
Checkpoint kinase 1 (Chk1), a serine/threonine kinase,
plays a critical role in the regulation of the cell-cycle G2/M
checkpoint.1—3) When DNA damage is detected in human
cells, as a response, Chk1 is activated through ATM/ATR
pathway. The activated Chk1 triggers the G2/M checkpoint,
which arrests the cells in G2 to allow time for repairing their
DNA. The inhibition of Chk1 kinase has been shown to re-
sult in abrogation of the G2/M checkpoint, which would per-
mit premature mitotic entry in the presence of DNA damage,
leading ultimately to cell death.4—6) This suggests a potential
therapeutic use of Chk1 inhibitors in cancer therapy; that is
as sensitizing agents of DNA damaging drugs which are still
a major component of cancer therapy.3,7—9) Indeed, several
Chk1 inhibitors, including UCN-0110) and SB-218078,2,11)

have been reported to be able to enhance the cytotoxicities of
the standard DNA-damaging agents in vivo. In addition, se-
lective Chk1 inhibitors are also helpful in the study of G2/M
checkpoint signaling.3,12) Therefore, development of Chk1 in-
hibitors has attracted much attention in recent years.

Currently, many academic institutes and pharmaceutical
companies have been involved in the development of Chk1
inhibitors. And a considerable number of compounds have
been reported to have inhibitory potency against Chk1. Some
compounds, such as PF-477736, AZD7762 and UCN-
01,9,12,13) have entered into clinical trials. Even so, discover-
ing more potent Chk1 inhibitors with novel chemical struc-
tures are still needed and important in order to provide more
lead candidates for the drug development.

Quantitative structure–activity relationship (QSAR) meth-
ods, particularly three dimensional QSAR (3D-QSAR), have
been demonstrated as an effective tool in discovering novel
lead compounds.14,15) And pharmacophore modeling method
is one of the best 3D-QSAR methods, which has been suc-
cessfully applied to the drug discovery.16—20) Thus, in this in-
vestigation, we shall first develop 3D pharmacophore models
of Chk1 inhibitors based on the known Chk1 inhibitors. It is
expected that the established pharmacophore models are able
to correctly elucidate the QSAR of the Chk1 inhibitors. Then

the best pharmacophore model obtained will be used to
screen chemical libraries to identify new inhibitors against
Chk1.

Experimental
Pharmacophore Modeling All the pharmacophore modeling calcula-

tions were carried out by using CATALYST 4.11 software package (Accel-
rys, San Diego, U.S.A.).21) The common pharmacophore features necessary
for potent Chk1 inhibitors were identified by HipHop program, and quantita-
tive pharmacophore models were created by HypoRefine module within
CATALYST.

In pharmacophore modeling, the selection of training set compounds is
critical to the quality of produced models. Each modeling algorithm has its
own requirements that should be conformed to, particularly in the aspects of
chemical structural diversity and bioactivity variation of the training set
compounds. For the pharmacophore modeling algorithm adopted here, the
requirements for the training set compounds include: (1) ��15 compounds
necessary to assure statistical power; (2) activity should span at least 4 or-
ders of magnitude; (3) each order of magnitude represented by ��3 com-
pounds; (4) compounds with similar structures should differ in activity by at
least one order of magnitude; and (5) compounds with similar activity must
be structurally distinct. According to these criteria, we carefully chose
twenty-two Chk1 inhibitors, which were collected from different literature
resources,22—32) to form a training set for the generation of quantitative phar-
macophore models. Their IC50 (half maximal inhibitory concentration) val-
ues span a range of 6 orders of magnitude (from 0.5 to 31800 nM). And the
other three criteria mentioned above are also satisfied. Structures and biolog-
ical activities of these compounds are shown in Chart 1 (1—22). The five
most active compounds (1—5) in the training set were selected for the iden-
tification of common chemical features by HipHop.

All molecules were built in CATALYST 2D/3D visualizer in CATALYST
software package and were minimized to the closest local minimum using
the Charmm-like force field33) implemented in the program. A series of ener-
getically reasonable conformational models which represent the flexibility of
each compound were generated within the CATALYST CatConf module
using the Poling Algorithm.34) We set the maximum number of conformers
to 250, and the energy threshold above the global energy minimum to
20 kcal/mol. Default settings were kept for the other parameters.

