
In recent years, the “Quality by Design (QbD)” concept
has been advocated in the International Conference on Har-
monisation (ICH) Q8 guidelines,1) and the establishment of a
science-based rationale and a design space in pharmaceutical
formulation development is desired. In a pharmaceutical de-
velopment study based on QbD concepts, it is important to
have an enhanced understanding of the relationship between
process parameters and quality attributes. In particular, it is
necessary to establish a design space to identify multidimen-
sional combinations of the many causal factors that deter-
mine target quality. The design of experiments (DOE) is a
useful systematic approach for resolving multidimensional
problems such as determining the relationship between input
factors and process outputs.2,3) The response data collected
DOE are often applied to fit mathematical equations. These
equations serve as models to predict the outcome with any
given combination of values, and it is possible to calculate
optimal solutions. In recent times, scientific approaches such
as the response surface method (RSM) and the artificial in-
telligence (AI) technique have been used for DOE analysis
and resolving optimization problems.4—11) Further, overlap-
ping techniques of some response surface models for multi-
ple quality attributes enable the generation of a common de-
sign space with successful operating ranges.2)

While determining the design space using a predicted
model, it is important to evaluate the reliability of the model
since it is being used to estimate optimal solutions. The opti-
mal solutions estimated by classical RSM using quadratic
polynomial equations can be evaluated by statistical analysis.
However, the reliability of optimal solutions estimated by
certain nonlinear response surfaces cannot be directly evalu-
ated using a conventional mathematical method. Therefore,

we applied a bootstrap (BS) re-sampling technique12—14) to
evaluate the reliability of the optimal solutions predicted by
RSM incorporating multivariate spline interpolation (RSMS),15)

and we previously reported that the novel method was suit-
able for evaluating the accuracy and precision of the optimal
solution.16) DOE produces certain variations in analytical tar-
gets. For example, the central composite design, the Box and
Behnken design, etc., are useful for modeling a response sur-
face around continuous factors.2,3) Therefore, we quantita-
tively evaluated the effect of the DOE variations on the relia-
bility of the predicted optimal solutions using the BS tech-
nique. In this study, we used an experimental dataset of theo-
phylline tablets prepared by the fluidized bed granulation
method.

Theoretical
BS for Parameter Estimation The BS technique was

introduced by Efron17) as a computer-based method for esti-
mating the standard error of an empirical distribution of an
observed sample. Let x�(x1, …, xn) be an n sample with an
unknown distribution function F depending on an unknown
real parameter q . The problem is to evaluate the parameter q
by a statistic q̂�s(x) from sample x and evaluate the estima-
tion accuracy although distribution F is unknown. In order to
evaluate the estimation accuracy, B samples were generated
from the initial sample x by resampling. These samples were
called BS samples and denoted by x*b.

A BS sample x*b�(x1*
b, …, xn*

b) was generated by ran-
dom resampling by replacing the initial sample x. The distri-
bution function of a BS sample x*b is F̂, i.e., the empirical
distribution of x. A BS replicate of estimator q̂�s(x) is
q̂*b�s(x*b). Therefore, for the mean of sample x, the estima-
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tor is s(x)�(1/n)∑n
i�1xi, and a BS replicate will be s(x*b)�

(1/n)∑n
i�1xi*

b.
Novel evaluation procedures for an optimal solution have

been applied in this technique. The BS evaluation process is
shown in Fig. 1, and it has been described as follows.

Step 1. The BS dataset corresponding to the respective
original datasets (comprising n data points) is generated by
BS resampling that is repeated n times to form an ensemble
comprising n results.

Step 2. Step 1 is repeated B times, and B units of the BS
dataset are generated.

Step 3. The optimal solution is calculated as X* optim,
X*1 optim, X*2 optim…X*B optim and Y* optim, Y*1 optim,
Y*2 optim…Y*B optim for each BS dataset, and the distribu-
tion of the optimal solution is generated.

Step 4. The optimal solution and standard deviation of
the BS analysis are calculated according to Eqs. 1 and 2 as
follows.

