
Serine protease factor Xa (fXa), positioned at the juncture
of the intrinsic and the extrinsic pathways, plays a pivotal
role in the blood coagulation cascade.1) Selective inhibition
of fXa without affecting the existing thrombin levels may
cause less impairment of primary hemostasis and thus should
be a safer anticoagulant therapy than direct inhibition of
thrombin. Clinical findings have confirmed the potential of
fXa inhibition for producing excellent antithrombotic effi-
cacy with minimal bleeding risk when compared to direct
thrombin inhibitors.2—6)

Our previous communications have reported a series of 1-
(2-naphthyl)-1H-pyrazole-5-carboxylamides as potent and
selective fXa inhibitors with good oral bioavailability and
half-life.7—9) This class of fXa inhibitors, as represented by
compounds 1—4, possesses a substituent either at the 6-posi-
tion (chloro) or at the 3-position (methylsulfonyl, aminosul-
fonyl, aminocarbonyl, fluoro or cyano) on the P1 naphthalene
moiety. The individual fXa affinity enhancing effect of the 6-
chloro and the 3-methylsulfonyl substituents prompted us to
wonder if the two substituents could be synergetic to each
other for further fXa binding potency improvement. To an-

swer this question, we designed compounds 5 and 6 that bear
a tri-b-substituted 6-chloro-3-methylsulfonyl naphthalene
moiety as the fXa S1 binding element.

Ethyl 1-(6-chloro-3-(methylsulfonyl)naphthalen-2-yl)-3-
methyl-1H-pyrazole-5-carboxylate 7 was the key building
block needed for the synthesis of compounds 5 and 6, and
the tri-b-substituted naphthalene 8 would be the precursor for
its preparation, as analyzed in Chart 1. The amino group
would lead to the pyrazole via condensation of the corre-
sponding hydrazine, and the iodo group would serve as a
handle to install the methylsulfonyl substituent through a
copper-mediated C–S cross coupling with sodium methane-
sulfinate.10) 6-Chloro-3-iodo-2-naphthylamine 8 could be
synthesized from methyl 3-amino-2-naphthoate 9 via iodo-
de-diazoniation followed by Curtius rearrangement. Based
upon Levy’s precedent work,11) compounds 9—11 could be
prepared from the Diels–Alder product 12 of 4-chloro-o-
quinodimethane (13) and maleic anhydride. To produce the
o-quinodimethane in situ, Levy forced the cheletropic elimi-
nation of sulfur dioxide from 1,3-dihydrobenzo[c]thiophene-
S,S-dioxide using strong heat at 230 °C. In direct contrast, the
1,4-dihydro-2,3-benzoxathiin-3-oxide (also known as sulfi-
nate or sultine) undergoes the sulfur dioxide cheletropic
elimination smoothly around 80 °C.12—17) Hoey and Dit-
tmer13) have developed a convenient one-step synthesis of
1,4-dihydro-2,3-benzoxathiin-3-oxide in high yield from
a ,a�-dihalo-o-xylene and sodium hydroxymethanesulfinate
(rongalite). Townsend and co-workers12) have elegantly ap-
plied this methodology in the preparation of tetra-b-substi-
tuted naphthalenes. We thus chose sulfinate 15 over sulfone
14 as the precursor for 4-chloro-o-quinodimethane 13.

The synthesis of ethyl 1-(6-chloro-3-(methylsulfonyl)-
naphthalen-2-yl)-3-methyl-1H-pyrazole-5-carboxylate 7 and
its corresponding 2-(7-chloro-3-methylsulfonyl)-naphthyl
isomer 7B is illustrated in Chart 2. Diol 18 was readily pre-
pared from commercially available 4-chlorophthalic anhy-
dride 16 using lithium aluminum hydride (LAH) (�80%
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yield) and also from commercially available 4-chlorophthalic
acid 17 using borane-tetrahydrofuran (THF) (�70% yield).
a ,a�-Dibromo-o-xylene 19 was produced from diol 18 in 
refluxed 48% HBr quantitatively. Under Dittmer’s condi-
tion,12,13) compound 19 reacted smoothly with sodium hy-
droxymethanesulfinate to afford a mixture of 1,4-dihydro-
2,3-benzoxathiin-3-oxides 15A/B in 1 : 1 ratio in 60% yield.
In refluxed benzene, mixture 15A/B decomposed to 4-
chloro-o-quinodimethane 13, which then underwent Diels–
Alder reaction with maleic anhydride to cleanly generate 
6-chloro-1,2,3,4-tetrahydro-2,3-naphthalic anhydride 12. Its
aromatization to 6-chloro-2,3-naphthalic anhydride 11 was
accomplished using NBS (N-bromosuccinimide) in boiling
acetic anhydride.11)

Naphthalic anhydride 11 was converted to its half esters
10A/B (inseparable) with sodium methoxide and next to 
the corresponding tert-butoxycarbonyl (BOC)-protected
naphthylamine derivatives 20A/B (inseparable) via Curtius
rearrangement using diphenylphosporyl azide (DPPA).11,12)