In the HipHop run, compound 1 was considered as a reference molecule,
specifying a ‘principal’ value of 2 and a ‘MaxOmitFeat’ value of 0. The
‘principal’ and ‘MaxOmitFeat’ values were set to 1 for the other four most
active compounds. The initial features, which were specified based on an
overview of all the training set molecules, included hydrogen-bond acceptor
(A), hydrogen-bond donor (D), hydrophobic (H), ring aromatic (R), Hy-
drophobic aromatic (Y) and hydrophobic aliphatic (Z) features. In the Hy-
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poRefine run, the initial pharmacophore features were specified based on the
common pharmacophore features identified in the HipHop run. The ‘Spac-
ing’ value was assigned to 120. The “Uncertainty” value was set to 3. And
default settings for other parameters were employed.

Assessment of Pharmacophore Models Test set and cross validation
methods were used for assessing the performance of the generated pharma-
cophore models. For the use of test set method, 232 compounds with differ-
ent bioactivities and structures were selected to form a test set (see Table S1
in Supplementary Material). All of the test set compounds were prepared
using the same method as that for the training set. The performance of phar-
macophore model was examined by utilizing the pharmacophore model to
regress against the test set compounds. The cross validation was carried out
by using CatScramble35) program within CATALYST. This procedure tries to
scramble the experimental activities in the training set randomly, and the re-
sulting training sets are used for HypoRefine runs. The confidence level was
set to 95%. Thereby CatScramble program generated 19 random spread-
sheets to construct hypotheses using exactly the same conditions as used in
generating the original pharmacophore hypotheses.

Database Screening The best HypoRefine pharmacophore hypothesis
was used as a 3D structural search query for retrieving potent molecules
from chemical databases including Specs and Chinese Nature Product Data-
base (CNPD). All queries were performed using the “Best Flexible Search
Databases/Spreadsheets” method within the CATALYST DBServer module.
Only those compounds that fit all the features of the pharmacophore model
in the CATALYST queries were retrieved as a hit.

Docking Study The docking study was carried out by LigandFit pro-
gram within Cerius2 program package (Accelrys, San Diego, U.S.A.),36) and
the Dreiding force field was used for all calculations. The crystal structure of
Chk1 complexed with CHIR-12428) (PDB entry: 2GDO), taken from Protein
Data Bank,37) was used as reference protein. Solvent molecules in the crystal
structure were removed. Hydrogen atoms were added in a normal scheme by
Cerius2. The binding site of the bound ligand was identified as the active
site. The site definition as well as the used docking parameters was firstly
validated through docking the bound ligand back into the protein. The best
docked pose should differ only minimally from the position of the ligand in
the crystal structure (for example, root mean square deviation (rmsd) is
�1.0 Å). Partial charges of all chemical compounds were automatically as-
signed by the Gasteiger scheme implemented in Cerius2 program. Confor-
mations of each compound were created with Monte Carlo simulation (5000
trials) and flexible fit was selected. Within LigandFit, several scoring func-

tions including LigScore1, LigScore2,38) PLP1, PLP2,39) Jain,40) Ludi1,
Ludi2, Ludi3,41,42) PMF,43) as well as a consensus score,44) are available.
Since there is no generally applicable scoring function so far, a solution to
this problem is the calculation of a consensus score, which makes use of the
merits of different scoring functions by combining their results. We first de-
fined a consensus score by nine scoring functions, including LigScore1,
LigScore2, PLP1, PLP2, Jain, Ludi1, Ludi2, Ludi3 and PMF. The consensus
score was then validated by a set of selected compounds, which IC50 values
span a range of 6 orders of magnitude (compounds 1, 3, 5, 10, 11, 13, 14,
16, 18, 21, see Chart 1). The correlation coefficient between consensus
scores and experimental IC50 values was 0.8667, indicating that the consen-
sus score has a good performance. Thus the consensus score will be used to
sort the hit compounds in this study.

Results and Discussion
Pharmacophore Models Qualitative HipHop models

were first generated based on the five most-active compounds
in the training set (compounds 1—5, Chart 1). The best
HipHop model, shown in Fig. 1, involves four types of fea-
tures, namely, hydrogen bond acceptor (A), hydrogen bond
donor (D), hydrophobic (H), and ring aromatic feature (R),
indicating that the four types of features are necessary for
potent Chk1 inhibitors. Accordingly, in the quantitative Hy-
poRefine modeling, the four types of features were selected
as the initial input.

