Syntheses of Glycoclusters Containing a Phosphocholine Residue Related to a Glycosphingolipid from the Earthworm Pheretima hilgendorfi

Noriyasu Hada,*,^a Yukihiko Shida,^a Natsuko Negishi,^a Frank Schweizer,^b and Tadahiro Takeda*,^a

^a Faculty of Pharmacy, Keio University; 1–5–30 Shibakoen, Minato-ku, Tokyo 105–8512, Japan: and ^b Department of Chemistry, University of Manitoba; Winnipeg, Manitoba, R3T 2N2, Canada.

Received May 8, 2009; accepted July 21, 2009; published online July 24, 2009

Three types of glycoclusters related to an amphoteric glycosphingolipid found in the earthworm Pheretima hilgendorfi were synthesized. The glycoclusters were prepared from a common precursor and a simple approach for the rational design of a glycocluster was developed.

Key words glycocluster; amphoteric glycosphingolipid; Pheretima hilgendorfi; phosphocholine

In our continuing studies to investigate the relationship between the structure and biological function of glycolipids from invertebrate animal species that do not have gangliosides, we have synthesized glycolipids found in various protostomia phyla.^{1–12)} These compounds may serve as ganglioside mimics. Sugita et al. reported¹³⁾ the neogala series of glycosphingolipids, whose structures contain a β -D-Galp- $(1\rightarrow 6)$ - β -D-Galp-core and phosphocholine residue, found in the earthworm *Pheretima* (*P.*) *hilgendorfi*, and we previously synthesized two phosphocholine (PC) glycolipid analogues containing octyl residues in place of ceramide, $PC(\rightarrow 6)$ - β -D-Galp-1 \rightarrow Oct and PC(\rightarrow 6)- β -D-Galp-(1 \rightarrow 6)- β -D-Galp-1 \rightarrow Oct to investigate the biological function of zwitterionic oligosaccharides.⁶⁾ In later studies it was found that the disaccharide PC(\rightarrow 6)- β -D-Galp-1 \rightarrow Oct has immunomodulatory functions leading to induced production of interleukin (IL)-12 and tumor necrosis factor (TNF) α by macrophages and dentritic cells and others.¹⁴⁾ In a previous paper,¹²⁾ we reported on the total synthesis of two phosphocholine (PC) glycosphingolipids, PC(\rightarrow 6)- β -D-Galp-(1 \rightarrow 6)- β -D-Galp-1 \rightarrow Cer $PC(\rightarrow 6)$ - β -D-Galp-(1 $\rightarrow 6$)- β -D-Galp-(1 $\rightarrow 6$)- β -D-Galpand $1 \rightarrow Cer$ and other related analogues, in order to investigate another immunomodulatory functions of zwitterionic oligosaccharides. In addition, we also examined the potential of these newly synthesized glycosphingolipids and analogues to enhance production of IL-8 in TNF α -stimulated granulocytic HL-60 cells. Our results demonstrated that the phosphocholine and ceramide groups are potent enhancers of IL-8 production in TNF α -stimulated granulocytic HL-60 cells.

It is known that oligosaccharide chains generally interact with their protein receptors in a multivalent fashion to overcome the inherently low affinity of monovalent carbohydrate-protein interactions. Therefore, the construction of a clustered glycoconjugates is an important subject in glycoscience.^{15,16} For this reason, we developed a new synthetic method of glycoclusters containing a sugar unit and ω -amino acid.¹⁷⁾ Here we report on the synthesis of three types of glycoclusters A, B and C (Fig. 1). Phenyl core cluster A was chosen as a model cluster due to the high reactivity and rigidity of the trifunctional trimesic acid scaffold.¹⁸⁾ Glycodendrons B and C were selected based on increased flexibility and variation in the number of attached amphoteric disaccharide units. 4-Aminobutanoic acid (GABA) was used as a flexible linker unit due to expected proteolytic stability¹⁹⁾ and commercial availability.

Results and Discussion

Synthesis of Disaccharide Units 6 and 9 In order to synthesize the glycoclusters access to the disaccharide units 6 and 9 was required (Chart 1). Monosaccharide derivative 3 was obtained by condensation of phenyl 2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsilyl-1-thio- β -D-galactopyranoside (1), prepared by silulation and benzoylation of phenylthio- β -Dgalactopyranoside,²⁰⁾ with the spacer **2** in the presence of Niodosuccinimide (NIS) and trifluoromethanesulfonic acid (TfOH) in CH₂Cl₂ in 79% yield.^{21,22}) The anomeric proton of the galactose unit appeared as a doublet at δ 4.72 (d, J=7.9 Hz). Selective removal of the tert-butyldiphenylsilyl (TBDPS) group in 3 with tetrabutylammonium fluoride (TBAF) gave disaccharide acceptor 4, which was subjected to glycosylation with thioglycosyl donor 1 in the presence of NIS/TfOH to afford the desired disaccharide 5 in 89% yield. The β -glycosidic linkage was assigned on the basis of homonuclear coupling constants (H-1', δ =4.80 ppm, $J_{\text{H1'H2'}}$ =7.9 Hz). Selective removal of the Troc-protecting group from 5 by Zn-AcOH gave the primary amine 6. On the other hand, removal of the TBDPS group was achieved by treatment of 5 with TBAF to give 7. Phosphorylation with phosphoryl chloride followed by exposure of the resulting dichloroester to choline tosylate yielded choline derivative 8. Deblocking of the Troc group from 8 with Zn–AcOH produced the primary amine 9.

Synthesis of Phenyl-Core Glycocluster A Two methods were studied for the synthesis of glycocluster A (Chart 2). Initially, we attempted to install the PC group at the end of the synthesis after cluster formation. Trimesoyl chloride was selected as the core for the synthesis of the phenyl-core cluster. N-Acylation of trimesovl chloride with amine 6 in the presence of triethylamine afforded the trivalent oligosaccharide 10 in 56% yield. Removal of the TBDPS group using TBAF afforded alcohol 11 in 73% yield. Phosphorylation of alcohol **11** was carried out by a multi-step procedure using a phosphorodiamidite method.^{23,24)} Initially, **11** reacted with 2cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite followed by exposure to choline tosylate. The obtained crude product was oxidized in situ by m-chloroperbenzoic acid (mCPBA) and the cyanoethyl protecting group was removed using aqueous ammonia in methanol. Chromatographic purification of the final product afforded 6-O-phosphocholine disaccharide 12 in a low yield (9%). To improve the yield of 12 we also studied phosphorylation of 11 with phosphoryl

Fig. 1. Target Compounds

Reagents: (a) NIS, TfOH, CH₂Cl₂, MS 4 Å, **3**: 79%; **5**: 89%; (b) TBAF, AcOH, THF; **4**: 87%; **7**: 81%; (c) Zn, AcOH; **6**: quant.; **9**: quant.; (d) (i) POCl₃, Et₃N, MS 3 Å, CH₂Cl₂, (ii) choline tosylate, pyr., (iii) H₂O; 69% (three steps).

Chart 1

chloride and the resulting dichloroester was immediately converted to the phosphocholine derivative **12** using choline tosylate in 58% yield.²⁵⁾ In the second method we studied cluster formation after incorporation of the PC-group. This was achieved by coupling of phosphocholine containing disaccharide **9** with trimesoyl chloride to afford **12** in 71% yield. Finally, removal of the benzoyl groups in **12** under Zemplén conditions, followed by column chromatography (Sephadex LH-20), furnished the target phenyl-core glycocluster **A** (**13**).

Synthesis of Glycodendrons B and C We selected

amino diacid **20** as a new core unit for the preparation of glycodendrons **B** and **C**. Compound **20** required access to two building blocks 3-(benzyloxycarbonyl)-1-propanol (**14**) and 4-(4-nitro-benzenesulfonylamino)-butanoic acid benzyl ester (**16**). Benzyl ester **14** was prepared by basic hydrolysis of 4-butyrolactone using aq. NaOH followed by esterfication using benzyl bromide and tetrabutylammonium bromide in acetone in 85% yield. The second building block **16** was prepared from GABA in a two step procedure. At first, GABA was converted into benzylester under acidic conditions followed by protection of the amino group *p*-nitrobenzenesulfonyl (*p*NBS) chloride to give **16**. The two building blocks **16** with **14** were coupled using Mitsunobu conditions²⁶⁾ to produce **17**. Deblocking of the *p*NBS group with PhSH and K_2CO_3 in *N*,*N*-dimethylformamide (DMF)²⁷⁾ followed by carbamoylation with di-*tert*-butyl dicarbonate ((Boc)₂O) afforded benzyl ester **19**. Finally, basic hydrolysis of ester **19** gave dicarboxylic acid derivative **20** (Chart 3).

Reagents: (a) trimesoyl chloride, Et₃N, CH₂Cl₂, **10**: 56%, **12**: 71%; (b) TBAF, AcOH, THF, 73%; (c) (i) 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphorodiamidide, *1H*-tetrazole, CH₂Cl₂, MS 3Å, (ii) 1*H*-tetrazole, choline tosylate, (iii) mCPBA, MeOH, (iv) aq. NH₃; 9% (four steps); (d) (i) POCl₃, Et₃N, MS 3Å, CH₂Cl₂, (ii) choline tosylate, pyr., (iii) H₂O, 58% (three steps); (e) NaOMe, MeOH, 79%.

Chart 2

Next, we examined the outcome of the condensation of the core unit 20 with the PC-containing disaccharide unit 9. However, coupling of 20 with 9 in the presence of diethylcyanophosphate (DEPC) and Et₃N was not successful (data not shown). Fortunately, coupling of 20 with sugar unit 6 in the presence DEPC and Et₃N was successful to produce desired divalent derivative 21 in 73% yield. The tert-butoxycarbonyl (Boc) group of 21 was removed under acidic conditions using 50% CF₃CO₂H in CH₂Cl₂ and the generated secondary amino group was acylated using 2-(tetradecyl)hexadecanoic acid and N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide hydrochloride (EDC) to give 23 in 87% yield. Deblocking of the tert-butyldiphenylsilyl (TBDPS) group was achieved by treatment of 23 with TBAF to produce 24 in 52% yield. Phosphorylation of 24 was peformed with phosphoryl chloride, and the resulting dichloroester was immediately converted to the phosphocholine derivative 25 by exposure to choline tosvlate. Finally, de-O-benzovlation of 25 afforded symmetric glycodendron 26 (B) (Chart 4). Similarly, glycodendron 32 (C) was prepared by coupling of building blocks 20 with 22 to produce the desired tetramer derivative 27 in quantitative yield. Deblocking was performed as described above for dimer dendron 26 affording unprotected glycodendron 32 (C) (Chart 5). All of the glycoclusters described in this paper were purified by column chromatogra-

Reagents: (a) (i) NaOH, H₂O, (ii) BnBr, Bu₄NBr, acetone, 85%; (b) BnOH, TsOH, toluene, 98%; (c) *p*NsCl, Et₃N, CH₂Cl₂, 88%; (d) Ph₃P, DEAD, CH₂Cl₂, 78%; (e) PhSH, K₂CO₃, MeCN, 93%; (f) (Boc)₂O, Et₃N, CH₂Cl₂, 61%; (g) NaOH, H₂O, dioxane, quant.