(1)

(2)

where F*b is the optimal solution of a specified property that
is calculated from each BS dataset, FB.m is the BS optimal so-
lution of the same property corresponding to the original so-
lution, and SDB is the standard deviation of the distribution
of F*b.

The accuracy of the original optimal solution, which was
calculated from the original dataset, can be evaluated by
comparing it to the BS optimal solutions. If the accuracy of
the BS optimal solution deviates from that of the optimal
original solution, the optimal original solution is considered

to have a low reliability with regard to accuracy. In addition,
the precision of the optimal original solution can also be
evaluated by using BS standard deviation. A large BS stan-
dard deviation indicates poor precision of the optimal origi-
nal solution.

Self-organizing Map A self-organizing map (SOM) is a
feedforward neural network that implements a nonlinear pro-
jection from high-dimensional input vectors onto a low-di-
mensional (typically two-dimensional) array of nodes, called
a map.18,19) At time t, each neuron k is characterized by the
reference vector mk(t)�[mi1(t), mi2(t), …, min(t)] and a posi-
tion in low-dimensional (typically two-dimensional) nodes
represented by the vector wi(t)�[wi1(t), wi2(t), …, win(t)]. Each
input vector x(t)�[x1(t), x2(t), …, xn(t)] is compared with each
reference vector, and the winner vector is considered to be
that closest to the stimulus. The weights of the weight vector
in the neighborhood of the winner vector are adjusted with a
strength g(v, t) that is proportional to their distance to the
winner vector, v. The neighborhood function g(v, t) is typi-
cally Gaussian with standard deviation s . Winner vectors are
adjusted on the basis of the following equation.

mk(t�1)�mk(t)�a(t)g(v, t)[x(t)�mk(t)] (3)

where a(t) is the algorithm’s learning rate. Both a(t) and
s(t) will typically decrease exponentially during the ordering
phase and then linearly in the convergence phase.

Experimental
Materials Theophylline (Shiratori Pharmaceutical Co., Ltd., Japan),

lactose (200-mesh grade, DMV International, The Netherlands), cornstarch
(Nihon Shokuhin Kako Co., Ltd., Japan), carmellose calcium (Gotoku
Chemical Co., Ltd., Japan), hydroxypropylcellulose (Nippon Soda Co., Ltd.,
Japan), and magnesium stearate (Nitto Kasei Kogyo K.K., Japan) were all of
grades conforming to the current Japanese Pharmacopoeia (JP).

Experimental Design The formulations of theophylline tablets are
listed in Table 1. The lactose/cornstarch ratio (X1), percent carmellose cal-
cium (X2), and percent hydroxypropylcellulose (X3) were selected as causal
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Fig. 1. Evaluation Process for Estimating the Accuracy and Precision (Repeatability) of an Optimal Formulation Based on the Bootstrap Resampling Tech-
nique



factors. These variables were assigned according to the (a) Box and Behnken
design, (b) central composite design, (c) D-optimal design, and (d) full fac-
torial design, respectively. We prepared 33 types of theophylline tablet for-
mulations.

Preparation Method of Sample Tablets Theophylline was milled
using an impact mill (TASM-1CS, Tokyo Atomizer Co., Ltd., Japan), and
lactose was sieved through a 60-mesh screen. The milled theophylline (vol-
ume mean diameter, approximately 23.6 mm), sieved lactose, cornstarch, and
carmellose calcium were blended in a polyethylene bag for 2 min. The mix-
ture was granulated with approximately 6% (w/v) aqueous hydroxypropyl-
cellulose solution in a fluid-bed granulator (MFL.01, Vector Corporation,
U.S.A.). The granules were lubricated with magnesium stearate and blended
in a bin blender (Turbula unit type T2C, Willy A. Bachofen AG, Switzer-
land) for 5 min. The final blend was compressed into tablets using a univer-
sal testing machine (Autograph AG-5000B, Shimadzu Co., Ltd., Japan) at a
compression force of approximately 7.85 kN.