The quantitative models were generated with the twenty-
two compounds in the training set (compounds 1—22, Chart
1). The top 10 hypotheses generated by HypoRefine algo-
rithm together with their statistical parameters are given in
Table 1. The best hypothesis, corresponding to Hypo1 (Fig.
2a), contains four features, including one hydrogen-bond ac-
ceptor (A), one hydrogen-bond donor (D), and two hy-
drophobic features (H1 and H2). One excluded volume (E) is
also involved in Hypo1. Here one may notice that the second
best hypothesis Hypo2 contains the same features and ex-
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Chart 1. Chemical Structures of the 22 Training Set Compounds Together with Their Experimental Activity Data (IC50 Values, nM)



cluded volume as Hypo1. The main difference between them
is the spatial locations of the features and excluded volume.
The 3D space and distance constraints of the pharmacophore
features of Hypo1 are shown in Fig. 2b. Figures 2c and d
show the alignment of Hypo1 with the most active com-
pound 1 (IC50�0.5 nM) and the least active compound 22
(IC50�31800 nM) in the training set, respectively. For com-
pound 1, the hydrogen-bond acceptor was mapped to the sec-
ond position oxygen of quinolin-2(1H)-one; the hydrogen-
bond donor was mapped to the secondary position nitrogen
of quinolin-2(1H)-one; the two hydrophobic features were
mapped to the chlorine and the benzene ring of benzimida-
zole, respectively. By the way, for further understanding of
Hypo1, Fig. 2e presents the alignments of the five most-
active compounds (compounds 1—5) with Hypo1, which
clearly shows that Hypo1 was also mapped very well with
the other most active compounds in the training set except
compound 1. For compound 22, the hydrogen-bond acceptor
was mapped to the oxygen atom of carbonyl group, and the
hydrogen-bond donor was mapped to the ninth position nitro-
gen of purin. The rest two features of Hypo1 could not be
matched with any moiety of this compound. All of these re-
flect the validity of the pharmacophore model Hypo1 to
some extent.

Furthermore, we classified all the training set compounds
into three categories: highly active (IC50�50 nM, ���),
moderately active (50 nM�IC50�1000 nM, ��), and low ac-
tive (IC50�1000 nM, �). Table 2 shows the predicted and ex-
perimental inhibitory activities of these 22 molecules in the
training set. Obviously most of these compounds were cor-

rectly predicted, except two compounds: one highly active
compound was predicted to be moderately active, and one
low active compound was predicted as moderately active
one.

Validation of the Pharmacophore Model A good phar-
macophore model is not only able to predict the activities of
the training set compounds accurately, but also can predict
the activities of external compounds of training set. Here an
independent validation set containing 232 compounds whose
inhibitory activity values against Chk1 have been reported
publicly was used to assess the predictive ability of Hypo1.
The assessment was carried out by using Hypo1 to regress
against the test set compounds. Figure 3 presents the plot of
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Fig. 1. The Best HipHop Model Generated by the Five Most Active Com-
pounds (1—5) in the Training Set.

Fig. 2. Pharmacophore Models of Chk1 Inhibitors

(a) The best HypoRefine model, Hypo1; (b) 3D spatial relationship and geometric
parameters of Hypo1; (c) Hypo1 mapped to the most active compound (1, IC50�
0.5 nM); (d) Hypo1 mapped to the least active compound (22, IC50�31800 nM). (e) The
alignment of the most active compounds (1—5) in training set with Hypo1.

