Daphnezomines T—V, Alkaloids from Daphniphyllum humile

Takaaki Kubota,^a Teppei Suzuki,^a Kan'ichiro Ishiuchi,^a Taiga Kuhara,^b and Jun'ichi Kobayashi^{*,a}

^a Graduate School of Pharmaceutical Sciences, Hokkaido University; Sapporo 060–0812, Japan: and ^b Niigata Prefectural Botanical Garden; 186 Kanazu, Niigata 950–0845, Japan.

Received January 27, 2009; accepted February 21, 2009; published online February 25, 2009

Three new *Daphniphyllum* alkaloids, daphnezomines T—V (1—3), were isolated from the leaves and branches of *Daphniphyllum humile* (Daphniphyllaceae). The structures and relative stereochemistry of 1—3 were elucidated on the basis of spectroscopic data. Daphnezomine T (1) is the first alkaloid without a branched C_1 unit at C-5 among all *Daphniphyllum* alkaloids reported so far.

Key words Daphniphyllum alkaloid; Daphniphyllum humile; daphnezomine T; daphnezomine U; daphnezomine V

Trees of the genus *Daphniphyllum* (Daphniphyllaceae) are known to elaborate structurally diverse group of alkaloids with unique polycyclic fused ring systems.^{1,2)} These *Daphniphyllum* alkaloids have been attractive targets for biogenetic and synthetic studies.^{3–8)} Some novel alkaloids with unusual skeletons such as daphnezomines $A-S^{9-14}$ have been isolated from *D. humile* at our laboratory. Further investigation of extracts of this plant resulted in the isolation of three new alkaloids, daphnezomines T-V (**1**–3). In this paper we describe the isolation and structure elucidation of **1**–3.

Results and Discussion

The leaves and branches of *Daphniphyllum humile* were extracted with MeOH, respectively, and each MeOH extract was partitioned between EtOAc and 3% tartaric acid. Watersoluble materials, which were adjusted to pH 10 with saturated Na₂CO₃, were extracted with CHCl₃ to give crude alkaloidal fractions. The crude alkaloidal materials prepared from the leaves were subjected to a LH-20 column, followed by an amino silica gel and a silica gel columns to give daphnezomines T (1, 0.00063% yield) and U (2, 0.00033%). The crude alkaloidal materials prepared from the branches were separated by an amino silica gel column, followed by silica gel column chromatographies to obtain daphnezomine V (3, 0.00022%).

Daphnezomine T (1) showed the pseudomolecular ion peak at m/z 372 (M+H)⁺ in the electrospray ionization mass spectrometry (ESI-MS), and the molecular formula, $C_{22}H_{29}NO_4$, was established by HR-ESI-MS [m/z 372.2180, (M+H)⁺, Δ +0.5 mmu]. IR absorptions implied the presence of hydroxy (3417 cm⁻¹) and ester carbonyl (1714 cm⁻¹) functionalities. Analyses of ¹H- and ¹³C-NMR data (Table 1) and the heteronuclear multiple quantum coherence (HMQC) spectrum provided evidence that 1 possessed one tetrasubstituted olefin, one disubstituted olefin, one carbonyl, three sp^3 quaternary carbons, five sp^3 methines, seven sp^3 methylenes,

and two methyls. Among them, two methylenes ($\delta_{\rm C}$ 62.7, $\delta_{\rm C}$ 55.1) were ascribed to those bearing a nitrogen atom, while one quaternary carbon ($\delta_{\rm C}$ 100.5) was assigned as an aminal carbon.