Chart 3

 $Reagents: (a) DEPC, Et_3N, DMF, 73\%; (b) TFA, CH_2Cl_2, 75\%; (c) 2-(tetradecyl) hexadecanoic acid, EDC, DMAP, CH_2Cl_2, 87\%; (d) TBAF, AcOH, THF, 52\%; (e) (i) POCl_3, Et_3N, MS 3 Å, CH_2Cl_2, (ii) choline tosylate, pyr., (iii) H_2O, 54\% (three steps); (f) NaOMe, MeOH. 84\%.$

 $Reagents: (a) DEPC, Et_3N, DMF, 99\%; (b) TFA, CH_2Cl_2, 94\%; (c) 2-(tetradecyl) hexadecanoic acid, EDC, DMAP, CH_2Cl_2, 90\%; (d) TBAF, AcOH, THF, 85\%; (e) (i) POCl_3, Et_3N, MS 3 Å, CH_2Cl_2, (ii) choline tosylate, pyr., (iii) H_2O, 21\% (three steps); (f) NaOMe, MeOH, 80\%.$

Chart 5

phy on silica gel or Sephadex (LH 20). The solubilities of all final compounds (**A**, **B**, **C**) containing phosphocholine were excellent in methanol and in a mixture of 1:1 methanol–water. The purified final compounds were characterized by commonly available techniques, such as ¹H- and ¹³C-NMR spectroscopy and time of flight mass spectrometry.

Conclusions

In summary, an efficient synthetic procedure for glycoclusters 13 (A), 26 (B) and 32 (C) containing a phosphocholine residue related to glycosphingolipids from the earthworm *Pheretima hilgendorfi* has been developed. It is expected that these glycocluster will induce enhanced immune responses when compared to their monovalent counterparts.

Experimental

General Methods Optical rotations were measured with a Jasco P-1020 digital polarimeter. ¹H- and ¹³C-NMR spectra were recorded with a JMN A500 FT NMR spectrometer with Me₄Si as the internal standard for solutions in CDCl₃ CD₃OD. Matrix assisted laser desorption/ionization-time of flight (MALD1-TOF)-MS was recorded on a Perseptive Voyager RP mass spectrometer. High-resolution mass spectra were recorded on a JEOL JMS-700 under FAB conditions. TLC was performed on Silica Gel 60 F254 (E. Merck) with detection by quenching of UV fluorescence and by charring with 10% H₂SO₄. Column chromatography was carried out on Silica Gel 60 (E. Merck).

6-*N*-(2,2,2-Trichloroethoxycarbonyl)aminohexyl 2,3,4-Tri-*O*-benzoyl-6-*O*-(*tert*-butyldiohenylsilyl)-β-D-galactopyranoside (3) A solution of compound 1 (2.0 g, 2.4 mmol) and 2 (1.4 g, 4.9 mmol) containing activated MS 4 Å (2.0 g) in dry CH₂Cl₂ (10 ml) was stirred under an atmosphere of argon for 2 h at room temperature. After cooling to 0 °C, successively NIS (1.1 mg, 4.9 mmol) and TfOH (112 µl, 1.3 mmol) were added and stirring was continued at 0 °C for 30 min, then neutralized with Et₃N. The reaction mixture was filtered, and the filtrate was washed with aqueous sodium thiosulfate, dried (MgSO₄), and concentrated. The product was purified by silica gel column chromatography (toluene: acetone=6:1) as the eluent to give 3 (1.9 g, 79%). $[\alpha]_D^{24}$ +90.3 (*c*=1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ: 8.04—7.09 (15H, m, 3Ph), 6.04 (1H, d, J_{3,4}=2.4 Hz, H-4), 5.70 (1H dd, **6-N-(2,2,2-Trichloroethoxycarbonyl)aminohexyl 2,3,4-Tri-***O***-benzoyβ**-**b**-**galactopyranoside (4)** A solution of **3** (1.0 g, 0.99 mmol) and acetic acid (0.2 ml, 3.0 mmol) in THF (2.5 ml) was treated with 1 M TBAF in THF (2.0 ml, 2.0 mmol) at room temperature and then was stirred for 12 h. After concentration, the residue was added to the water, extracted with CHCl₃, and the organic layer was proceeded as usual. The product was purified by silica gel column chromatography (toluene: acetone=4:1) as eluent to give **4** (667 mg, 87%). MALDI-TOF-MS: Calcd for C₃₆H₃₈Cl₁₃NNaO₁₁: *m/z* 788. Found: 788.9 [M+Na]⁺.

6-N-(2,2,2-Trichloroethoxycarbonyl)aminohexyl 2,3,4-Tri-O-benzoyl-6-O-(tert-butyldiphenylsilyl)-β-D-galactopyranosyl-(1→6)-2,3,4-tri-Obenzoy- β -D-galactopyranoside (5) A solution of compound 1 (2.2 g, 2.6 mmol) and 4 (1.7 g, 2.2 mmol) containing activated MS 4 Å (1.7 g) in dry CH₂Cl₂ (9.0 ml) was stirred under an atmosphere of argon for 2 h at room temperature. After cooling to 0 °C, successively NIS (0.74 g, 3.3 mmol) and TfOH (39.0 µl, 0.44 mmol) were added and stirring was continued at 0 °C for 30 min, then neutralized with Et₃N. The reaction mixture was filtered, and the filtrate was washed with aqueous sodium thiosulfate, dried (MgSO₄), and concentrated. The product was purified by silica gel column chromatography (toluene: acetone=10:1) as the eluent to give 5 (2.9 g, 89%). $[\alpha]_{D}^{2}$ +93.0 (c=1.4, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ : 8.05—7.04 (40H, m, 8Ph), 6.00 (1H, d, J_{3',4'}=3.7 Hz, H-4'), 5.81 (1H, d, J_{3,4}=3.7 Hz, H-4), 5.68—5.63 (2H, m, H-2, 2'), 5.66 (1H, dd , J_{2'3'}=10.4 Hz, H-3'), 5.48 (1H, dd, $J_{2,3}$ =10.4 Hz, H-3), 4.80 (1H, d, $J_{1',2'}$ =7.9 Hz, H-1'), 4.73—4.68 (2H, m, COOC<u>H</u>₂CCl₃), 4.57 (1H, d, $J_{1,2}$ =7.9 Hz, H-1'), 4.09—4.06 (2H, m, H-5', 6'a), 3.97 (1H, t, $J_{5,6}$ =7.3 Hz, H-5), 3.80 (1H, dd, $J_{5,6'}$ =5.5 Hz, H-5'), 4.61 (1H, Hz, Hz), 4.61 (1H, Hz), 4.61 (1 $J_{6'a,6'b}$ =11.6 Hz, H-6'b), 3.63—3.58 (3H, m, H-6a, 6b, CH₂C<u>H</u>₂O), 3.22– 3.17 (1H, m, CH₂C<u>H</u>₂O), 3.02–2.98 (2H, dd, C<u>H</u>₂NH), 1.34–0.95 (8H, m, $CH_2 \times 4$) 0.92 (9H, s, t-Bu); ¹³C-NMR (125 MHz, CDCl₃) δ : 165.6, 165.4, 165.3, 165.1, 135.5, 133.4, 133.2, 130.0, 129.9, 129.8, 129.74, 129.69, 129.66, 129.5, 129.0, 128.5, 128.4, 128.3, 128.2, 127.7, 127.5, 101.5, 101.1,

74.4, 73.2, 71.9, 71.6, 70.1, 69.9, 69.8, 68.6, 67.8, 67.6, 60.8, 41.0, 29.4, 29.0, 26.5, 26.1, 25.4, 18.9; MALDI-TOF-MS: Calcd for $C_{79}H_{78}Cl_3NNaO_{19}Si: m/z$ 1500.4. Found: 1500.7 [M+Na]⁺.

6-Aminohexyl 2,3,4-Tri-O-benzoyl-6-O-(tert-butyldiphenylsilyl)-β-Dgalactopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-benzoy- β -D-galactopyranoside (6)To a solution of 5 (936 mg, 0.63 mmol) in acetic acid (5 ml) was added zinc powder (2.0 g). The reaction mixture was stirred at 50 °C for 2 h. After completion of the reaction, the mixture was filtered off and washed with CHCl₂. The filtrate was concentrated and purified by silica gel column chromatography (chloroform:methanol=8:1) to give 6 (827 mg, quant.). $\left[\alpha\right]_{D}^{24}$ +93.0 $(c=1.4, \text{CHCl}_3); {}^{1}\text{H-NMR} (500 \text{ MHz}, \text{CDCl}_3) \delta: 8.05-7.04 (40\text{H}, \text{m}, 8\text{Ph}),$ 6.00 (1H, d, *J*_{3,4}=3.7 Hz, H-4), 5.81 (1H, d, *J*_{3',4'}=3.1 Hz, H-4'), 5.69—5.63 (2H, m, H-2, 2'), 5.58 (1H, dd, H-3'), 5.48 (1H, dd, H-3), 4.80 (2H, brs, J_{1',2'}=7.9 Hz, NH, H-1') 4.73-4.68 (2H, m, COOCH₂CCl₃), 4.57 (1H, d, J₁₂=7.9 Hz, H-1), 4.09–4.06 (2H, m, H-5', 6'a), 3.97 (1H, t, H-5), 3.80 (1H, dd, H-6'b), 3.63-3.58 (3H, m, H-6, O-CH₂), 3.22-3.17 (1H, m, O-CH2), 3.02-2.98 (2H, m, N-CH2), 1.33-0.92 (8H, m, alkyl); 13C-NMR $(125 \text{ MHz}, \text{ CDCl}_3) \delta$: 165.6, 165.4, 165.3, 165.1, 135.5, 133.9, 135.35, 133.2, 133.1, 132.6, 130.0, 129.9, 129.8, 129.74, 129.69, 129.66, 129.5, 129.0, 128.5, 128.4, 128.3, 128.2, 127.7, 127.5, 101.5 (C-1), 101.1 (C-1'), 74.4, 73.6, 73.2, 71.9, 71.6, 70.1, 69.9, 69.8, 68.6, 67.8, 67.6, 60.8, 41.0, 29.4, 29.0, 26.5, 26.1, 25.4, 18.9; MALDI-TOF-MS: Calcd for C₇₆H₇₇NNaO₁₇Si: m/z. 1327.5. Found: 1327.7 [M+Na]⁺