Table 1. Statistical Parameters of the Top 10 Hypotheses of Chk1 Inhibitors Generated by HypoRefine Program

Hypo. No. Total cost Cost differencea) Error cost Rmsd Correlation coefficient Featuresb)

1 100.678 75.25 82.6555 0.8871 0.9577 ADHHE
2 102.316 73.612 84.6691 0.9849 0.9471 ADHHE
3 104.411 71.517 87.1211 1.0922 0.9341 ADHRE
4 108.748 67.18 92.1485 1.2845 0.9069 ADHR
5 110.057 65.871 92.6944 1.3037 0.9044 ADHR
6 110.133 65.795 92.5258 1.2978 0.9055 ADHR
7 110.342 65.586 92.5971 1.3003 0.9053 ADHR
8 112.097 63.831 95.057 1.3836 0.8913 ADHR
9 114.58 61.348 95.6569 1.4032 0.8897 ADHR

10 114.6 61.328 97.6437 2.0152 0.8769 ADHRE

a) (Null cost�total cost), null cost�175.928, fixed cost�90.0656. For Hypo1, weight�3.0808, configuration�14.9413. All cost values are in the unit of bits. b) A, D, H, R
and E present hydrogen bond acceptor, hydrogen bond donor, hydrophobic feature, ring aromatic feature and exclusion volume, respectively.



correlation between the experimental and predicted activities
(by Hypo1) for the test set and the training set. Obviously,
the correlation coefficient of 0.8522 indicates that Hypo1 is
capable of predicting the IC50 values correctly (detailed in-
formation see Table S1 in Supplementary Material).

Further, CatScramble program within CATALYST was
used to evaluate the statistical relevance of Hypo1. The pur-
pose of this type of validation is to check whether there is a
strong correlation between the chemical structures and the
biological activities. In this study, a confidence level of 95%
was chosen. Thus a total of 19 random spreadsheets were
generated to construct hypotheses using exactly the same
conditions as used in the original HypoRefine run. The total
costs of pharmacophore models obtained from the 19 Hy-
poRefine runs as well as the original HypoRefine run are pre-
sented in Fig. 4. From Fig. 4, one can see that the original hy-
pothesis is far more superior to those of the 19 random hy-
potheses generated. These results provide confidence on our
pharmacophore model.

A Comparison between Hypo1 and Chemical Features

in the Active Site of Chk1 Protein The pharmacophore
models developed here are all based on the known ligands of
Chk1 protein. One may wonder whether the pharmacophore
models obtained here could correctly reflect the interactions
between the protein and its ligands. Very luckily, there have
already been several crystal structures of Chk1-ligand com-
plexes available in Protein Data Bank (PDB). The crystal
structure of Chk1 complexed with the compound CHIR-124
(PDB entry: 2GDO) was chosen as an example since CHIR-
124 is in our test set and is one of the most potent com-
pounds (IC50�0.3 nM).

Figure 5a presents the mapping of Hypo1 with the Chk1–
CHIR-124 complex. Detailed interactions between CHIR-
124 and Chk1 are depicted in Fig. 5b. From Figs. 5a and b,
one can see that the hydrogen bond acceptor of Hypo1 corre-
sponds to the hydrogen bond interaction formed between the
amino acid residue Cys87 and the second position oxygen of
quinolin-2(1H)-one. The hydrogen bond donor of Hypo1 re-
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Table 2. Experimental and Predicted Activities (Using Hypo1) of the Training Set Compounds

Compound Experimental IC50 Predicted IC50

No. (nM) (nM)
Errora) Fit valueb) Experimental scalec) Predicted scalec)

1 0.5 1.1 �2.2 9.26 ��� ���
2 1 1.8 �1.8 9.06 ��� ���
3 3 1.1 �2.6 9.25 ��� ���
4 4 12 �3.1 8.22 ��� ���
5 7.6 6.4 �1.2 8.51 ��� ���
6 14 48 �3.4 7.64 ��� ���
7 20 25 �1.3 7.91 ��� ���
8 40 110 �2.8 7.27 ��� ��
9 50 300 �6 6.83 �� ��

10 82 160 �1.9 7.12 �� ��
11 108 64 �1.7 7.51 �� ��
12 228 150 �1.5 7.14 �� ��
13 450 51 �8.8 7.61 �� ��
14 660 500 �1.3 6.62 �� ��
15 1033 930 �1.1 6.35 � ��
16 3000 2200 �1.3 5.97 � �
17 6100 6300 �1 5.52 � �
18 7080 17000 �2.4 5.08 � �
19 13400 3800 �3.5 5.73 � �
20 15800 9600 �1.6 5.33 � �
21 20400 3300 �6.2 5.80 � �
22 31800 36000 �1.1 4.75 � �

a) A ratio between the experimental and predicted activities. A positive value indicates that the predicted IC50 is higher than the experimental IC50, while a negative one indi-
cates that the predicted IC50 is lower than the experimental IC50. b) Fit value indicates how well the features in the hypothesis overlap the chemical features in the compound. c)
Activity scale: ���, IC50�50 nM (highly active); ��, 50 nM�IC50�1000 nM (moderately active); �, IC50�1000 nM (low active).