Determination of Response Variables The dissolution ratio of theo-
phylline for the first 15 min (Y1) and hardness (Y2) were selected as the re-
sponse variables that were to be evaluated in the resulting tablets. The values
of both variables were the mean of 3 determinations.

a) Dissolution: Dissolution testing was performed by the paddle method
according to the recommendations of the current JP at 50 rpm in 900 ml of
water at 37 °C. The dissolved theophylline was assayed by an automated
flow-through UV spectrophotometric method at 243 nm with a 10-mm-long
cell (Automated dissolution apparatus, Toyama Sangyo Co., and Shimadzu
Co., Ltd., Japan).

b) Hardness: The hardness of the resulting tablets was measured using a
hardness tester (Tablet tester type 6D, Dr. Schleuniger Pharmatron AG,
U.S.A.).

Four experimental datasets were prepared according to the 4 DOE; they
consisted of 3 causal factors and 2 response variables with 33 theophylline
tablet formulations. These datasets are shown in Table 2.

Evaluation of the Optimal Solution by the BS Technique The relia-
bility of the simultaneous optimal solution was evaluated by the BS evalua-
tion technique (described in Fig. 1). In this study, the frequency of BS re-
samplings was set at 1000.

Evaluation Indices of Accuracy and Reproducibility for Optimal So-
lutions The d and CVB values used as evaluation indices of accuracy and
repeatability of the optimal solution were calculated using Eqs. 4 and 5.

(4)

(5)

where F is the original solution of a specified property, FB.m is the BS opti-
mal solution of the same property corresponding to the original solution,
and SDB is the BS standard deviation.

Software The software used in this study is as follows. JMP®6 (SAS in-
stitute Inc., U.S.A.) was used for preparing the DOE and statistical analysis.
dataNESIATM (Yamatake Corporation, Japan) was used for generating the
RSMS and estimating the optimal solution. This software consists of a multi-
dimensional spline interpolation program and a nonlinear optimization pro-
gram.20) Viscovery® (Eudaptics Software Gmbh, Austria) was used for SOM
clustering. This software can order complex data based on similarity. The or-
dered data are separated into clusters on the basis of similarity and these
clusters are presented in a multi-colored map. The resulting map can be used
to extract the features hidden in the data.

Results and Discussion
Simultaneous Optimization by RSMS The dissolution
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Table 1. Formulation of Theophylline Tablets with the 4 Experimental Designs

Experiment 
Factor level Formula (mg/tablet)

number
X1 X2 X3 THEOa) LACb) CSc) CCad) HPCe) Mg-St f ) Total

1 �1 �1 �1 100.0 26.4 61.6 6.0 4.0 2.0 200.0
2 �1 �1 0 100.0 25.8 60.2 6.0 6.0 2.0 200.0
3 �1 �1 1 100.0 25.2 58.8 6.0 8.0 2.0 200.0
4 �1 0 �1 100.0 25.2 58.8 10.0 4.0 2.0 200.0
5 �1 0 0 100.0 24.6 57.4 10.0 6.0 2.0 200.0
6 �1 0 1 100.0 24.0 56.0 10.0 8.0 2.0 200.0
7 �1 1 �1 100.0 24.0 56.0 14.0 4.0 2.0 200.0
8 �1 1 0 100.0 23.4 54.6 14.0 6.0 2.0 200.0
9 �1 1 1 100.0 22.8 53.2 14.0 8.0 2.0 200.0