6-N-(2,2,2-Trichloroethoxycarbonyl)aminohexyl 2,3,4-Tri-O-benzoyl- β -D-galactopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzoy- β -D-galactopyranoside (7) A solution of 5 (2.4 g, 1.59 mmol) and acetic acid (0.27 ml, 4.77 mmol) in THF (8.0 ml) was treated with 1 M TBAF in THF (3.2 ml, 3.2 mmol) at room temperature and then was stirred for 12 h. After concentration, the residue was added to the water, extracted with CHCl₃, and the organic layer was proceeded as usual. The product was purified by silica gel column chromatography (toluene: acetone=6:1) as eluent to give 7 (1.6 g, 81%). $[\alpha]_{D}^{24}$ +121.0 (c=1.0, CHCl₂). ¹H-NMR (500 MHz, CDCl₂) δ : 8.12—7.14 (30H, m, 6Ph), 5.93 (1H, d, J_{3',4'}=3.7 Hz, H-4'), 5.83—5.78 (2H, m, H-2', 4), 5.69 (1H, dd, J_{1,2}=7.1 Hz, J_{2,3}=10.4 Hz, H-2), 5.57—5.52 (2H, m, H-3, 3'), 4.89 (1H. t, NH), 4.85 (1H, d, J_{1',2'}=7.9 Hz, H-1'), 4.73-4.68 (2H, m, COOCH₂CCl₃), 4.64 (1H, d, H-1), 4.16-4.10 (2H, m, H-5', 6'a), 3.95 (1H, t, $J_{5,6}=6.7$ Hz, H-5), 3.89 (1H, dd, $J_{5,6'b}=6.1$ Hz, $J_{6'a,6'b}=9.8$ Hz, H-6'b), 3.71-3.65 (2H, m, H-6a, CH₂CH₂O), 3.50-3.49 (1H, br, H-6b), 3.22-3.16 (1H, m, CH₂CH₂O), 3.02 (2H, q, CH₂NH), 1.40–1.10 (8H, m, CH₂× 4). ¹³C-NMR (125 MHz, CDCl₃) δ : 166.5, 165.54, 165.46, 165.2, 165.1, 154.4, 137.8, 137.7, 133.5, 133.3, 133.2, 133.1, 130.1, 129.9, 129.7, 129.4, 129.3, 129.02, 128.97, 128.8, 128.74, 128.66, 128.6, 128.5, 128.33, 128.25, 128.2, 127.9, 125.2, 101.5, 101.3, 95.7, 74.4, 73.0, 71.7, 71.6, 70.0, 69.9, 69.81, 68.77, 68.6, 68.1, 60.5, 41.0, 29.3, 29.0, 26.1, 25.4, 21.4; MALDI-TOF-MS: Calcd for C63H60Cl3NNaO19: m/z 1262.3. Found: 1262.1 [M+ Na]⁺

6-N-(2,2,2-Trichloroethoxycarbonyl)aminohexyl 2,3,4-Tri-O-benzoyl-6-O-phosphorylcoline-β-D-galactopyranosyl-(1→6)-2,3,4-tri-O-benzoy- β -D-galactopyranoside (8) To a solution of 7 (200 mg, 0.15 mmol) and MS 3 Å (200 mg) in dry CH₂Cl₂ (3.0 ml) was added phosphoryl chloride (15.7 μ l, 0.17 mmol) and triethylamine (64 μ l, 0.46 mmol) at -10 °C under Ar. The solution was stirred for 1.5 h at the room temperature. To this were added pyridine (3 ml) and then choline tosylate (84.3 mg, 0.31 mmol) at 0 °C. This solution was stirred for 10 h at room temperature, and were added H₂O (1 ml) and stirred for 1 h at the same temperature. After that, the solution was filtered and concentrated. The product was purified by Iatrobeads column chromatography (CHCl₃: MeOH: H₂O=8:5:1) as eluent to give 8 (147 mg, 69%). $[\alpha]_D^{24}$ +85.4 (c=3.7, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ: 8.06—7.08 (30H, m, 6Ph), 5.93 (1H, d, J₃₄=2.4 Hz, H-4), 5.81 (1H, d, $J_{3',4'}=3.2$ Hz, H-4'), 5.70 (1H, dd, $J_{1',2'}=7.9$ Hz, $J_{2',3'}=9.8$ Hz, H-2'), 5.66 (1H, dd, J_{2,3}=10.4 Hz, H-2), 5.51—5.48 (2H, m, H-3, 3), 4.99 (1H, t, NH) 4.94 (1H, d, H-1'), 4.73-4.67 (2H, m, COOCH₂CCl₃), 4.62 (1H, d, J_{1,2}= 7.9 Hz, H-1), 4.35 (1H, br, H-6'a) 4.17-4.03 (5H, m, H-5, 6'b, 6a, POCH2CH2), 3.84-3.54 (5H, m, H-5, 6b, POCH2CH2, CH2CH2O), 3.28-3.26 (1H, m, CH₂C<u>H</u>₂O), 3.18 (9H, s, N(CH₃)₃), 3.02–2.97 (2H, m, CH₂NH), 1.31–1.05 (8H, m, CH₂×4); ¹³C-NMR (125 MHz, CDCl₃) δ : 165.7, 165.4, 165.3, 165.1, 154.4, 143.5, 139.3, 133.4, 133.2, 133.1, 129.9, 129.8, 129.6, 129.5, 129.4, 129.2, 129.1, 129.0, 128.8, 128.6, 128.5, 128.3, 128.1, 125.8, 101.2, 100.8, 74.3, 72.8, 72.4, 71.7, 69.9, 69.6, 69.5, 68.7, 68.0, 67.6, 66.0, 61.9, 59.2, 54.1, 45.7, 40.9, 29.3, 28.9, 26.0, 25.3, 21.1, 8.48; MALDI-TOF-MS: Calcd for C68H73Cl3N2O22P: m/z 1404. Found: 1404 $[M+H]^{+}$.

6-Aminohexyl 2,3,4-Tri-O-benzoyl-6-O-phosphorylcoline- β -D-galactopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzoy- β -D-galactopyranoside (9) To a

solution of 8 (311 mg, 0.22 mmol) in acetic acid (5 ml) was added zinc powder (750 mg). The reaction mixture was stirred at 50 °C for 2 h. After completion of the reaction, the mixture was filtered off and washed with CHCl₃. The filtrate was concentrated and purified by Sephadex LH-20 column chromatography in MeOH to give 9 (285 mg, quant.). $[\alpha]_D^{24}$ +38.7 (c=4.5, MeOH). ¹H-NMR (500 MHz, CDCl₃) δ: 7.94-7.10 (30H, m, 6Ph), 5.86 (1H, d, $J_{3,4}$ =3.1 Hz, H-4), 5.77 (1H, d, $J_{3',4'}$ =3.1 Hz, H-4'), 5.63 (1H, dd, $J_{1',2'}$ =7.9 Hz, $J_{2',3'}$ =10.4 Hz, H-2'), 5.57—5.48 (3H, m, H-2, 3, 3'), 4.95 (1H, d, H-1'), 4.68 (1H, d, J_{1,2}=7.9 Hz, H-1), 4.23—4.12 (4H, m, H-5, 6'a, POCH₂CH₂), 4.05 (1H, t, *J*_{5',6'a}=4.9 Hz, *J*_{5',6'b}=10.4 Hz, H-5'), 3.93 (1H, br, H-6a), 3.81 (1H, dd, $J_{6'a,6'b}=9.7$ Hz, H-6'b), 3.59—3.49 (3H, m, POC<u>H</u>₂-CH₂, CH₂C<u>H</u>₂O), 3.29—3.26 (1H, m, CH₂C<u>H</u>₂O), 3.09 (9H, s, N(CH₃)₃), 2.61 (2H, t, CH₂NH), 1.31–1.07 (8H, m, CH₂×4), 0.92 (9H, s, t-Bu). ¹³C-NMR (125 MHz, CDCl₃) δ: 165.3, 165.1, 165.01, 164.96, 164.93, 133.05, 132.98, 132.8, 132.7, 129.12, 129.08, 128.9, 128.8, 128.7, 128.61, 128.56, 128.5, 128.4, 128.2, 128.1, 128.02, 127.95, 127.8, 127.64, 127.57, 100.5, 100.1, 71.9, 71.6, 71.2, 69.6, 69.3, 69.0, 68.2, 67.3, 66.8, 65.6, 61.8, 58.5, 56.6, 53.2, 48.2, 38.7, 28.4, 26.7, 25.3, 24.7, 16.9; MALDI-TOF-MS: Calcd for $C_{65}H_{72}N_2O_{20}P$: m/z 1231. Found : 1231 $[M+H]^+$

