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Efficient synthesis of p-quinols (2) using catalytic hypervalent
iodine oxidation of 4-arylphenols (1) with 4-iodophenoxyacetic
acid (3) and Oxone® was developed. Reaction of 1 with a cat-
alytic amount of 3 in the presence of Oxone® as a co-oxidant in
tetrahydrofuran or 1,4-dioxane—water gave the corresponding 2
in excellent yields.
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Development of efficient methods for synthesis of p-
quinols is quite important in synthetic organic chemistry
because they are structural components of numerous natu-
ral products'~® as well as pharmacologically active com-
pounds® 7 and useful synthetic intermediates.®” A com-
monly used methods for preparation of p-quinols is 4-
substituted phenol oxidation. Among many reported oxidants
for the oxidation of phenols,''” hypervalent iodine(III)
oxidants such as phenyliodine(Ill) diacetate (PIDA) and
phenyliodine(IIT) trifluoroacetate (PIFA) are typically
used'® 2" because of the non-toxic nature of hypervalent io-
dine(TIT) reagents and the method’s simplicity.> > However,
this approach often gives low yields of the desired product
because of competitive oligomerization, especially in the
case of oxidation of 4-arylphenols. For example, Felpin re-
ported in 2007 that the oxidation of 4-phenylphenol (1a)
with PIDA gave the corresponding p-quinol (2a) in 43%
yield. In fact, PIFA caused much more complication than
PIDA to reduce the yield to 17% (Chart 1).*” We recently
reported a catalytic hypervalent iodine oxidation of 4-
alkoxyphenols to p-quinones using a catalytic amount of
4-iodophenoxyacetic acid (3) with Oxone® (2KHSO;-
KHSO,-K,S0,) as a co-oxidant.?®* This oxidation system
has the following advantages. The reaction proceeds under
mild conditions. Oxone® is an inorganic, water-soluble, com-
mercially available, and inexpensive co-oxidant that has low
toxicity.>” Moreover, the solubility of 3 in alkaline solution
makes its separation and recovery steps easier to carry out
without a purification step. As part of our study for develop-
ment of catalytic hypervalent iodine oxidations,*' > we re-
port herein an efficient synthesis of p-quinols directly from
4-arylphenols using catalytic amount of 3 and Oxone® in
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tetrahydrofuran (or 1,4-dioxane)—water (Chart 2).

We first examined 4-phenylphenol (1a) as a model sub-
strate (Table 1). Treatment of 1a and 0.1 eq of 3 and 4 eq of
Oxone® in acetonitrile-water (2: 1) at room temperature for
24h gave 2a in only 38% yield. Addition of water shortened
the reaction time, although yields were not improved (entries
2, 3). Next we investigated the solvent effect of other water-
soluble organic solvent on the catalytic reactions. A similar
reaction of 1a in acetone—water (1 :2) gave an almost identi-
cal result to that in acetonitrile—water (entry 4). Use of 2,2,2-
trifluoroethanol (TFE), which is known to be an efficient sol-
vent in catalytic hypervalent iodine reactions,?*>'*® gave
high yield (76%) of 2a, but needed a longer reaction time
(entry 5). However, it is interesting that an unfamiliar solvent
in hypervalent iodine chemistry, tetrahydrofuran (THF) gave
a better result than TFE did (entry 6). Use of 1,4-dioxane
shortened the reaction time with a lower reaction yield (entry
7). When the reaction was conducted in a 1:5 mixture of
THF-H,O, the reaction was completed within 5h. The best
yield was obtained (entry 8). Further addition of water to the
THF-H,O0 solvent system was ineffective (entry 9). The cat-
alytic oxidation proceeded even in water alone, but a longer
reaction time, unfortunately, was required (entry 10). We
then changed the amounts of 3 and Oxone® (entries 11—15).
When the amount of Oxone® was reduced to leq ina 1:5
mixture of THF-H,0, the reaction was completed after 13 h
to give 86% yield of 2a. A similar reaction with 0.05 eq of 3
and 4 eq of Oxone® required 8 h to finish the reaction afford-
ing 2a in 85% yield. When 1a was treated with 0.025 eq of 3

|
1 ) , cat \©\ ~ 1 i 2
R R O""COH R R
3
Oxone

R3 R® OH
1 2
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Chart 2
Table 1. Oxidation of 1a with 3 and Oxone®*
3 Oxone Time Yield of
Entry (q) (q) Solvent (h) 2a (%)

1 0.1 4 CH,CN-H,0 (2:1) 24 38

2 0.1 4 CH,CN-H,0 (1:1) 2.5 35

3 0.1 4 CH,CN-H,0 (1:2) 1 43

4 0.1 4 Acetone-H,0 (1:2) 2 46

5 0.1 4 CF,CH,0H-H,0 (1:2) 12 76

6 0.1 4 THF-H,0 (1:2) 10 80

7 0.1 4 1,4-Dioxane-H,O (1:2) 3 60

8 0.1 4 THF-H,0 (1:5) 5 89

9 0.1 4 THF-H,O (1:10) 8 81
10 0.1 4 HO0 16 54 (30)”
11 0.1 1 THF-H,0 (1:5) 13 86
12 0.05 4 THF-H,0O (1:5) 8 85
13 0.025 4 THF-H,0 (1:5) 13 88
14 0.01 4 THF-H,0 (1:5) 24 53 (26)"
15 None 4 THF-H,0 (1:5) No reaction

a) Reactions were carried out at room temperature.
1a.

