BuOH (each 3×200 ml) yielding after evaporation of the solvents the corresponding hexane $(1 g)$, CH₂Cl₂ (1.5 g) and *n*-BuOH (17 g) fractions. Nine grams of the *n*-BuOH residue was dissolved in MeOH and purified by precipitation with diethyl ether $(2\times250$ ml), yielding a crude saponin mixture (5.2 g). This latter was submitted to the VLC on C_{18} reversed-phase (12×3 cm) using H₂O (100 ml), MeOH–H₂O mixtures (5 : 5; 4 : 1, each 100 ml) and finally MeOH (100 ml). The fraction eluted with MeOH–H₂O $(4:1)$ (435 mg) was submitted to MPLC column chromatography (Si gel (15—40 μ m), system a), yielding 11 fractions, 1— 11. Fraction 1 was rechromatographed in the same conditions to give the pure compound **6** (5 mg). Fraction 3 was rechromatographed in the same conditions to give the pure compound **2** (6 mg). Fractions 4, 6 and 9 were rechromatographed in the same conditions to give the pure compounds **3** (9 mg), **4** (5 mg) and **5** (11 mg), respectively. The fraction eluted with 100% MeOH (200 mg) was submitted to MPLC (system a) to give 10 fractions, 1—10. Fraction 6 was concentrated to dryness, yielding the pure compound **1** (21 mg). The diethyl ether fraction (1.13 g) was submitted to MPLC column chromatography (system a) yielding the pure compound **7** (9 mg).

(25*S*)-5β-Spirostane-3β-ol 3-*O*-α-L-Rhamnopyranosyl-(1→2)-β-D-glucopyranosyl- $(1\rightarrow 2)$ -β-D-glucopyranoside (1): White amorphous powder, HR-ESI-MS (positive ion-mode) m/z : 909.5392 [M+Na]⁺, (Calcd for $C_{45}H_{74}O_{17}Na$: 909.5352). FAB-MS (negative ion mode) m/z : 885 [M-H]⁻. $[\alpha]_D^{20}$ –33.3° (*c*=0.07, MeOH). IR v_{max} (CHCl₃) cm⁻¹: 3255 (OH), 2980 (CH), 1040 (C-O-C). ¹H- and ¹³C-NMR: see Tables 1 and 2.

 $(25S)$ -3 β ,5 β ,22 α -Furostane-3,22,26-triol 3-O- α -L-Rhamnopyranosyl-(1→2)-b-D-glucopyranosyl-(1→2)-b-D-glucopyranosyl 26-*O*-b-D-Glucopyranoside (**2**): White amorphous powder, HR-ESI-MS (positive ion-mode) *m/z*: 1089.5195 [M+Na]⁺, (Calcd for C₅₁H₈₆O₂₃Na: 1045.5245). FAB-MS (negative ion mode) m/z : 1065 [M-H]⁻. [α]_D²⁰ -69.2° (*c*=0.053, MeOH). IR v_{max} (CHCl₃) cm⁻¹: 3355 (OH), 2927 (CH), 1067 (C–O–C). ¹H- and ¹³C-NMR: see Tables 1 and 2.

Acid Hydrolysis A solution of each saponin (3 mg) in 2 N aqueous $CF₃COOH$ (5 ml) was refluxed on a water bath for 3 h. After extraction with CH_2Cl_2 (3×5 ml), the aqueous layer was repeatedly evaporated to dryness with MeOH until neutral and glucose was identified by TLC with a standard using CHCl₃–MeOH–H₂O (8:5:1). Furthermore, a silylated derivated of the sugar was prepared according to the procedure previously described.²⁹⁾ L-Cysteine methyl ester hydrochloride (0.06 mol/l) and HMDS–TMCS (hexamethyldisilazane–trimethylchlorosilane, 3 : 1) were added to the aqueous residue. After centrifugation of the precipitate, the supernatant was concentrated and partitioned between n -hexane and H_2O , and the hexane layer was analyzed by GC. D-Glucose and L-rhamnose were detected.

Antifungal Activity Minimum inhibitory concentrations (MICs) were performed using the broth dilution test. 30 For these bioassays three human pathogenic yeasts were used: *Candida albicans* (IP 1180-79), *C. glabrata* and *C. tropicalis* (clinical isolates). The reference compound ketoconazole (Sigma) was used as positive control.