10 0 �1 �1 100.0 44.0 44.0 6.0 4.0 2.0 200.0
11 0 �1 0 100.0 43.0 43.0 6.0 6.0 2.0 200.0
12 0 �1 1 100.0 42.0 42.0 6.0 8.0 2.0 200.0
13 0 0 �1 100.0 42.0 42.0 10.0 4.0 2.0 200.0
14 0 0 0 100.0 41.0 41.0 10.0 6.0 2.0 200.0
15 0 0 1 100.0 40.0 40.0 10.0 8.0 2.0 200.0
16 0 1 �1 100.0 40.0 40.0 14.0 4.0 2.0 200.0
17 0 1 0 100.0 39.0 39.0 14.0 6.0 2.0 200.0
18 0 1 1 100.0 38.0 38.0 14.0 8.0 2.0 200.0
19 1 �1 �1 100.0 61.6 26.4 6.0 4.0 2.0 200.0
20 1 �1 0 100.0 60.2 25.8 6.0 6.0 2.0 200.0
21 1 �1 1 100.0 58.8 25.2 6.0 8.0 2.0 200.0
22 1 0 �1 100.0 58.8 25.2 10.0 4.0 2.0 200.0
23 1 0 0 100.0 57.4 24.6 10.0 6.0 2.0 200.0
24 1 0 1 100.0 56.0 24.0 10.0 8.0 2.0 200.0
25 1 1 �1 100.0 56.0 24.0 14.0 4.0 2.0 200.0
26 1 1 0 100.0 54.6 23.4 14.0 6.0 2.0 200.0
27 1 1 1 100.0 53.2 22.8 14.0 8.0 2.0 200.0
28 �1.73 0 0 100.0 8.2 73.8 10.0 6.0 2.0 200.0
29 1.73 0 0 100.0 73.8 8.2 10.0 6.0 2.0 20.0
30 0 �1.73 0 100.0 44.5 44.5 3.0 6.0 2.0 200.0
31 0 1.73 0 100.0 37.5 37.5 17.0 6.0 2.0 200.0
32 0 0 �1.73 100.0 42.7 42.7 10.0 2.6 2.0 200.0
33 0 0 1.73 100.0 39.3 39.3 10.0 9.4 2.9 200.0

a) Theophylline, b) lactose, c) corn starch, d) carmellose calcium (ECG-505), e) hydroxypropylcellulose (HPC-L), f) magnesium stearate.



ratio of theophylline for the first 15 min (Y1) and the hardness
(Y2) of each formulation are shown in Table 2. The dissolu-
tion profiles and hardness varied among the formulations.
The response surfaces of Y1 and Y2 were generated by RSMS

as functions of 3 causal factors; the lactose/cornstarch ratio
(X1), percent carmellose calcium (X2), and percent hydrox-
ypropylcellulose (X3). The reliability of each response sur-
face was estimated by using a conventional leave-one-out
cross-validation (LOOCV) method. The R2 values defined in
Eq. 621) for Y1 and Y2 were calculated for the 4 DOE datasets.

(6)

where SSE is the sum of the squared error between the pre-
dicted and the measured values. SST is the sum of the
squared error between each measured value and the average
of the measured value.

These results are shown in Figs. 2 and 3. All R2 values
were sufficiently high (more than 75); this suggested that all
the response surfaces were highly reliable. The simultaneous
optimal solutions for X1, X2, and X3 and the predicted values
for Y1 and Y2 calculated by RSMS are shown in Table 3. The
optimal solutions of all factors (X1, X2, and X3), except those
obtained from the central composite design dataset, were al-
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Table 2. Original Experimental Design Datasets of Theophylline Tablet Formulations

Experiment Factor level % Dissolved Hardness (N), 
number theophylline at Y2X1

a) (%) X2
b) (%) X3

c) (%) 15 min, Y1

11 50 3.0 3.0 75.6 103.0
Full factorial 13 50 5.0 2.0 97.4 89.2
design 23 70 5.0 3.0 75.4 122.6

4 30 5.0 2.0 89.1 108.9
6 30 5.0 4.0 47.6 110.8
8 30 7.0 3.0 74.9 93.2

14 50 5.0 3.0 69.7 114.7
16 50 7.0 2.0 92.9 93.2

Box & 18 50 7.0 4.0 61.9 117.7
Behnken 24 70 5.0 4.0 49.1 144.2
design 26 70 7.0 3.0 83.7 129.5

2 30 3.0 3.0 59.4 80.4
10 50 3.0 2.0 94.3 93.2
12 50 3.0 4.0 47.0 118.7
20 70 3.0 3.0 61.4 112.8
22 70 5.0 2.0 92.8 112.8

D-optimal 5 30 5.0 3.0 76.9 93.2
design 15 50 5.0 4.0 58.0 74.5

17 50 7.0 3.0 75.1 100.0
1 30 3.0 2.0 88.5 87.3
3 30 3.0 4.0 41.0 98.1
7 30 7.0 2.0 90.6 86.3
9 30 7.0 4.0 51.9 106.9