b) Parentheses are recovery of
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Table 2. Catalytic Hypervalent Iodine Oxidation of p-Aryl Phenols (1)*
Entry 1 Solvent” Time (h) Yield (%)
1 b A 16 67
2¢) c A 24 58
3 ¢ B 3 87
4 d B 4 66
59 e B 8 48
6 f B 5 43
7 g B 4 77
8% h B 4 85
99 i A 7 79
10 j B 2 75

a) Reactions were carried out using 0.05 eq of 3 and 4 eq of Oxone® at room temper-
ature. b) A: THF-H,0=1:5, B: 1,4-dioxane-H,0=1:2. ¢) Reaction was carried
out using 0.2 eq of 3. d) Reaction was carried out using 0.1 eq of 3.

and 4 eq of Oxone®, the reaction time was increased to 13h
(entry 13). Reaction using 0.01 eq of 3 was not finished after
24h to afford 3a in 53% yield along with 26% of recovered
1a (entry 14). Reaction of 1a with Oxone® in the absence of
3 did not occur (entry 15).'®

Various 4-substituted phenols (1b—j) were oxidized with
0.05eq of 3 and 4eq of Oxone® to the corresponding p-
quinols (Chart 2, Table 2).*® When 4-(4-tolyl)phenol (1b)
was treated with 0.05 eq of 3 and Oxone® in THF-H,O (1:5)
at room temperature, the reaction was finished within 16 h to
give 67% of p-quinol (2b) (entry 1). A similar reaction of 4-
(4-pivaloyloxymethylphenyl)phenol (1¢) in THF-H,O pro-
ceeded slowly to give 58% yield of the corresponding 2¢
after 24 h stirring with 0.2eq of 3. In contrust, 1c¢ reacted
more smoothly in 1,4-dioxane-H,O (1 :2) than in THF-H,O
to afford 2¢ in 87% yield (entries 2, 3). Oxidation of 4-
bromo derivative (1d) in 1,4-dioxane-H,O gave the corre-
sponding p-quinol (2d) in 66% yield (entry 4). 4-Arylphenol
(2e) bearing the electron-withdrawing cyano group at the
para position of 4-phenyl group showed lower reactivity to
require 0.1 eq of 3 and longer reaction time, and to give 2e in
lower yield (entry 5). Similar reactions of 1f and 1g having
alkyl groups at the ortho position in 1,4-dioxane-H,0 (1:2)
afforded the corresponding 2f and 2g in 43 and 77% yields,
respectively (entries 6, 7). Oxidation of 2,4-diphenylphenol
(1h) with 0.1 eq of 3 and 4 eq of Oxone® was occurred only
at the para position to produce p-quinol (2h) (entry 8). Also,
2-bromo-4-phenylphenol (1i) was oxidized at the para posi-
tion to yield 2i in 79% yield (entry 9). Reaction of 4-
alkylphenol such as 2,4,6-trimethyl derivative (1j) was clean
reaction, affording 2j in 75% yield (entry 10).

In contrast to the oxidation of 4-alkylphenols with stoichio-
metric trivalent iodine compound to yield p-quinols,'® 2"
oxidation by pentavalent iodines usually takes place at the
ortho position of the phenols. Ranganathan and co-workers
described that N-benzoyltyrosine methyl ester was reacted
with 4-fert-butyliodylbenzene in refluxing toluene to give the
corresponding o-quinone in 30% yield.*” Oxidation with o-
iodylbenzoic acid (IBX) also occurred at the ortho position,
reported respectively by Pettus’ group®™ and Quideau’s
group.*’>” These results strongly suggested that a trivalent
iodine species is generated in situ by 3 and Oxone®, it then
oxidizes the phenols to produce p-quinols. Many reports in
the literature have described oxidation of iodoarene with
Oxone® to give iodine(V) compound.***>1—57 However,
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iodine(III) species might exist as an intermediate. A possible
catalytic cycle for this oxidation is shown in Chart 3.
lIodoarene would be oxidized by Oxone® to iodine(III)
species.’® The resultant trivalent iodine species reacts with
4-arylphenol to give cationic intermediate (A) stabilized by
4-aryl group and iodine(I) derivative, before its further oxi-
dation to iodine(V) species. The intermediate (A) is then hy-
drolyzed to p-quinol. In the case of the reaction of 1e having
electron-withdrawing cyano group, the weaker stabilization
of A is expected to decrease its reactivity to give low yield.

In summary, an efficient and practical method for the
preparation of p-quinols using a novel catalytic hypervalent
iodine oxidation of phenols with 3 and Oxone® was devel-
oped. Reaction of 4-arylphenols (1) with a catalytic amount
of 3 in the presence of Oxone® as a co-oxidant in THF or
1,4-dioxane—water gave the corresponding p-quinols (2) in
excellent yields.
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