N,N',N"-Tri-{6-[2,3,4-tri-O-benzoyl-6-O-(tert-butyldiphenylsilyl)-β-Dgalactopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-benzov- β -D-galactopyranoslyoxy]hexyl}-1,3,5-benzenetriamide (10) To a solution of 6 (830 mg, 0.63 mmol) in CH₂Cl₂ (5 ml) were added triethylamine (0.12 ml, 0.85 mmol) and trimesoyl chloride (35.0 mg, 0.13 mmol). The mixture was stirred for 15 min at room temperature. After completion of the reaction, the mixture was concentrated. The product was purified by silica gel column chromatography (toluene: acetone=6:1) as eluent to give 10 (306 mg, 56%). $[\alpha]_{D}^{24}$ +71.4 $(c=6.9, \text{ CHCl}_3)$; ¹H-NMR (500 MHz, CDCl₃) δ : 8.32 (3H, S, Ph), 8.27– 7.04 (120H, m, 24Ph), 6.34 (3H, t, NH), 6.02 (3H, d, J_{3,4}=3.7 Hz, H-4), 5.82 $(3H, d, J_{3'4'}=3.7 \text{ Hz}, H-4'), 5.69-5.63 (6H, m, H-2, 2'), 5.59 (3H, dd, dd)$ $J_{2',3'}=10.4\,\text{Hz}, \text{H-3'}), 5.50 \text{ (3H, dd, } J_{2,3}=10.4\,\text{Hz}, \text{H-3}), 4.81 \text{ (3H, d,}$ J_{1',2'}=7.9 Hz, H-1'), 4.59 (3H, d, J_{1,2}=7.9 Hz, H-1), 4.09–4.07 (6H, m, H-5', 6'a), 3.98 (3H, t, $J_{5.6}=7.3$ Hz, H-5), 3.80 (3H, dd, $J_{5'.6b'}=9.1$ Hz, J_{6'a6'b}=11.6 Hz, H-6'b), 3.63-3.58 (6H, m, H-6, CH₂CH₂O), 3.24-3.17 (9H, m, CH₂CH₂O, CH₂NH), 1.34–0.96 (24H, m, CH₂×12), 0.92 (27H, s, *t*-Bu); ¹³C-NMR (125 MHz, CDCl₃) δ : 165.6, 165.4, 165.1, 135.5, 133.37, 133.35, 133.1, 132.7, 132.5, 130.0, 129.9, 129.8, 129.71, 129.68, 129.6, 129.5, 129.0, 128.5, 128.4, 128.3, 128.2, 127.7, 127.5, 101.4, 101.1, 73.6, 73.1, 71.9, 71.6, 70.1, 69.9, 69.8, 68.6, 67.8, 67.6, 60.7, 40.1, 29.2, 29.0, 26.5, 26.4, 25.5, 18.8; MALDI-TOF-MS: Calcd for C237H231N3NaO54Si3: m/z 4089. Found: 4091 [M+Na]⁺.

N,N',N''-Tri-{6-[2,3,4-tri-O-benzov]- β -D-galactopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzoy-β-D-galactopyranoslyoxy]hexyl}-1,3,5-benzenetriamide (11) Compound 11 was prepared from 10 (256 mg) as described for preparation of 4, yielding 154 mg (73%). $[\alpha]_D^{24}$ +122.3 (c=0.5, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ: 8.33 (3H, s, Ph), 8.25-7.14 (90H, m, 18Ph), 6.66 (3H, t, NH), 5.91 (3H, d, $J_{3',4'}{=}3.7\,{\rm Hz},\,{\rm H}{-}4'),\,5.81{-}{-}5.78$ (6H, m, H-4, 2'), 5.69 (3H, dd, J_{1,2}=7.9 Hz, J_{2,3}=10.4 Hz, H-2), 5.58—5.51 (6H, m, H-3, 3'), 4.90 (3H, d, J_{1',2'}=7.9 Hz, H-1'), 4.64 (3H, d, H-1), 4.15-4.09 (6H, m, H-5', 6'a), 4.00 (3H, t, $J_{5.6}$ =6.7 Hz, H-5), 3.92 (3H, dd, $J_{5'.6b'}$ =6.7 Hz, $J_{6'a,6'b} = 11.0 \text{ Hz}, \text{ H-6'a}, 3.78 - 3.66 (6\text{H}, \text{m}, \text{H-6b}, \text{CH}_2\text{CH}_2\text{O}), 3.65 - 3.33$ (6H, m, H-6a, CH₂CH₂O), 2.99 (3H, t, OH), 1.40–1.16 (24H, m, CH₂×12); ¹³C-NMR (125 MHz, CDCl₃) δ : 166.54, 165.6, 165.5, 165.2, 135.1, 130.1, 129.9, 129.7, 129.4, 129.3, 129.04, 128.99, 128.8, 128.7, 128.6, 128.5, 128.4, 128.34, 128.26, 128.2, 125.3, 101.4, 101.3, 74.0, 73.2, 71.8, 71.7, 70.0, 69.9, 69.7, 68.8, 68.7, 68.0, 60.5, 40.1, 29.2, 29.0, 26.3, 25.4; MALDI-TOF-MS: Calcd for C₁₈₉H₁₇₇N₃NaO₅₄: m/z 3375. Found: 3377 [M+Na]⁺

N,N',N"-Tri-{6-[2,3,4-tri-O-benzoyl-6-O-phosphorylcoline-β-D-galactopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-benzoy- β -D-galactopyranoslyoxy]hexyl}-1,3,5-benzenetriamide (12) A: method (c); To a solution of 11 (74 mg, 31 µmol) and MS 3 Å (150 mg) in dry CH₂Cl₂ (2.0 ml) was added 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphorodiamidite (61 µl, 0.19 mmol) at room temperature under Ar. The solution was stirred for 0.5 h at the room temperature. To this were added 1H-tetrazole (27 mg, 0.39 mmol) and then choline tosylate (142 mg, 0.52 mmol) at room temperature. This solution was stirred for 4 h at room temperature, and was added MeOH (2 ml) and mCPBA (27 mg, 0.16 mmol) and stirred for 1 h at the same temperature. After that, the mixture was added 30% aq. NH₃ (2 ml) and stirred for 1 h at room temperature. The solution was filtered through a pad of Celite and concentrated. The product was purified by Iatrobeads column chromatography $(CHCl_3: MeOH: H_2O=8:5:1)$ as eluent to give 12 (10 mg, 9%). B: method (d); To a solution of 11 (73 mg, $30 \,\mu$ mol) and MS 3 Å (73 mg) in dry CH_2Cl_2 (2 ml) was added phosphoryl chloride (14.9 μ l, 0.10 mmol) and triethylamine (38 μ l, 0.27 mmol) at -10 °C under Ar. The solution was stirred

for 1 h at the room temperature. To this were added pyridine (2 ml) and then choline tosylate (50.1 mg, 0.18 mmol) at 0 °C. This solution was stirred for 10 h at room temperature, and were added H₂O (1 ml) and stirred for 1 h at the same temperature. After that, the solution was filtered and concentrated. The product was purified by Iatrobeads column chromatography (CHCl₂: MeOH: $H_2O=8:5:1$) as eluent to give 12 (67.3 mg, 58%). C: To a solution of 9 (239 mg, 0.19 mmol) in CH₂Cl₂ (2 ml) were added triethylamine (56.8 μ l, 0.40 mmol) and trimesoyl chloride (8.6 mg, 0.32 mmol). The mixture was stirred for 15 min at room temperature. After completion of the reaction, the mixture was concentrated. The product was purified by Iatrobeads column chromatography (CHCl₃: MeOH: H₂O=8:5:1) as eluent to give 12 (88.4 mg, 71 %). $[\alpha]_D^{24}$ +89.5 (c=2.2, MeOH); ¹H-NMR (500 MHz, CDCl₃) δ : 8.63 (3H, s, Ph), 8.33-7.11 (90H, m, 18Ph), 5.95 (3H, d, J_{3,4}=3.1 Hz, H-4), 5.89 (3H, d, $J_{3',4'}$ =1.8 Hz, H-4'), 5.72 (3H, dd, $J_{1',2'}$ =7.9 Hz, $J_{2',3'}$ =10.4 Hz, H-2'), 5.66-5.64 (9H, m, H-2, 3, 3'), 5.06 (3H, d, H-1'), 4.81 (3H, d, $J_{1,2}=7.9$ Hz, H-1), 4.36—4.30 (6H, m, H-5', 6'a), 4.22 (6H, br dd, $\begin{array}{l} \label{eq:poch_2CH_2CH_2), 4.16 (3H, t, J_{5,6a} = 4.9 \, \text{Hz}, J_{5,6b} = 10.4 \, \text{Hz}, \text{H-5}), 4.01 (3H, \text{br} \, \text{dd}, \\ \mbox{H-6'a), 3.91} \\ -3.82 \ (6H, m, \text{H-6b}, 6), 3.66 \\ -3.62 \ (3H, m, \text{CH}_2\text{CH}_2\text{O}), \end{array}$ 3.59-3.62 (6H, m, POCH₂CH₂), 3.34-3.32 (3H, m, CH₂CH₂O), 3.25-3.22 (6H, m, NHCH₂), 3.18 (18H, s, N(CH₃)₃), 1.41-1.16 (24H, m, CH₂×12); ¹³C-NMR (125 MHz, CDCl₃) δ : 211.6, 168.1, 166.9, 166.8, 166.7, 166.5, 149.8, 145.9, 136.5, 134.5, 134.3, 130.7, 130.4, 130.4, 130.33, 130.29, 129.91, 129.86, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 119.5, 102.0, 101.7, 78.9, 78.7, 78.43, 73.4, 73.3, 72.9, 71.4, 73.3, 72.9, 71.4, 71.1, 70.6, 69.9, 69.1, 68.6, 67.9, 67.9, 67.3, 63.6, 60.1, 54.7, 49.5, 48.5, 47.7, 40.9, 30.03, 29.97, 27.4, 26.4, 9.16; MALDI-TOF-MS: Calcd for C₂₀₄H₂₁₄N₆O₆₃P₃: *m/z* 3847. Found: 3853 [M+H]⁺.

N,*N*^{*},*N*^{*},**Tri-**[6-[6-*O*-phosphorylcoline-β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyloxy]hexyl}-1,3,5-benzenetriamide (13; A) To a solution of 12 (81.1 mg, 23 µmol) in MeOH (3.0 ml) was added NaOMe (15 mg) at room temperature and the mixture was stirred for 10 h, then neutralized with Amberlite IR 120 [H⁺]. The mixture was filtered off and concentrated. The product was purified by Sephadex LH-20 column chromatography in MeOH : H₂O (1:1) to give 13 (36.0 mg, 79%). [α]_D²⁴ - 8.9 (*c*=0.9, MeOH : H₂O=1:1); ¹H-NMR (500 MHz, CD₃OD) δ : 8.29 (s, 3H, Ph), 4.41 (d, 3H, *J*_{1/2}=7.9 Hz, H-1'), 4.32 (d, 3H, *J*_{1/2}=7.9 Hz, H-1); ¹³C-NMR (125 MHz, CD₃OD) δ : 169.1, 136.4, 129.6, 104.6, 104.1, 74.83, 74.75, 74.1, 74.0, 72.0, 71.9, 69.8, 69.5, 67.2, 65.5, 60.5, 55.0, 49.9, 41.1, 30.0, 29.7, 27.3, 26.1; MALDI-TOF-MS: Calcd for C₇₈H₁₄₁N₆NaO₄₅P₃: *m/z* 1997. Found: 1996 [M+H]⁺.