Three structural fragments, a (C-2 to C-4, C-2 to C-18, and C-18 to C-19 and C-20), b (C-6 to C-7 and C-12, and C-11 to C-12), and c (C-13 to C-17), were deduced from the ¹H–¹H correlation spectroscopy (COSY) and total correlation spectroscopy (TOCSY) spectra as shown in Fig. 1. Heteronuclear multiple bond correlations (HMBC) correlations between H₂-7 and C-1, H₂-19 and C-1, and H₂-19 and C-7 suggested that C-1, C-7, and C-19 were connected to each other through a nitrogen atom. Connections between C-4, C-6, C-8, and 5-OH via C-5 were implied by HMBC cross-peaks of H-6/C-4, H-6/C-5, 5-OH/C-5, 5-OH/C-6, and 5-OH/C-8. HMBC correlations between H-2 and C-1, H-13 and C-1, and H-13 and C-8 indicated the connectivity of C-1 and C-2. The linkage of units b and c through C-9 and C-10 was implied by HMBC cross-peaks of H2-11/C-9, H2-11/C-10, H-14/C-9, and H₂-17/C-9. In addition, HMBC correlations between H-13 and C-21, and H₃-22 and C-21 suggested that a methoxy group was attached to C-21. The geometry of the disubstituted olefin at C-3 and C-4 was elucidated to be Z from ³J-value for H-3 and H-4 (10.5 Hz). Thus, the gross structure of daphnezomine T was elucidated to be 1.

The nuclear Overhauser enhancement and exchange spectroscopy (NOESY) cross-peaks of H-3/H-4, H-3/H₃-20, H-4/H-6, H-13a/OH-5, H-13b/H-14, and H-14/H-15 indicated a half-chair form of cyclohexene ring (C-1 to C-5 and C-8) and a chair form of piperidine ring (C-1, N-1, and C-5 to C-8) as well as the relative stereochemistry as shown in Fig. 2.

Daphnezomine U (2) showed the pseudomolecular ion peak at m/z 422 (M+Na)⁺ in the ESI-MS, and the molecular formula, C₂₃H₂₉NO₅, was established by HR-ESI-MS [m/z422.1954, (M+H)⁺, Δ +1.1 mmu]. The IR spectrum suggested the presence of hydroxy (3582 cm⁻¹) and carbonyl (1730, 1698, 1642 cm⁻¹) functionalities. The ¹³C-NMR data revealed twenty-three carbon signals due to one tetrasubstituted olefin, one disubstituted olefin, three carbonyls, two sp^3 quaternary carbons, four sp^3 methines, eight sp^3 methylenes, and two methyls. Among them, two methylenes (δ_C 55.9, 50.0) were ascribed to those bearing a nitrogen atom.

The ${}^{1}\text{H}{-}^{1}\text{H}$ COSY and TOCSY spectra of **2** revealed connectivities of four partial structures, **a** (C-3 to C-4), **b** (C-6 to C-7 and C-12, and C-11 to C-12), **c** (C-13 to C17), and **d** (C-

* To whom correspondence should be addressed. e-mail: jkobay@pharm.hokudai.ac.jp

Table 1.	¹ H- and	¹³ C-NMR	Data of Dapl	nnezomines	T (1)	and U	(2) ir	1 CDCl ₃	;
----------	---------------------	---------------------	--------------	------------	-------	-------	--------	---------------------	---