19 70 3.0 2.0 94.1 104.0
21 70 3.0 4.0 41.0 142.2

Central 25 70 7.0 2.0 94.2 117.7
composite 27 70 7.0 4.0 55.0 137.3
design 14 50 5.0 3.0 69.7 114.7

28 10 5.0 3.0 65.4 90.2
29 90 5.0 3.0 69.3 127.4
30 50 1.5 3.0 57.7 111.7
31 50 8.5 3.0 70.2 117.6
32 50 5.0 1.3 94.7 100.9
33 50 5.0 4.7 34.2 135.2

a) Lactose/cornstarch ratio (% lactose), b) % carmellose calcium, c) % hydroxypropylcellulose.

Fig. 2. Relationships between Experimental and Predicted Values of Y1

(% dissolved at 15 min)



most similar. On the other hand, all the response variables for
Y1 and Y2 were almost similar regardless of the DOE varia-
tion. The fluctuation range of the causal factors in the case of
the central composite design is generally wider than that in
the case of the other DOE datasets; as a result, the response
surface area also becomes larger than that of the other de-
signs.

Evaluation of the Optimal Formulation by the BS
Method BS datasets for the 4 DOE datasets were gener-
ated by 1000 BS resamplings. The results of the optimal for-
mulations and the predicted responses are shown with a 95%
confidence interval in Table 4. Indices corresponding to the
accuracy (d ) and reproducibility (CVB) of the optimal solu-
tion as defined in Eqs. 4 and 5 are shown in Figs. 4 and 5, re-

spectively. The BS optimal solutions calculated for the Box
and Behnken design, the D-optimal design, and the full fac-
torial design datasets were almost the same as the original
solution. Moreover, the BS standard deviation calculated for
these datasets was sufficiently small, and the 95% confidence
intervals of the optimal solutions, calculated by the percentile
method, were sufficiently narrow for practical formulation
studies.

On the other hand, the BS optimal solution calculated for
the central composite design dataset was different from the
original solution to a certain extent, and the BS standard de-
viation was relatively large. The d values that served as an
accuracy index and the CVB values that functioned as a re-
producibility index were calculated for the central composite
design dataset; these values were apparently larger than those
of the other DOE datasets. The distributions of the optimal
solutions calculated for the central composite design dataset
are shown in Fig. 6. These distributions were almost unsym-
metrical; in particular, that of the causal factors X1 (lactose/
cornstarch ratio) exhibited 2 peaks. These results imply that
the BS method, which assumes to the normal approximation,
could not be directly applied in the case of the central com-
posite design dataset.

The distribution of the optimal solutions did not exhibit
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Table 3. Optimized Formulations and Predicted Responses Estimated by
the 4 Experimental Designs

Experimental design

Factors and
Box &  Central D-optimal Full 

responses Behnken composite factorial 
design design design design

X1
a) 66.2 81.1 66.1 66.8

X2
b) 6.06 6.91 5.57 5.84

X3
c) 2.75 2.48 2.48 2.66

Y1
d) 81.7 84.5 83.5 83.5

Y2
e) 122.0 125.6 112.6 118.5

a) Lactose/cornstarch ratio (% lactose), b) % carmellose calcium, c) % hydroxy-
propylcellulose, d) % dissolved theophylline at 15 min, e) hardness [N].

Table 4. Bootstrap Optimal Solutions, Bootstrap Standard Deviations, and 95% Confidence Intervals of Optimal Solutions Generated by the 4 Experimen-
tal Designs When Bootstrapping Was Repeated 1000 times

Optimized formulations Predicted responses

X1
c) (%) X2

d) (%) X3
e) (%) Y1

f) (%) Y2
g) (N)

Box & Behnken design
Original solutiona) 66.2 6.06 2.75 81.7 122.0
Bootstrap solutionb) 66.2 (2.34) 5.9 (0.337) 2.72 (0.118) 81.9 (2.58) 120.8 (3.09)
95% confidence interval 63.3—68.6 5.18—6.37 2.54—2.93 76.4—87.2 113.5—125.5