3-(Benzyloxycarbonyl)-1-propanol (14) To a solution of 4-butyrolactone (5.1 g, 59.2 mmol) in H₂O (59 ml) was added NaOH (2.4 g, 59.2 mmol) at 70 °C and the mixture was stirred for 24 h. Toluene was added and evaporated. To a suspension of the residue in acetone (60 ml) was added tetrabutyl-ammoniumbromide (955 mg, 2.96 mmol), BnBr (8.46 ml, 71.1 mmol). The reaction mixture was refluxed for 24 h, and then concentrated. The reaction mixture was refluxed for 24 h, and then concentrated. The reaction mixture was every direct with ethyl acetate. The extract was washed with 1 m NaHSO₄, NaHCO₃ and water, dried (MgSO₄), and concentrated. The product was purified on silica gel column chromatography (hexan : ethyl acetate=5:1) to give **14** (9.8 g, 85%). ¹H-NMR (500MHz, CDCl₃) δ : 7.31—7.23 (5H, m, Ph), 5.06 (2H, s, benzyl methylene), 3.69 (1H, br, $-OH_{2}$), 2.41 (2H, t, <u>CH₂–CO)</u>, 1.85—1.79 (2H, m, CH₂–CH₂); ¹³C-NMR (125 MHz, CDCl₃) δ : 173.0, 135.5, 127.9, 127.74, 127.67, 127.5, 127.4, 65.5, 60.7, 30.1, 27.1; MALDI-TOF-MS: Calcd for C₁₁H₁₅O₃: *m/z* 195. Found: 195 [M+Na]⁺.

4-Aminobutanoic Acid Benzyl Ester (15) To a solution of 4-aminobutanoic acid (5.2 g, 50 mmol), BnOH (25 ml, 0.24 mol) and TsOH (11 g, 60 mmol) in toluene (50 ml) was refluxed for 5 h. After the reaction, the residue was crestallized from hexane and was recrestallized from ethyl acetate/ hexane to give **15** (17.9 g, 98%).

4-(4-Nitro-benzenesulfonylamino)-butanoic Acid Benzyl Ester (16) To a solution of **15** (7.0 g, 19 mmol) in dry CH_2CI_2 (70 ml) were added *p*-nitrobenzenesulfonyl chloride (4.7 g, 21 mmol) and Et_3N (7 ml, 48 mmol), and the mixture was stirred for 18 h at 0 °C. After the reaction, the residue was successively washed with water, dried (MgSO₄), and concentrated. The product was purified by silica gel column chromatography using 10:1 toluene–acetone as eluent to give **16** (6.7 g, 88%). ¹H-NMR (500 MHz, CDCl₃) δ : 8.32 and 8.01 (4H, each d, Ns), 7.38—7.32 (5H, m, Ph), 5.24, (1H, t, NH) 5.10 (2H, s, benzyl methylene), 3.07 (2H, q, NH–<u>CH₂</u>), 2.42 (2H, t, <u>CH₂–CO), 1.86—1.81</u> (2H, m, CH₂–<u>CH₂–CH₂</u>); ¹³C-NMR (125 MHz, CDCl₃) δ : 173.0, 150.0, 145.9, 135.5, 128.6, 128.4, 124.4, 66.7, 42.7, 31.2, 24.6; MALDI-TOF-MS: Calcd For C₁₇H₁₈N₂NaO₆S: *m/z* 401.1. Found: 401.1[M+Na]⁺.

4-[Benzyloxycarbonylpropyl-(4-nitro-benzenesulfonyl)-amino]-bu-

tanoic Acid Benzyl Ester (17) To a solution of 16 (3.0 g, 7.9 mmol) and 14 (2.0 g, 10 mmol) in dry CH_2CI_2 (30 ml) was added Ph_3P (2.7 g, 10 mmol) and 40% DEAD in toluene (4.7 ml, 10 mmol) at 0 °C, and the solution was stirred for 3 h at same temperature. The mixture was washed with water, dried (MgSO₄), and concentrated. The product was purified by silica gel column chromatography using 20:1 toluene–acetone as eluent to give 17 (3.5 g, 78%). ¹H-NMR (500 MHz, CDCl₃) δ : 8.24 and 7.91 (4H, each d, Ns), 7.33—7.23 (10H, m, Ph), 5.10 (4H, s, benzyl methylene), 3.19 (4H, t, NH– CH_2 ×2), 2.37 (4H, t, CH_2 –CO×2), 1.88—1.82 (4H, m, CH_2 – CH_2 – $CH_2×2$); ¹³C-NMR (125 MHz, CDCl₃) δ : 172.1, 149.6, 145.2, 135.6, 128.8, 128.0, 124.1, 66.1, 64.0, 47.4, 30.5, 23.4; MALDI-TOF-MS: Calcd for C₂₈H₃₀N₃NaO₈S: *m/z* 577. Found: 577 [M+Na]⁺.

4-(Benzyloxycarbonylpropyl-amino)-butanoic Acid Benzyl Ester (18) To a solution of **17** (1.1 g, 1.9 mmol) in CH₃CN (10 ml) was added K₂CO₃ (790 mg, 5.8 mmol) and PhSH (790 μ l, 7.7 mmol), and the mixture was stirred for 2 h at room temperature. After concentration, the residue was diluted with CHCl₃, washed with 5% HCl, aq. NaHCO₃ and water, dried (MgSO₄), and concentrated. The product was purified by silica gel column chromatography using 30:1 CHCl₃–MeOH as eluent to give **18** (638 mg, 93%). ¹H-NMR (500 MHz, CDCl₃) & 7.36–7.29 (10H, m, 2Ph), 5.09 (4H, s, benzyl methylene), 3.00 (4H, t, NH–<u>CH₂×2</u>), 2.50 (4H, t, <u>CH₂</u>–CO×2), 2.20–2.14 (4H, m, CH₂–<u>CH₂</u>–CH₂×2); ¹³C-NMR (125 MHz, CDCl₃) & 172.0, 135.6, 128.6, 128.3, 66.5, 46.6, 31.0, 21.0; MALDI-TOF-MS: Calcd for C₂₂H₂₇NNaO₄: *m/z* 392.2. Found: 392.4 [M+Na]⁺.

4-(Benzyloxycarbonylpropyl-*tert***-butoxycarbonyl-amino)-butanoic Acid Benzyl Ester (19)** To a solution of **18** (513 mg, 1.3 mmol) in CH₂Cl₂ (30 ml) was added (Boc)₂O (352 μ l, 1.5 mmol) and Et₃N (582 μ l, 4.2 mmol), and the mixture was stirred for 18 h at room temperature. The mixture was diluted with CHCl₃, washed with water, dried (MgSO₄), and concentrated. The product was purified by silica gel column chromatography using 20:1 toluene-acetone as eluent to give **19** (400 mg, 61.2%). ¹H-NMR (500 MHz, CDCl₃) δ : 7.37—7.30 (10H, m, 2Ph), 5.11 (4H, s, benzyl methylene), 3.19 (4H, br, NH–<u>CH₂×2</u>), 2.33 (4H, t, <u>CH₂–CO×2</u>), 1.86—1.81 (4H, m, CH₂–C<u>H₂×C</u>), 1.43 (9H, s, *t*-butyl); ¹³C-NMR (125 MHz, CDCl₃) δ : 172.8, 155.5, 135.9, 128.5, 128.2, 79.5, 66.2, 46.2, 31.4, 28.4, 28.4, 23.8, 23.4; MALDI-TOF-MS: Calcd for C₂₇H₃₅NNaO₆: *m/z* 492. Found: 492 [M+Na]⁺.

4-(*tert*-**Butoxycarbonyl-carbonylpropyl-amino)-butanoic** Acid (20) To a solution of **19** (400 mg, 0.85 mmol) in 1,4-dioxane–H₂O (2:1, 6 ml) was added aq NaOH (2.0 ml), and the mixture was stirred for 5 h at room temperature. The mixture was diluted with EtOAc, washed with water, dried (MgSO₄), and concentrated to give **20** (245 mg, quant.). ¹H-NMR (500 MHz, CDCl₃) δ : 11.1 (2H, br s, COO<u>H</u>), 3.25 (4H, br, NH–<u>CH</u>₂×2), 2.36 (4H, t, CH₂–CO×2), 1.88–1.83 (4H, m, CH₂–<u>CH</u>₂–CH₂×2), 1.42 (9H, s, *t*-butyl); ¹³C-NMR (125 MHz, CDCl₃) δ : 178.6, 171.3, 80.0, 60.4, 46.1, 31.1, 28.2, 23.3, 23.1, 14.0; MALDI-TOF-MS: Calcd for C₁₃H₂₃NNaO₆: *m/z* 312. Found: 312 [M+Na]⁺.