Daphnezomine T (1)			Daphnezomine U (2)			
Position	$\delta_{ ext{H}}$	$\delta_{ m C}$	Position	$\delta_{ m H}$	$\delta_{ m C}$	
1	_	100.5 s	1	_	171.9 s	
2	2.72 (1H, m)	45.8 d	2	_	210.2 s	
3	5.62 (1H, dd, 10.5, 3.2 Hz)	125.6 d	3	5.99 (1H, d, 14.3 Hz)	136.4 d	
4	5.55 (1H, dd, 10.5, 1.8 Hz)	136.8 d	4	5.51 (1H, d, 14.3 Hz)	135.5 d	
5	_	74.8 s	5		50.6 s	
5-OH	5.47 (1H, s)		6	2.77 (1H, m)	36.6 d	
6	1.93 (1H, m)	40.9 d	7a	3.70 (1H, dd, 13.8, 9.2 Hz)	50.0 t	
7a	3.08 (1H, d, 11.9 Hz)	55.1 t	7b	3.14 (1H, dd, 13.8, 10.3 Hz)		
7b	2.92 (1H, m)		8	_	55.9 s	
8	_	53.8 s	9	_	137.2 s	
9	_	141.3 s	10	_	135.3 s	
10	_	138.9 s	11a	2.31 (1H, m)	24.6 t	
11a	2.55 (1H, m)	25.9 t	11b	2.26 (1H, m)		
11b	2.00 (1H, m)		12a	2.40 (1H, m)	24.1 t	
12a	2.42 (1H, m)	25.0 t	12b	1.63 (1H, m)		
12b	1.50 (1H, m)		13a	2.77 (1H, dd, 13.2, 8.6 Hz)	33.4 t	
13	2.60 (2H, m)	38.6 t	13b	2.31 (1H, dd, 13.2, 6.9 Hz)		
14	2.95 (1H, m)	43.6 d	14	3.17 (1H, m)	42.0 d	
15	3.57 (1H, m)	58.4 d	15	3.30 (1H, m)	52.6 d	
16a	1.90 (1H, m)	27.7 t	16a	1.90 (1H, m)	27.8 t	
16b	1.29 (1H, m)		16b	1.20 (1H, m)		
17a	2.78 (1H, m)	43.3 t	17a	2.47 (1H, m)	42.1 t	
17b	2.47 (1H, m)		17b	2.24 (1H, m)		
18	2.67 (1H, m)	34.5 d	18	3.61 (1H, m)	40.8 d	
19a	3.54 (1H, dd, 11.9, 9.2 Hz)	62.7 t	19a	4.44 (1H, dd, 13.2, 8.0 Hz)	55.9 t	
19b	2.31 (1H, dd, 11.9, 3.7 Hz)		19b	2.48 (1H, dd, 13.2, 10.3 Hz)		
20	1.20 (3H, d, 7.4 Hz)	19.0 q	20	1.01 (3H, d, 6.85 Hz)	13.1 q	
21		178.5 s	21	4.02 (2H, s)	66.5 t	
22	3.70 (3H, s)	51.6 q	22		176.4 s	
			23	3.67 (3H, s)	51.5 q	

Fig. 1. Selected 2D NMR Correlations for Daphnezomine T (1)

Fig. 2. Selected NOESY Correlations and Relative Stereochemistry for Daphnezomine T (1) C-22-C-23 was omitted.

Fig. 3. Selected 2D NMR Correlations for Daphnezomine U (2)

18 to C-19 and C-20) as shown in Fig. 3. HMBC correlations between H₂-7 and C-1, and H₂-19 and C-1 suggested the connectivities of C-1, C-7, and C-19 through a nitrogen atom, and the presence of amide carbonyl. Connectivities of C-4, C-6 and C-21 via C-5 were implied by HMBC cross-peaks of H-4/C-5, H₂-21/C-5, and H₂-21/C-6. HMBC correlations between H₂-13 and C-1, H₂-13 and C-8, and H₂-13 and C-9 disclosed that C-1, C-9, and C-13 were attached to C-8. Connections of C-11 and C-17 to C-9 through C-10 were implied by HMBC cross-peaks of H2-11/C-10, H2-16/C-9, H2-17/C-9, and H₂-17/C-10. HMBC correlations between H-4 and C-20, H₂-19 and C-2, and H₃-20 and C-2 indicated the connectivity of C-3 and C-18 via C-2. HMBC correlations observed for H₂-13/C-22 and H₃-23/C-22 suggested that a methoxy group was attached to C-22. The geometry of disubstituted olefin at C-3 and C-4 was assigned as E on the basis of ${}^{3}J$ -

Fig. 4. Selected NOESY Correlations and Relative Stereochemistry for Daphnezomine U (2)

C-22-C-23 was omitted.