Central composite design
Original solutiona) 81.1 6.91 2.48 84.5 125.6
Bootstrap solutionb) 77.2 (7.42) 6.26 (0.720) 2.54 (0.288) 81.0 (5.54) 123.7 (3.40)
95% confidence interval 66.1—86.9 4.60—7.27 2.04—3.06 71.0—91.7 117.1—130.4

D-optimal design
Original solutiona) 66.1 5.57 2.48 83.5 112.6
Bootstrap solutionb) 66.4 (1.12) 5.59 (0.239) 2.53 (0.070) 82.9 (1.87) 113.8 (2.37)
95% confidence interval 64.1—68.4 5.13—6.05 2.40—2.70 79.1—86.7 109.2—118.3

Full factorial design
Original solutiona) 66.8 5.84 2.66 83.5 118.5
Bootstrap solutionb) 66.9 (0.86) 5.76 (0.266) 2.65 (0.093) 83.3 (1.61) 118.0 (2.20)
95% confidence interval 65.1—68.6 5.16—6.14 2.48—2.80 80.8—85.9 111.3—121.8

( ): Bootstrap standard deviation. a) Obtained from the original dataset, b) bootstrap resampling frequency, approximately 1000 times, c) lactose/cornstarch ratio (% lactose),
d) % carmellose calcium, e) % hydroxypropylcellulose, f) % dissolved theophylline at 15 min, g) hardness.

Fig. 3. Relationships between Experimental and Predicted Values of Y2

(Hardness).



normal distributions due to the change in the calculation
ranges of causal factors in each BS resampling dataset, as
shown in Fig. 7. As mentioned in the introduction, a response
surface is generated using the all data points, and the optimal
formulation is estimated inside the inscribed circle on the re-
sponse surface. This implies that, the maximum–minimum
range of each causal factor affects the original optimal solu-
tions. However, BS datasets are generated by random resam-
pling of the original dataset. In the central composite design
dataset, axial points exist at both ends of rectangular axes
and only 2 axial points are arranged symmetrically at central
coordinates. If an axial point is chosen as a BS resampling
datum, the calculation range in the response surface gener-
ated by the BS dataset is the same as that in the response sur-
face generated by the original dataset; the optimal solution in
this case is the global solution. However, if an axial point is
not selected as a BS resampling datum, the BS optimal solu-
tion estimated for the BS dataset is searched for within the
narrowed calculation range; the optimal solution in this case
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Fig. 6. Histograms of Optimal Solutions Generated by Bootstrap Resampling (N�1000) for the Central Composite Design Dataset

Fig. 7. The 2-Peak Histogram of the Optimal Solution Estimated by the
Central Composite Design Dataset

Fig. 4. Comparison of d Index for Accuracy of the Optimal Solution be-
tween the 4 Experimental Designs

Fig. 5. Comparison of the CVB Index for Precision (Repeatability) of the
Optimal Solution between the 4 Experimental Designs



is the local solution. Consequently, 2 peaks are observed in
the histogram of the BS optimal solution for the central com-
posite design reflecting a mix of the global and the local so-
lution distributions. To resolve the above problem, SOM
clustering was applied for dividing the 2-peak histogram of
the BS optimal solutions.

Evaluation of the Optimal Formulation by the BS
Method in Combination with SOM Clustering The dis-
tributions of the optimal solutions calculated for the central
composite design dataset were classified by SOM clustering.
The SOMs of the BS optimal formulations of each causal
factor are shown in Fig. 8. The BS optimal formulations were
classified into clusters as shown in Table 5. The BS optimal
solutions were divided into 4 clusters. Then, the d index cor-
responding to the accuracy of each optimal solution was cal-
culated according to Eq. 4 in each cluster (Fig. 9). The BS
optimal solution in the case of cluster 1 was similar to the
original solution. The d values of cluster 1 were apparently
smaller than those of the other clusters. Therefore, it was
considered that the global optimal solution was contained in
the BS optimal solutions of cluster 1.