Glycocluster 21 To a solution of core unit 20 (44 mg, 0.15 mmol) and sugar unit 6 (500 mg, 0.38 mmol) in DMF (4.0 ml) were added triethylamine (85 μ l, 0.61 mmol) and DEPC (91 μ l, 0.61 mmol). The reaction mixture was stirred for 18h at room temperature. After completion of the reaction, the mixture was extracted with CHCl3, washed with water, dried (MgSO4), and concentrated. The product was purified on silica gel column chromatography (CHCl₃: MeOH=10:1) to give **21** (413 mg, 73%). $[\alpha]_D^{25}$ +90.1 (c=4.2, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ: 8.06–7.03 (80H, m, 16Ph), 6.03 (2H, d, *J*_{3',4'}=3.7 Hz, H-4'), 5.84 (2H, d, *J*_{3,4}=3.1 Hz, H-4), 5.71—5.59 (6H, m, H-2,2', H-3'), 5.50 (2H, dd, H-3), 4.82 (2H, d, $J_{1',2'}$ =7.9 Hz, H-1'), 4.59 (2H, d, J_{1,2}=7.9 Hz, H-1), 4.14-4.06 (4H, m, H-5', H-6'a), 3.99 (2H, t, H-5) 3.84-3.80 (2H, m, H-6'b), 3.66-3.61 (6H, m, H-6, O-CH₂), 3.22 (6H, br, O-CH₂), 2NCH₂), 3.08-3.03 (4H, m, NHCH₂), 2.12 (4H, br, NHCOCH₂), 1.83-1.77 (4H, m, 2NHCOCH₂CH₂CH₂N), 1.34-0.91 (43H, m, 3t-butyl, alkyl); ¹³C-NMR (125 MHz, CDCl₃) δ: 165.5, 165.3, 165.23, 165.16, 165.1, 165.0, 156.1, 137.7, 135.4, 135.3, 133.23, 133.15, 133.03, 132.98, 132.6, 132.4, 129.9, 129.8, 129.7, 129.59, 129.56, 129.5, 129.4, 129.3, 129.0, 128.9, 128.8, 128.4, 128.3, 128.2, 128.1, 127.6, 127.4, 125.2, 101.3, 101.0, 79.6, 73.5, 73.0, 71.8, 71.6, 70.0, 69.84, 69.78, 68.5, 67.6, 67.5, 63.51, 63.46, 60.6, 53.8, 45.9, 39.3, 33.4, 29.1, 29.0, 28.9, 28.3, 26.5, 26.3, 25.4, 24.5, 23.1, 21.3, 18.7, 16.03, 15.98; MALDI-TOF-MS: Calcd for C₁₆₅H₁₇₃-N₃NaO₃₈Si₂: *m*/*z* 2883.1. Found: 2885.0 [M+Na]⁺.

Glycocluster 22 To a solution of **21** (374 mg, 0.13 mmol) in CH₂Cl₂ (2.0 ml) was added trifluoroacetic acid (400 μ l). The reaction mixture was stirred for 1 h at room temperature. After completion of the reaction, the mixture was concentrated and purified on silica gel column chromatography (chloroform : methanol=10:1) to give **22** (273 mg, 75%). [α]_D²⁵ +97.6 (*c*= 1.24, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ : 8.08—7.02 (80H, m, 16Ph),

6.28 (1H, br s, CH₂<u>NH</u>CH₂), 6.01 (2H, d, $J_{3',4'}$ =3.7 Hz, H-4'), 5.82 (2H, d, $J_{3,4}$ =3.1 Hz, H-4), 5.69—5.57 (6H, m, H-2,2', H-3'), 5.49 (2H, dd, H-3), 4.81 (2H, d, $J_{1',2'}$ =7.9 Hz, H-1'), 4.59 (2H, d, $J_{1,2}$ =8.0 Hz, H-1), 4.09—4.07 (4H, m, H-5', H-6'a), 3.98 (2H, t, H-5), 3.82—3.80 (2H, m, H-6'b), 3.62—3.59 (6H, m, H-6, O–<u>CH</u>₂), 3.06—2.83 (2H, m, O–C<u>H</u>₂), 2.82—2.33 (4H, m, CONH<u>CH</u>₂), 2.30 (4H, t, <u>CH</u>₂NH<u>CH</u>₂), 1.90 (4H, t, NHCO<u>CH</u>₂), 1.92—1.89 (4H, m, NHCOCH₂<u>CH</u>₂CH₂N), 1.26—0.88 (34H, m, 2*t*-butyl, alkyl); ¹³C-NMR (125 MHz, CDCl₁) & i172.4, 165.6, 165.4, 165.3, 165.2, 165.1, 135.5, 135.4, 133.3, 133.2, 133.13, 133.08, 132.7, 132.5, 130.0, 129.8, 129.74, 129.68, 129.63, 129.56, 129.5, 129.4, 129.1, 129.0, 128.9, 128.5, 128.4, 128.2, 127.7, 127.5, 101.4, 101.1, 73.6, 73.1, 71.8, 71.6, 70.1, 69.94, 69.88, 68.6, 67.7, 67.6, 60.6, 48.1, 39.5, 34.0, 29.1, 26.5, 25.5, 23.5, 18.8; MALDI-TOF-MS: Calcd for C₁₆₀H₁₆₅N₃NaO₃₆Si₂: *m/z* 2783.1. Found: 2785.4 [M+Na]⁺.

Glycocluster 23 To a solution of 22 (273 mg, 99 µmol) and 2-(tetradecyl) hexadecanoic acid (113 mg, 0.24 mmol) in CH₂Cl₂ (2.0 ml) were added EDC (114 mg, 0.59 mmol) and DMAP (54 mg, 0.44 mmol). The reaction mixture was stirred for 18 h at room temperature. After completion of the reaction, the mixture was extracted with chloroform, washed with water, dried (Na₂SO₄), and concentrated. The product was purified on silica gel column chromatography (toluene: acetone=5:1) to give 23 (276 mg, 87.3%). $[\alpha]_{D}^{25}$ +76.6 (c=5.7, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ : 8.05–7.03 (80H, m, 16Ph), 6.01 (2H, $J_{3'4'}$ =3.7 Hz, d, H-4'), 5.82 (2H, d, $J_{3,4}$ =3.2 Hz, H-4), 5.69—5.63 (4H, m, H-2, 2'), 5.59 (2H, dd, H-3'), 5.51—5.47 (2H, m, H-3), 4.81 (2H, d, *J*_{1'2'}=7.9 Hz, H-1'), 4.59 (2H, d, *J*_{1,2}=7.9 Hz, H-1), 4.09–4.07 (4H, m, H-5', H-6'a), 3.97 (2H, t, H-5) 3.82-3.78 (2H, m, H-6'b), 3.62-3.59 (6H, m, H-6, O-CH2), 3.36-3.30 (4H, m, CH2NCH2), 3.24-3.08 (2H, m, O-CH₂), 3.08-3.00 (4H, m, CONHCH₂), 2.61 (1H, brt, COCH), 2.16-2.14 (4H, m, NHCOCH₂), 1.83 (4H, m, NHCOCH₂CH₂CH₂N), 1.30—0.80 (92H, m, 2t-butyl, alkyl); ¹³C-NMR (125 MHz, CDCl₃) δ : 171.1, 165.6, 165.4, 165.3, 165.24, 165.15, 165.1, 135.5, 135.4, 133.2, 133.1, 132.7, 132.5, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.1, 129.0, 128.9, 128.5, 128.4, 128.3, 128.2, 127.7, 127.5, 125.3, 101.4, 101.1, 73.6, 73.1, 73.0, 71.9, 71.6, 70.1, 70.0, 69.9, 68.6, 67.7, 67.6, 60.7, 47.3, 45.1, 41.6, 39.7, 39.4, 33.2, 32.9, 31.9, 30.0, 29.6, 29.5, 29.32, 29.285, 29.14, 29.08, 27.8, 26.5, 25.6, 25.5, 25.0, 24.1, 22.7, 18.8, 14.1; MALDI-TOF-MS: Calcd for C₁₉₀H₂₂₃N₃NaO₃₇Si₂: m/z 3217. Found: 3217 [M+Na]⁺

Glycocluster 24 Compound 24 was prepared from 23 (228 mg) as described for preparation of **4**, yielding 101 mg (52%). $[\alpha]_{D}^{25}$ +105.5 (c=0.7, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ: 8.11-7.02 (6H, m, 12Ph), 5.93 (2H, brd, H-4'), 5.82-5.78 (4H, m, H-2', 4), 5.71-5.67 (2H, m, H-2), 5.56—5.52 (4H, m, H-3, 3'), 4.88 (2H, d, J_{1',2'}=7.3 Hz, H-1'), 4.64 (2H, d, J_{1,2}=7.3 Hz, H-1), 4.14—4.10 (4H, m, H-5', H-6'a), 3.98—3.91 (4H, m, H-5, 6'b), 3.72—3.65 (4H, m, H-6a, O–CH₂), 3.51—3.47 (2H, m, H-6b), 3.34 (6H, br, O-CH₂, CH₂NCH₂), 3.07 (4H, br, CONHCH₂), 2.64 (1H, br t, COCH), 2.16 (4H, br, NHCOCH₂), 1.85 (4H, br, NHCOCH₂CH₂CH₂N), 1.56—0.86 (74H, m, alkyl); ¹³C-NMR (125 MHz, CDCl₃) δ: 171.3, 166.5, 165.5, 165.2, 133.6, 166.5, 165.2, 133.6, 133.5, 133.2, 133.1, 130.1, 129.9, 129.64, 129.59, 129.4, 129.3, 129.1, 128.8, 128.71, 128.67, 128.6, 128.5, 128.34, 128.29, 128.23, 128.15, 101.4, 101.3, 74.1, 73.1, 71.8, 70.0, 69.9, 68.7, 68.6, 67.9, 60.5, 47.2, 45.2, 41.5, 39.4, 33.2, 33.0, 31.8, 29.9, 29.6, 29.5, 29.3, 29.1, 27.7, 26.5, 25.5, 25.4, 25.1, 24.1, 22.6, 14.0; MALDI-TOF-MS: Calcd for C₁₅₈H₁₈₇N₃NaO₃₇: *m/z* 2741. Found: 2741 [M+Na]⁺