Table 2. ¹H- and ¹³C-NMR Data of Daphnezomine V (3) in CD₃OD

Position	$\delta_{ m H}$	$\delta_{ m C}$
1	3.75 (1H, br s)	75.2 d
2	1.91 (1H, m)	40.6 d
3a	1.88 (1H, m)	25.8 t
3b	1.43 (1H, m)	
4a	2.07 (1H, m)	36.4 t
4b	1.58 (1H, m)	
5		37.8 s
6	1.87 (1H, m)	42.8 d
7a	4.11 (1H, br d, 12.1 Hz)	61.8 t
7a	3.28 (1H, br d, 12.1 Hz)	
8		47.6 s
9	2.60 (1H, m)	52.0 d
10		90.6 s
11a	2.14 (1H, m)	28.9 t
11b	1.66 (1H, m)	
12	1.75 (2H, m)	22.6 t
13a	2.64 (1H, dd, 16.2, 3.6 Hz)	34.1 t
13b	1.35 (1H, m)	
14	4.84 (1H, dd, 9.6, 3.6 Hz)	72.2 d
15a	2.53 (1H, m)	37.0 t
15b	1.56 (1H, m)	
16a	1.97 (1H, m)	26.9 t
16b	1.84 (1H, m)	
17a	2.21 (1H, m)	32.6 t
17b	1.61 (1H, m)	
18	2.34 (1H, m)	30.2 d
19	0.96 (3H, d, 6.7 Hz)	22.7 q
20	1.17 (3H, d, 6.2 Hz)	21.7 q
21	1.00 (3H, s)	25.1 q
22	— —	214.3 s
23	—	50.6 s
24	0.92 (3H, s)	19.4 q
25a	4.54 (1H, d, 12.8 Hz)	66.3 t
25b	3.72 (1H, d, 12.8 Hz)	
26	4.78 (1H, d, 6.6 Hz)	83.0 d
27a	2.02 (1H, m)	24.1 t
27b	1.37 (1H, m)	
28a	2.11 (1H, m)	34.8 t
28b	1.86 (1H, m)	
29		106.5 s
30	1.36 (3H, s)	23.7 q

value for H-3 and H-4 (14.3 Hz). Thus, the gross structure of daphnezomine U was elucidated to be **2**.

The relative stereochemistry of **2** was deduced from the NOESY spectrum as shown in Fig. 4. The NOESY correlations observed for $H-4/H_2-13$, H-7a/H-11a, H-7b/H-19b, H-7a/H-19b, H-7a/H-10b, H-7a/H-10b,

Fig. 5. Chemical Correlation of Daphnilongeranin D to Daphnezomine V (3)

Fig. 6. Plausible Biogenetic Path for Daphnezomine T (1)

12b/H₂-21, H-13a/H-14, H-13b/H₂-21, H-14/H-15, H-18/H-19a, and H-19b/H₃-20 disclosed that a conformation of the 1azabicyclo[5.2.2]undecane ring (C-1 to C-8 and C-18 to C-19) as well as the relative stereochemistry as shown in Fig. 4.

Daphnezomine V (3) showed the pseudomolecular ion peak at m/z 502 (M+H)⁺ in the ESI-MS, and the molecular formula, $C_{30}H_{47}NO_5$, was established by HR-ESI-MS [m/z 502.3522, $(M+H)^+$, $\Delta -1.1$ mmu]. IR absorptions implied the presence of hydroxy (3240 cm^{-1}) and ester carbonyl (1704 cm^{-1}) functionalities. ¹H- and ¹³C-NMR, and the HMQC spectra revealed that 3 consisted of one carbonyl carbon, five sp^3 quaternary carbons, seven sp^3 methines, twelve sp^3 methylenes, and five methyls. The chemical shifts of ¹Hand ¹³C-NMR data (Table 2) implied that 3 had the same backbone skeleton as that of daphnilongeranin D.¹⁵⁾ The molecular formula of 3, which was larger than that of daphnilongeranin D by one oxygen unit, and the down field shifts of chemical shifts for C-1, C-7, and C-10 ($\delta_{\rm C}$ 75.2, 61.8, and 90.6, respectively) of 3 as compared with those of daphnilongeranin D ($\delta_{\rm C}$ 64.2, 48.3, and 74.1, respectively) indicated that 3 was an N-oxide form of daphnilongeranin D. Oxidation of daphnilongeranin D with *m*-chloroperoxybenzoic acid (m-CPBA) afforded the N-oxide derivative, whose spectral data and the $[\alpha]_D$ value { $[\alpha]_D^{22} + 12.8 (c=0.3, \text{MeOH})$ } were coincident with those of natural daphnezomine V {3, $[\alpha]_{D}^{22}$ +13.8 (c=0.3, MeOH). Thus, the structure of daphnezomine V was concluded to be 3 (Fig. 5).