The SOM of the causal factors X1 (the lactose/cornstarch
ratio) was visually characterized into 2 colored groups; clus-
ters 1, 3, and 4 and cluster 2 (Fig. 9). Further, the distribu-
tions of the optimal solutions in the cluster 1 are shown in
Fig. 10. These distribution ranges were almost narrower than
the original distributions (shown in Fig. 6); in particular,
around the distribution of the causal factor X1, the histogram
exhibited 1-peak distributions. This indicated that the SOM
could satisfactorily separate the mixture of the BS optimal
solutions into several groups.

The frequency of the resampled data points from the indi-
vidual experiments in each SOM cluster is shown in Table 6.
In cluster 1, the frequency of resampling data points is al-
most even among all the experiments. However, in the other
clusters, the resampled frequencies of the axial data points
on the rectangular axes, for example, the numbers 29, 31,
and 32, were extremely few as compared to other experi-
ments. In the previous study, the number of BS required for
the evaluation of the optimal solution was at least around
300. Therefore, we considered cluster 1 to be appropriate for
determining the optimal solution from the central composite
design dataset.

Conclusion
It was confirmed that a reasonable response surface was
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Fig. 8. Self-organizing Maps of Optimal Solutions of Input Factors Estimated from Bootstrap Samples (N�1000) for the Central Composite Design
Dataset

Table 5. Bootstrap Optimal Solutions and Bootstrap Standard Deviations in the Self-organizing Map Cluster for Optimal Solutions Estimated from Boot-
strap Samples of the Central Composite Design Dataset

Optimized formulations Predicted responses

X1
c) (%) X2

d) (%) X3
e) (%) Y1

f) (%) Y2
g) (N)

Original solutiona) 81.1 6.91 2.48 84.5 125.6
Bootstrap solutionb)

Cluster 1 82.2 (1.61) 6.82 (0.30) 2.39 (0.21) 84.8 (4.23) 124.5 (1.75)
Cluster 2 67.2 (0.77) 5.95 (0.57) 2.56 (0.25) 79.9 (4.45) 121.2 (2.81)
Cluster 3 83.5 (2.53) 5.42 (0.61) 2.35 (0.22) 83.4 (4.62) 122.2 (1.91)
Cluster 4 81.8 (1.62) 6.63 (0.50) 2.90 (0.14) 74.5 (2.75) 128.1 (2.21)

( ): Bootstrap standard deviation. a) Obtained from the original dataset, b) bootstrap resampling frequency, approximately 1000 times, c) lactose/cornstarch ratio (% lactose),
d) % carmellose calcium, e) % hydroxypropylcellulose, f) % dissolved theophylline at 15 min, g) hardness.

Fig. 9. Comparison of the d Index to Determine the Accuracy of the Opti-
mal Solution in the Self-organizing Map Clusters



generated by RSMS in all the DOEs studied. However, the
method is based only on the BS technique, which was used to
estimate the reliability of the optimal solution predicted by
RSMS, and is not applicable to the central composite design
dataset. Therefore, SOM was applied to evaluate the reliabil-
ity of optimal solution, and successful results were obtained
using SOM clustering. Thus, SOM clustering was considered
to reinforce the BS resampling method in the evaluation of
the reliability of the optimal solutions despite the DOE
dataset.
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Fig. 10. Histograms of Optimal Solutions in Cluster 1 Separated by Self-organizing Map Clustering of the 1000 Bootstrappings of the Central Composite
Design Dataset

Table 6. Frequency of Resampled Data Points in the Self-organizing Map
Cluster for Optimal Solutions Estimated from Bootstrap Samples (N�1000)
of the Central Composite Design Dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total
Number of 
BS samples

305 343 167 185 1000

Experiment Frequency of resampled data points
number

1 261 341 152 191 943
3 277 385 180 173 1013
7 315 401 159 185 1060
9 261 366 166 169 959

14 281 382 179 190 1031
19 278 404 165 170 1016
21 261 384 187 233 1065
25 297 380 167 157 1001
27 282 370 158 201 1011
28 264 343 240 156 1002
29 453 2 253 302 1008
30 307 332 157 165 961
31 449 346 3 176 974
32 378 387 220 35 1018
33 211 337 119 272 938