Glycocluster 25 Compound 25 was prepared from 24 (101 mg) as described for preparation of **8**, yielding 61 mg (54%). $[\alpha]_D^{25} + 76.4$ (c=1.0, MeOH); ¹H-NMR (500 MHz, CD₃OD) δ: 8.07–7.20 (60H, m, 12Ph), 5.93 $(2H, d, J_{3',4'}=3.7 \text{ Hz}, H-4'), 5.89 (2H, d, J_{3,4}=3.1 \text{ Hz}, H-4), 5.73-5.60 (8H, 1.4)$ m, H-2, 2', 3, 3'), 5.10 (2H, d, J_{1',2'}=7.3 Hz, H-1'), 4.81 (2H, d, J_{1,2}=7.9 Hz, H-1), 4.35-4.33 (4H, m, H-5', H-6'a), 4.26 (4H, brs, POCH₂CH₂), 4.17-4.14 (2H, m, H-5'), 3.97 (2H, br, H-6a), 3.89-3.81 (4H, m, H-6b, 6'b), 3.63—3.51 (6H, m, POCH₂CH₂, OCH₂), 3.37—3.33 (6H, m, O-CH₂), <u>CH₂NCH₂)</u>, 3.17 (18H, s, N(CH₃)₃), 3.00–2.95 (4H, m, NHCH₂), 2.66 (1H, brt, COCH), 2.17 (4H, t×2, NCH₂CH₂CH₂CO), 1.88-1.78 (4H, m, NCH₂CH₂CO), 1.54-0.83 (74H, m, alkyl); ¹³C-NMR (125 MHz, CD₃OD) δ: 178.7, 175.0, 174.5, 167.1, 167.0, 166.9, 166.8, 166.7, 134.9, 134.8, 134.6, 134.5, 130.92, 130.89, 130.71, 130.65, 130.6, 130.5, 130.3, 130.2, 129.91, 129.87, 129.7, 129.6, 129.5, 129.4, 102.2, 73.6, 73.4, 73.3, 73.0, 71.7, 71.4, 70.7, 70.2, 69.4, 68.7, 64.1, 60.8, 54.7, 49.5, 49.3, 49.2, 49.12, 49.07, 48.9, 48.8, 48.73, 48.66, 48.5, 48.3, 47.0, 42.6, 40.4, 40.3, 34.5, 34.4, 33.7, 33.0, 31.0, 30.8, 30.7, 30.64, 30.57, 30.4, 30.3, 30.2, 28.7, 27.7, 27.6, 26.7, 25.2, 23.7, 14.5; MALDI-TOF-MS: Calcd for C₁₆₈H₂₁₂N₅O₄₃P₂: *m*/*z* 3049. Found: 3049 [M+H]⁺.

Glycocluster 26 (B) Compound **26** was prepared from **25** (39 mg) as described for preparation of **13**, yielding 22 mg (84%). $[\alpha]_{D}^{25}$ -11.1 (*c*=0.3,

MeOH); ¹H-NMR (500 MHz, CD₃OD) δ : 4.30 (2H, d, $J_{1',2'}$ =7.9 Hz, H-1'), 4.21—4.17 (6H, m, H-1, 2POCH₂), 3.07 (18H, s, 2N(CH₃)₃); ¹³C-NMR (125 MHz, CD₃OD) δ : 178.8, 175.2, 174.7, 105.2, 104.9, 75.4, 75.3, 75.0, 74.8, 74.7, 72.6, 72.4, 70.9, 70.04, 69.98, 69.25, 67.6, 66.1, 60.58, 6055, 54.8, 48.1, 47.0, 42.5, 40.5, 40.4, 34.4, 33.7, 33.0, 30.9, 30.7, 30.6, 30.5, 30.4, 30.3, 28.6, 27.9, 27.8, 26.8, 26.7, 25.1, 23.7, 14.5, 1.5; MALDI-TOF-MS: Calcd for C₈₄H₁₆₄N₅O₃₁P₂: *m*/*z* 1801. Found: 1801 [M+H]⁺.

Glycocluster 27 Compound 27 was prepared from 20 (15 mg, 50 µmol) and 22 (346 mg, 0.13 mmol) as described for preparation of 21, yielding 287 mg (99%). $[\alpha]_{D}^{25}$ +84.0 (c=3.2, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ: 7.98-6.95 (160H, m, 32Ph), 5.93 (4H, d, H-4'), 5.75 (4H, d, H-4), 5.61-5.54 (8H, m, H-2,2'), 5.51 (4H, dd, H-3'), 5.41 (4H, dd, H-3), 4.73 (4H, d, $J_{1',2'}$ =7.3 Hz, H-1'), 4.51 (4H, d, $J_{1,2}$ =7.9 Hz, H-1), 4.02–4.00 (8H, m, H-5', H-6'a), 3.89 (4H, t, H-5), 3.73-3.70 (4H, m, H-6'b), 3.53-3.51 (12H, m, H-6, O-CH₂), 3.25-3.12 (16H, m, O-CH₂, CH₂NCH₂), 2.95-2.93 (8H, m, 4CONHCH2), 2.22-2.05 (12H, m, 6NHCOCH2), 1.85-1.78 (12H, m, 6NHCOCH₂CH₂CH₂N), 1.26-0.78 (78H, m, 5t-butyl, alkyl); ¹³C-NMR (125 MHz, CDCl₃) δ: 171.3, 165.6, 165.4, 165.3, 165.24, 165.19, 165.1, 155.7, 135.5, 135.4, 133.31, 133.25, 133.1, 132.7, 132.5, 130.8, 130.0, 129.9, 129.8, 129.71, 129.66, 129.6, 129.5, 129.1, 129.0, 128.9, 128.8, 128.5, 128.4, 128.3, 128.2, 127.7, 127.5, 101.4, 101.1, 79.4, 73.6, 73.1, 73.0, 71.9, 71.6, 70.1, 69.9, 68.6, 68.1, 67.7, 67.6, 60.7, 39.7, 39.5, 38.7, 32.8, 31.9, 30.3, 30.0, 29.7, 29.3, 29.1, 28.9, 28.5, 26.5, 25.54, 25.46, 24.4, 23.9, 23.7, 22.9, 22.7, 18.8, 14.1, 10.9, 1.0; MALDI-TOF-MS: Calcd for C₃₃₃H₃₄₉N₇NaO₇₆Si₄: m/z 5796.2. Found: 5795.5 [M+Na]⁺.

Glycocluster 28 Compound 28 was prepared from 27 (287 mg, 50 mmol) as described for preparation of 22, yielding 266 mg (94%). +87.6 (c=1.9, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ : 7.97– $[\alpha]_{\rm D}^{25}$ 6.95 (160H, m, Ar-H), 5.93 (4H, brs, H-4'), 5.75 (4H, brd, H-4), 5.61-5.52 (12H, m, H-2,2',3'), 5.50-5.41 (4H, m, H-3), 4.23 (4H, d×2, $J_{1',2'}$ =7.9 Hz, H-1'), 4.51 (4H, d, $J_{1,2}$ =7.9 Hz, H-1), 4.02—4.00 (8H, m, H-5', H-6'a), 3.90 (4H, t, H-5) 3.74-3.68 (4H, m, H-6'b), 3.57-3.52 (12H, m, H-6, O-CH2), 3.25-3.12 (16H, m, O-CH2, CH2NCH2) 2.92 (10H, m, CONHCH₂, CH₂NHCH₂), 2.49 (4H, br, CH₂NHCH₂CH₂CH₂CO) 2.07-2.03 (8H, m, NHCOCH2CH2CH2CH2NHCOCH2), 1.89-1.73 (12H, m, 6CONHCH2CH2CH2CONH) 1.18-0.63 (68H, m, 4t-butyl, alkyl); ¹³C-NMR $(125 \text{ MHz}, \text{ CDCl}_3) \delta$: 172.8, 172.2, 171.6, 165.6, 165.4, 165.3, 1652, 165.1, 135.5, 135.4, 133.33, 133.26, 133.1, 132.7, 132.5, 130.0, 129.9, 129.8, 129.71, 129.66, 129.6, 129.5, 129.1, 129.0, 128.9, 128.5, 128.4, 128.3, 128.2, 127.7, 127.5, 101.4, 101.1, 73.6, 73.0, 71.9, 71.6, 70.1, 69.9, 68.6, 67.7, 67.6, 60.7, 48.0, 47.3, 45.1, 39.4, 33.3, 32.6, 31.9, 30.8, 29.7, 29.3, 29.2, 29.1, 26., 25.5, 24.3, 23.6, 22.7, 18.8, 14.1, 1.0; MALDI-TOF-MS: Calcd for C₃₂₈H₃₄₁N₇NaO₇₄Si₄: m/z 5696. Found: 5696 [M+Na]⁺.

Glycocluster 29 Compound 29 was prepared from 28 (344 mg) as described for preparation of 23, yielding 331 mg (90%). $[\alpha]_D^{25}$ +86.2 (c=5.7, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ: 7.97–6.95 (160H, m, 32Ph), 5.93 (4H, d, H-4'), 5.75 (4H, d, H-4), 5.61-5.50 (12H, m, H-2,2',3'), 5.41 (4H, dd, H-3), 4.73 (4H, d×2, $J_{1',2'}$ =7.6 Hz, H-1'), 4.51 (4H, d, $J_{1,2}$ =7.9 Hz, H-1), 4.02—4.00 (8H, m, H-5', H-6'a), 3.89 (4H, t, H-5) 3.74—3.68 (4H, m, H-6'b), 3.57-3.52 (12H, m, H-6, O-CH₂), 3.25-3.12 (16H, m, O-CH₂, <u>CH₂NCH₂), 2.95–2.92 (10H, m, CONHCH₂, CH₂NHCH₂), 2.26–2.23 (4H,</u> br, CH₂NHCH₂CH₂CH₂CO), 2.05 (8H, br s, NHCO<u>CH₂CH₂CH₂CH₂NCOCH₂),</u> 1.85-1.75 (12H, br s, COCH2CH2CH2N), 1.17-0.71 (126H, m, 4t-butyl, alkyl); ¹³C-NMR (125 MHz, CDCl₃) δ: 176.5, 172.6, 172.3, 171.9, 171.4, 171.3, 167.8, 165.6, 165.4, 165.3, 165.24, 165.18, 165.1, 135.5, 135.4, 133.3, 133.1, 132.7, 132.5, 133.1, 132.5, 130.0, 129.9, 129.8, 129.71, 129.68, 129.61, 129.5, 129.4, 129.1, 129.0, 128.9, 128.5, 128.5, 128.4, 128.3, 128.2, 127.7, 127.5, 126.4, 101.5, 101.1, 77.4, 77.1, 76.8, 73.6, 73.0, 71.9, 71.6, 70.1, 69.9, 68.6, 67.6, 60.7, 47.4, 47.3, 47.2, 45.7, 45.1, 44.7, 41.4, 39.4, 33.3, 32.9, 32.7, 31.9, 30.9, 30.4, 30.1, 29.7, 29.6, 29.3, 29.2, 27.8, 26.5, 25.54, 25.47, 24.9, 24.4, 23.9, 23.6, 22.7, 18.8, 14.1; MALDI-TOF-MS: Calcd for $C_{358}H_{309}N_7NaO_{75}Si_4$: m/z 6131. Found: 6131 $[M+Na]^+$.