Daphnezomine T (1) is the first alkaloid without a branched C_1 unit at C-5 among all *Daphiniphyllum* alkaloids reported so far. Biogenetically, daphnezomine T (1) might be generated from an intermediate like pordamacrine B,¹⁶) which could be derived from yuzurimine¹⁷) by an elimination of acetic acid from C-3–C-4 and hydrolysis of acetyl ester at C-21, through oxidative loss of C_1 branch at C-5 (Fig. 6). Daphnezomine U (2) is a rare *Daphiniphyllum* alkaloid

possessing a 1-azabicyclo[5.2.2]undecane moiety,^{12,18} while daphnezomine V (**3**) is an *N*-oxide form of daphnilongeranin D. Daphnezomines T—V (**1**—**3**) did not show cytotoxicities against P388 and L1210 murine leukemia, and KB human epidermoid carcinoma cells (IC₅₀>10.0 μ g/ml) *in vitro*.

Experimental

General Methods Optical rotation was recorded on a JASCO P-1030 polarimeter. IR and UV spectra were recorded on JASCO FT/IR-230 and Shimadzu UV-1600PC spectrophotometer, respectively. ¹H- and ¹³C-NMR spectra were recorded on a Bruker AMX-600 and a JEOL ECA-500 spectrometers. The 7.26 and 77.0 ppm resonances of residual chloroform and the 3.35 and 49.8 ppm resonances of residual methanol were used as internal references for ¹H- and ¹³C-NMR spectra, respectively. ESI mass spectra were obtained on a JEOL JMS-700TZ spectrometer.

Extraction and Separation The leaves and branches of Daphniphyllum humile collected at Niigata were extracted with MeOH, respectively, and each MeOH extract was partitioned between EtOAc and 3% tartaric acid. Water-soluble materials, which were adjusted to pH 10 with saturated Na₂CO₃, were extracted with CHCl₃ to give crude alkaloidal fractions. A part (2.3 g) of the crude alkaloidal materials prepared from the leaves (1120 g) were separated by a gel filtration on Sephadex LH-20 (CHCl₃/ MeOH, 9:1), followed by an amino silica gel (n-hexane/EtOAc \rightarrow CHCl3/MeOH) and a silica gel (CHCl3/MeOH) column chromatographies to give daphnezomines T (1, 0.00063% yield) and U (2, 0.00033%) together with known Daphniphyllum alkaloids, yuzurimine¹⁷⁾ (0.00049%) and pordamacrine B¹⁶ (0.00033%). The crude alkaloidal materials prepared from the branches (380 g) were separated by an amino silica gel column (nhexane/EtOAc), followed by silica gel column chromatographies (CH3Cl/ MeOH/H₂O) to give daphnezomine V (3, 0.00022%) together with known Daphniphyllum alkaloid, daphnilongeranin D¹⁵ (0.0015%).

Daphnezomine T (1): Colorless amorphous solid; $[\alpha]_D^{22} + 74.9$ (*c*=0.2, CHCl₃); IR (neat) v_{max} 3417, 2949, and 1714 cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; ESI-MS *m/z*: 372 (M+H)⁺; HR-ESI-MS *m/z*: 372.2180 (M+H; Calcd for C₂₂H₃₀NO₄, 372.2175).