Fig. 3. Plot of the Correlation between the Experimental and Predicted
Activities (by Using Hypo1) for the Test Set (Filled Circles) and the Train-
ing Set (Filled Squares) Compounds

Fig. 4. The Difference in Total Cost of Hypotheses between the Initial
Spreadsheet and 19 Random Spreadsheets after CatScramble Run



flects the hydrogen bond interaction between Glu85 and
CHIR-124. The hydrophobic feature H1 of Hypo1, locating
in the hydrophobic pocket formed by residues Leu15, Gly89,
and Gly90, was mapped to the benzene ring. The other hy-
drophobic feature H2 of Hypo1, which is near to the hy-
drophobic pocket formed by residues Val40, Val68, Phe70,
Leu82, and Leu84, was mapped to the chlorine atom of benz-
imidazole. The excluded volume is positioned very close to
the backbone of Chk1. From here, we can conclude that the
chemical features and their spatial arrangement described in
the pharmacophore model Hypo1 are consistent with the ac-
tual ligand–protein interactions.

Virtual Screening The validated pharmacophore model
Hypo1 was employed as a 3D search query for retrieving po-
tent molecules from the Specs (135556) and CNPD (43055).
A total of 7463 compounds were retrieved from the first
screening by restricting that all the chemical features of
Hypo1 must be mapped. Then these hit compounds were fur-
ther subjected to filtering by applying the Lipinski’s rule of
five. 3889 molecules were passed through the second screen-
ing.

Docking Study All the hit compounds from the second
screening were then subjected to docking study to reduce the
rate of false positive. Finally, more than 20 compounds were
selected from the top ranked hit compounds and suggested
for further experimental assay. And ten of these compounds
are given in Table S2. Figures 6a and b show a possible dock-
ing model of AK-968/12115125 (from Specs database) and
the mapping of this molecule with the best pharmacophore

model Hypo1.

Conclusions
In this study, pharmacophore modeling by using HipHop

and HypoRefine modules within CATALYST program pack-
age was carried out for elucidating the structure–activity re-
lationship of Chk1 inhibitors. The best quantitative pharma-
cophore model Hypo1 was characterized by the best correla-
tion coefficient (0.9577), the lowest total cost value
(100.678), the highest cost difference (75.25), and the lowest
rmsd (0.8871). Hypo1 consists of one hydrogen-bond accep-
tor, one hydrogen-bond donor, and two hydrophobic features,
as well as one excluded volume. This pharmacophore model
was further validated by test set and cross validation meth-
ods. Results obtained by the test set method show a fairly
good correlation between the experimental and estimated
IC50 values, indicating a good predictive ability. And results
of cross validation by using CatScramble program within
CATALYST further confirmed the statistical confidence of
Hypo1. A comparison analysis of Hypo1 with chemical fea-
tures in the active site of Chk1 indicates that the pharma-
cophore model Hypo1 can correctly reflect the interactions
between Chk1 and its ligands. Finally the validated model
Hypo1 was used as a 3D structural query to screen two data-
bases, namely, Specs and CNPD, for retrieving new potent
inhibitors of Chk1. The hit compounds were subsequently
subjected to filtering by Lipinski’s rule of five and docking
studies to refine the retrieved hits. Finally the most potent
compounds were selected and have been suggested for fur-
ther in vitro assays.
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Black dashed lines indicate hydrogen bonds.

Fig. 6. (a) A Possible Docking Model of AK-968/12115125 (from Specs
Database) into the Active Site of Chk1 and (b) AK-968/12115125 Aligned
with the Pharmacophore Model Hypo1
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Supplementary Materials
The following supplementary material is available upon request to the

corresponding author.
Table S1 Chemical structures (SMILES format) of Chk1 inhibitors in the

test set together with their experimentally measured and predicted (by Hypo
1) activities (IC50 values, nM).

Table S2 The chemical structures, fit values (bits) and predicted activities
(IC50 values, nM) of some top ranked hit compounds from virtual screening.
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