References

- 1) Ju Y., Jia Z. H., *Phytochemistry*, **31**, 1349—1351 (1992).
- 2) Sashida Y., Kubo S., Mimaki Y., Nikaido T., Ohmoto T., *Phytochem-*

istry, **31**, 2439—2443 (1992).

- 3) Kubo S., Mimaki Y., Sashida Y., Nikaido T., Ohmoto T., *Phytochemistry*, **31**, 2445—2450 (1992).
- 4) Bernardo R. R., Pinto A. V., Parente J. P., *Phytochemistry*, **43**, 465— 469 (1996).
- 5) Sautour M., Miyamoto T., Lacaille-Dubois M. A., *J. Nat. Prod.*, **68**, 1489—1493 (2005).
- 6) Sautour M., Miyamoto T., Lacaille-Dubois M. A., *Planta Med.*, **72**, 667—670 (2006).
- 7) Shao B., Guo H., Cui Y., Ye M., Han J., Guo D., *Phytochemistry*, **68**, 623—630 (2007).
- 8) Chung H. S., Shin C. H., Lee E. J., Hong S. H., Kim H. M., *Comp. Biochem. Physiol. C*, **135**, 197—203 (2003).
- 9) Paris R., Vaillant M., Benard M., *Ann. Pharm. Fr.*, **10**, 328—335 (1952).
- 10) Sautour M., Mitaine-Offer A. C., Miyamoto T., Dongmo A., Lacaille-Dubois M. A., *Planta Med.*, **70**, 90—92 (2004).
- 11) Sautour M., Mitaine-Offer A. C., Miyamoto T., Dongmo A., Lacaille-Dubois M. A., *Chem. Pharm. Bull.*, **52**, 1353—1355 (2004).
- 12) Sautour M., Miyamoto T., Lacaille-Dubois M. A., *Phytochemistry*, **68**, 2554—2562 (2007).
- 13) Agrawal P. K., Bunsawansong P., Morris G. A., *Phytochemistry*, **47**, 255—257 (1998).
- 14) Agrawal P. K., *Magn. Reson. Chem.*, **41**, 965—968 (2003).
- 15) Yang Q.-X., Xu M., Zhang Y.-J., Li H.-Z., Yang C.-R., *Helv. Chim. Acta*, **87**, 1248—1253 (2004).
- 16) Debella A., Haslinger E., Kunert O., Michl G., Abebe D., *Phytochemistry*, **51**, 1069—1075 (1999).
- 17) Agrawal P. K., Jain D. C., Pathak A. K., *Magn. Reson. Chem.*, **33**, 923—953 (1995).
- 18) Li Y.-F., Hu L.-H., Lou F.-C., Hong J.-R., Li J., Shen Q., *J. Asian Nat. Prod. Res.*, **7**, 43—47 (2005).
- 19) Agrawal P. K., *Magn. Reson. Chem.*, **42**, 990—993 (2004).
- 20) Agrawal P. K., *Steroids*, **70**, 715—724 (2005).
- 21) Sharma S. C., Sharma H. C., *Phytochemistry*, **3**, 683—686 (1993).
- 22) Goryanu G. M., Nistryan A. K., *Nauka-Farm. Prakt.*, **1984**, 38—39 (1984).
- 23) Sharma S. C., Chand R., Sati O. P., *Phytochemistry*, **8**, 2075—2078 (1982).
- 24) Bangani V., Crouch N. R., Mulholland D. A., *Phytochemistry*, **51**, 947—951 (1999).
- 25) Siemann, E. H., Creasy L. L., *Am. J. Enol. Vitic.*, **43**, 49—52 (1992).
- 26) Hanawa F., Tahara S., Mizutani J., *Phytochemistry*, **31**, 3005—3007 (1992).
- 27) Oleszek W., Sitek M., Stochmal A., Piacente S., Pizza C., Cheeke P., *J. Agric. Food Chem.*, **49**, 747—752 (2001).
- 28) Bader G., Seibold M., Tintelnot K., Hiller K., *Pharmazie*, **55**, 72—74 (2000).
- 29) Haddad M., Miyamoto T., Laurens V., Lacaille-Dubois M. A., *J. Nat. Prod.*, **66**, 372—377 (2003).
- 30) Quiroga E. N., Sampietro A. R., Vattuone M. A., *J. Ethnopharmacol.*, **74**, 89—96 (2001).