Glycocluster 30 Compound **30** was prepared from **29** (331 mg) as described for preparation of **24**, yielding 237 mg (85%). $[\alpha]_D^{25} + 110.5 (c=2.6, CHCl_3)$; ¹H-NMR (500 MHz, CDCl_3) δ : 8.10—7.20 (120H, m, 24Ph), 5.93 (4H, br s, H-4'), 5.82—5.78 (8H, m, H-2', 4), 5.69 (4H, br t, H-2), 5.57—5.52 (8H, m, H-3,3'), 4.90 (4H, d, $J_{1'2'}=7.9$ Hz, H-1'), 4.65 (4H, d, $J_{1,2}=7.9$ Hz, H-1), 4.16—4.10 (8H, m, H-5', H-6'a), 3.99—3.90 (8H, m, H-5, 6'b), 3.72—3.64 (8H, m, H-6a, O-CH_2), 3.51—3.44 (4H, m, H-6b), 3.34—3.25 (16H, m, 4O-CH_2, 4CH_2NCH_2), 3.05 (8H, br, CONHCH_2), 2.62 (1H, br t, COCH), 2.35—2.32 (4H, m, CH_2NHCH_2CH_2CQ), 2.14 (8H, br, NHCOCH_2CH_2CH_2CH_2NH), 1.52—0.85 (90H, m, alkyl); ¹³C-NMR (125 MHz, CDCl_3) \delta: 176.6, 172.8, 172.7, 172.5, 172.0, 171.7, 171.5, 166.5, 165.6, 165.5, 165.3, 133.7, 133.6,

133.3, 133.2, 130.1, 130.0, 129.73, 129.66, 129.5, 129.4, 129.2, 128.9, 128.8, 128.6, 128.44, 128.39, 128.33, 128.25, 127.8, 101.5, 101.3, 74.1, 73.2, 71.9, 71.8, 70.1, 70.0, 69.0, 68.73, 68.66, 67.9, 60.5, 47.4, 47.3, 45.1, 44.8, 41.5, 39.5, 33.3, 33.1, 32.8, 31.9, 30.5, 30.1, 29.72, 29.67, 29.6, 29.4, 29.2, 27.8, 26.5, 25.6, 25.5, 24.9, 24.6, 24.5, 23.9, 23.6, 22.7, 14.1; MALDI-TOF-MS: Calcd for $C_{294}H_{327}N_7O_{75}Na: m/z$ 5178. Found: 5178 [M+Na]⁺.

Glycocluster 31 Compound 31 was prepared from 30 (133 mg) as described for preparation of 8, yielding 31 mg (21%). $[\alpha]_{D}^{25}$ +79.6 (c=0.8, MeOH); ¹H-NMR (500 MHz, CD₃OD) δ: 8.03-7.18 (120H, m, 24H), 5.94 (4H, d, H-4'), 5.88 (4H, d, H-4), 5.73-5.59 (16H, m, H-3, 3', 2, 2'), 5.04 (4H, d, $J_{1',2'}$ =6.7 Hz, H-1'), 4.82 (4H, d, $J_{1,2}$ =7.9 Hz, H-1), 4.37–4.32 (8H, m, H-5, H-6'a), 4.20-4.14 (8H, m, PO-CH₂, H-5'), 4.00-3.95 (4H, m, H-6a), 3.88-3.77 (8H, m, H-6b, 6'b), 3.57 (12H, t, PO-CH₂, OCH₂), 3.38-3.30 (20H, m, 40-CH₂, 3CH₂NCH₂), 3.17 (36H, s, N(CH₃)₃), 2.96-2.95 (8H, m, CONHCH2), 2.61 (1H, brt, COCH), 2.42-2.33 (4H, m, CH₂NHCH₂CH₂CH₂CO), 2.18–2.11 (8H, m, NHCOCH₂CH₂CH₂NCOCH₂), 1.82-1.76 (12H, m, COCH2CH2CH2NH), 1.51-0.81 (90H, m, alkyl); 13C-NMR (125 MHz, CD₃OD) δ: 181.2, 167.1, 167.0, 166.9, 166.8, 166.7, 134.9, 134.8, 134.63, 134.60, 134.56, 134.5, 130.9, 130.7, 130.63, 130.55, 130.5, 130.3, 130.2, 129.9, 129.7, 129.5, 102.2, 102.0, 73.6, 73.5, 73.3, 71.7, 71.5, 70.7, 70.3, 69.5, 68.9, 67.5, 67.4, 63.9, 60.5, 60.4, 54.7, 40.38, 40.35, 33.0, 31.0, 30.8, 30.7, 30.6, 30.43, 30.36, 30.3, 28.7, 27.7, 26.7, 23.7, 14.5; MALDI-TOF-MS: Calcd for C₃₁₄H₃₇₅N₁₁O₈₇P₄Na: m/z 5836. Found: 5836 [M+Na1⁺

Glycocluster 32 (C) Compound **32** was prepared from **31** (31 mg) as described for preparation of **13**, yielding 14 mg (80%). $[\alpha]_{D}^{25} - 8.95$ (*c*=0.4, MeOH); ¹H-NMR (500 MHz, CD₃OD) δ : 4.30 (4H, d, $J_{1',2'}=7.9$ Hz, H-1'), 4.21 (4H, d, $J_{1',2'}=7.3$ Hz, H-1), 4.16 (8H, br s, 4POCH₂), 3.06 (36H, s, 4N(CH₃)₃); ¹³C-NMR (125 MHz, CD₃OD) δ : 178.7, 175.3, 175.2, 174.7, 174.6, 174.2, 105.3, 105.0, 75.40, 75.35, 75.1, 74.84, 74.75, 72.6, 72.4, 70.9, 70.1, 69.3, 67.6, 66.1, 60.61, 60.58, 54.8, 49.8, 49.6, 42.5, 40.5, 34.5, 34.4, 33.8, 33.6, 33.1, 31.4, 31.0, 30.8, 30.6, 30.5, 30.4, 28.7, 27.9, 26.8, 25.9, 25.1, 25.0, 24.7, 23.7, 14.5; MALDI-TOF-MS: Calcd for C₁₄₆H₂₈₀N₁₁O₆₃P₄: *m/z* 3319.8. Found: 3320.3 [M+H]⁺.

Acknowledgement This work was supported by a Grant-in-Aid for Scientific Research (No. 19590011) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and Open Research Center project of the MEXT.

References

- 1) Hada N., Takeda T., Ogihara Y., *Carbohydr. Res.*, **258**, 93–104 (1994).
- 2) Hada N., Hayashi E., Takeda T., Carbohydr. Res., 316, 58-70 (1999).
- Hada N., Matsuzaki A., Takeda T., Chem. Pharm. Bull., 47, 1265– 1268 (1999).

- Hada N., Kuroda M., Takeda T., Chem. Pharm. Bull., 48, 1160–1165 (2000).
- 5) Hada N., Ohtsuka I., Sugita M., Takeda T., *Tetrahedron Lett.*, **41**, 9065–9068 (2000).
- Hada N., Sato K., Sakushima J.-I., Goda Y., Sugita M., Takeda T., *Chem. Pharm. Bull.*, 49, 1464—1467 (2001).
- Ohtsuka I., Hada N., Ohtaka H., Sugita M., Takeda T., Chem. Pharm. Bull., 50, 600–604 (2002).
- Ohtsuka I., Hada N., Sugita M., Takeda T., Carbohydr. Res., 337, 2037–2047 (2003).
- Yamamura T., Hada N., Kaburaki A., Yamano K., Takeda T., Carbohydr. Res., 339, 2749—2759 (2004).
- 10) Hada N., Sonoda Y., Takeda T., *Carbohydr. Res.*, **341**, 1341–1352 (2006).
- Hada N., Nakashima T., Shrestha S. P., Masui R., Narukawa Y., Tani K., Takeda T., *Bioorg. Med. Chem. Lett.*, **17**, 5912–5915 (2007).
- Hada N., Shida Y., Shimamura H., Sonooda Y., Kasahara T., Sugita M., Takeda T., *Carbohydr. Res.*, 343, 2221–2228 (2008).
- 13) Sugita M., Fujii H., Dulaney T. J., Inagaki F., Suzuki M., Suzuki A., Ohta, S., *Biochim. Biophys. Acta*, **1259**, 220–226 (1995).
- 14) Kean D. E., Ohtsuka I., Sato K., Hada N., Takeda T., Lochnit G., Geyer R., Harnett M. M., Harnett W., *Parasite Immunol.*, 28, 69–76 (2006).
- Sauter N. K., Bednarski M. D., Wurzberg B. A., Hanson J. E., Whitesides G. M., Skehel J. J., Wiley D. C., *Biochemistry*, 28, 8388–8396 (1989).
- 16) Lee R. T., Lee Y. C., Glycoconjug. J., 17, 543-551 (2000).
- 17) Sato K., Hada N., Takeda T., Carbohydr. Res., 341, 836-845 (2006).
- 18) Patel A., Lindhorst T. K., J. Org. Chem., 66, 2674-2680 (2001).
- 19) Seebach D., Beck A. T., Bierbaum D. J., *Chemistry & Biodiversity*, 8, 1111–1239 (2004).
- Nicolaou K. C., Bockovich N. J, Carcanague D. R., J. Am. Chem. Soc., 115, 8843—8844 (1993).
- Veeneman G. H., van Leeuwen S. H., van Boom J. H., *Tetrahedron Lett.*, 31, 1331–1334 (1990).
- 22) Konradsso P., Udodong U. E., Fraser-Reid B., *Tetrahedron Lett.*, 31, 4313–4316 (1990).
- 23) Pekari K., Tailler D., Weingart R., Schmidt R. R., J. Org. Chem., 66, 7432—7442 (2001).
- 24) Nishida Y., Takamori Y., Matsuda K., Ohrui H., Yamada T., Kobayashi K., J. Carbohydr. Chem., 18, 985–997 (1999).
- 25) Mickeleit M., Wieder T., Arnold M., Geilen C. C., Mulzer J., Reutter W., Angew. Chem. Int. Ed., 37, 351–353 (1998).
- 26) Mitsunobu O., Synthesis, 1981, 1–28 (1981).
- 27) Fukuyama T., Jow C.-K., Cheung M., *Tetrahedron Lett.*, **36**, 6373–6374 (1995).