Daphnezomine U (2): Colorless amorphous solid; $[\alpha]_D^{22} - 72.0$ (*c*=0.2, CHCl₃); IR (neat) ν_{max} 3582, 2924, 1730, 1698, and 1642 cm⁻¹; ¹H- and ¹³C-NMR data see Table 1; ESI-MS *m/z*: 422 (M+Na)⁺; HR-ESI-MS *m/z*: 422.1954 (M+Na; Calcd for C₂₃H₂₉NO₅Na, 422.1943).

Daphnezomine V (3): Colorless amorphous solid; $[\alpha]_{2}^{D^2}$ +13.8 (*c*=0.3, MeOH); IR (neat) v_{max} 3240, 2935, 1705, 1704, 1456, 1384, and 1194 cm⁻¹; ¹H- and ¹³C-NMR data see Table 2; ESI-MS *m*/*z*: 502 (M+H)⁺; HR-ESI-MS *m*/*z*: 502.3522 (M+H; Calcd for C₃₀H₄₈NO₅, 502.3533).

Daphnezomine V (3) Derived from Daphnilongeranin D Daphnilongeranin D (1.0 mg) was treated with CH₂Cl₂ (250 ml) and *m*-CPBA (2.0 mg) at 4 °C for 1 h. The reaction mixture was partitioned between

CHCl₃ and saturated Na₂CO₃ (aq.), and then the organic layer was evaporated *in vacuo* to afford daphnezomine V (**3**, 1.0 mg), whose spectral data and the $[\alpha]_{\rm D}$ value { $[\alpha]_{\rm D}^{22}$ +12.8 (*c*=0.3, MeOH)} were coincident with those of natural specimen.

Acknowledgements The authors thank Ms. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of ESI-MS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and Notes

- Morita H., Kobayashi J., "Modern Alkaloids: Structure, Isolation, Synthesis and Biology," ed. by Fattorusso E., Taglialatela-Scafati O., Wiley-VCH, Weinheim, 2008, pp. 541—589, and references therein.
- Yahata H., Kubota T., Kobayashi J., J. Nat. Prod., 72, 148–151 (2009).
- Ueda M., Walczak M. A. A., Wipf P., *Tetrahedron Lett.*, 49, 5986– 5989 (2008).
- Denmark S. E., Nguyen S. T., Baiazitov R. Y., *Heterocycles*, 76, 143– 154 (2008).
- Cordero-Vargas A., Urbaneja X., Bonjoch J., Synlett, 15, 2379–2382 (2007).
- 6) Solé D., Urbaneja X., Bonjoch J., Org. Lett., 7, 5461-5464 (2005).
- 7) Wallace G. A., Heathcock C. H., J. Org. Chem., 66, 450-454 (2001).
- Heathcock C. H., Proc. Natl. Acad. Sci. U.S.A., 93, 14323—14327 (1996).
- Morita H., Takatsu H., Kobayashi J., *Tetrahedron*, **59**, 3575–3579 (2003).
- 10) Morita H., Kobayashi J., Tetrahedron, 58, 6637-6641 (2002).
- 11) Morita H., Yoshida N., Kobayashi J., *Tetrahedron*, **56**, 2641–2646 (2000).
- Morita H., Yoshida N., Kobayashi J., J. Org. Chem., 65, 3558—3562 (2000).
- Morita H., Yoshida N., Kobayashi J., *Tetrahedron*, 55, 12549—12556 (1999).
- Morita H., Yoshida N., Kobayashi J., J. Org. Chem., 64, 7208–7212 (1999).
- 15) Yang S.-P., Zhang H., Zhang C.-R., Cheng H.-D., Yue J.-M., J. Nat. Prod., 69, 79—82 (2006).
- 16) Matsuno Y., Okamoto M., Hirasawa Y., Kawahara N., Goda Y., Shiro M., Morita H., J. Nat. Prod., 70, 1516–1518 (2007).
- Sakurai H., Sakabe N., Hirata Y., *Tetrahedron Lett.*, 7, 6309–6314 (1966).
- 18) Kobayashi J., Ueno S., Morita H., J. Org. Chem., 67, 6546–6549 (2002).