Compounds 20A/B were purified by flash column and their
overall yield from 15A/B was 60%. The BOC protecting
group was then cleaved by HCl, and the resulted naphthy-
lamines 9A/B (1 : 1 by HPLC, yet separable by challenging
flash column work) were converted to iodonaphthalenes
21A/B (inseparable) through iodo-de-diazoniation.18) Methyl
esters 21A/B were hydrolyzed into naphthyl carboxylic acids
22A/B, which were converted to the corresponding BOC-
protected naphthylamines 23A/B via another Curtius re-
arrangement. Compounds 23A/B (inseparable) were purified
by flash column, and their overall yield from 20A/B was
37%. Treatment of 23A/B with 4 N HCl in dioxane offered
the HCl salt of 6-chloro-3-iodonaphthyl-2-amine 8A and 7-
chloro-3-iodonaphthyl-2-amine 8B.

Naphthylamines 8A/B were converted to hydrazines
24A/B using the same procedure we had reported earlier.7) It
was then condensed with mono-protected diketone 25 to af-
ford naphthyl pyrazoles 26A/B (1 : 1 by HPLC; overall 12%
yield from 23A/B). 6-Chloro-3-iodo-2-naphthyl pyrazole
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Chart 1. Retrosynthesis of Key Pyrazole Intermediate 7

(a) LAH (1 M at THF, 2.5 eq), THF, room temperature (RT), 2 h, �80%; (b) BH3·THF (1 M in THF, 10 eq), dioxane, 0 °C to RT, 1 h, �70%; (c) 48% HBr, reflux, 4 h, 95%; (d)
sodium hydroxymethanesulfinate dihydrate (2 eq), Bu4NBr (0.2 eq), DMF, 0 °C to RT, overnight, 60%; (e) maleic anhydride (1 eq), PhH, reflux, overnight; (f) NBS (2 eq), AIBN
(cat.), Ac2O, 120 °C, 4 h; (g) (1) NaOMe (50 eq), MeOH, reflux, 3 h; (2) conc. HCl; (h) DPPA (1.1 eq), Et3N (1.1 eq), tBuOH, reflux, overnight; flash column purification with 10%
EtOAc in hexane; (i) HCl (4 N in dioxane), 2 h; (j) (1) NaNO2 (1 eq), conc. HCl, 0 °C, 40 min; (2) NaI (4 eq in water), overnight, 0 °C to RT; (k) (1) LiOH·H2O (2 eq), MeOH, THF,
water, RT, 90 min; (2) conc. HCl; (l) (1) NaNO2 (1 eq), conc. HCl, 0 °C, 30 min; (2) SnCl2· 2H2O (3 eq), conc. HCl, 0 °C, 30 min; cold filtration to isolate solid product; (m) 25 (1
eq), THF/HOAc (2 : 1), reflux, 3 h; silica flash column purification with 5% EtOAc in hexane to separate 26A and 26B; (n) MeSO2Na (4 eq), (CuOTf)2·PhH (0.5 eq),
MeNHCH2CH2NHMe (0.5 eq), DMSO, 115 °C, 3 h; flash column purification with 10—20% EtOAc in hexane; 50%.
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26A and its 7-chloro-3-iodo-2-naphthyl regioisomer 26B
were separated from each other by silica flash column using
5% EtOAc in hexane. Compound 26B has a slightly higher
Rf value than its regioisomer 26A. Ethyl 1-(6-chloro-3-
(methylsulfonyl)naphthalen-2-yl)-3-methyl-1H-pyrazole-5-
carboxylate 7 was then successfully prepared from com-
pound 26A in about 50% yield by the Cu(I)-promoted C–S
cross coupling reaction.10,19) So was ethyl 1-(7-chloro-3-
(methylsulfonyl)naphthalen-2-yl)-3-methyl-1H-pyrazole-5-
carboxylate 7B prepared from compound 26B. The struc-
tures of 7 and 7B were determined by proton NMR NOE
study.20)

Finally, the synthesis of 6-chloro-3-methylsulfonyl fXa in-
hibitors 5 and 6, along with their corresponding 7-chloro-3-
methylsulfonyl regioisomers 29 and 30, was completed by
the route shown in Chart 3.21,22) Weinreb reactions23) were
used to couple the biphenylamines (27, 28)24) with ethyl es-
ters 7 and 7B in 40—60% yield. The amino-protecting t-
butyl groups were cleaved using warm trifluoroacetic acid
(TFA) to liberate the sulfonamide functionality in com-
pounds 5 and 29.

The biological activity data for the biphenyl 1-(2-naph-
thyl)-1H-pyrazole-5-carboxylamides are summarized in
Table 1. It is clear that the 7-chloro (Z7) substituent in com-
pounds 29 and 30 is not tolerated in the fXa S1 pocket, due
to its unfavorable geometrical orientation. We were delighted
to learn that the 6-chloro-3-methylsulfonyl compounds 5
(fXa IC50 0.5 nM; Ki 0.065 nM) and 6 (fXa IC50 0.6 nM; Ki

0.045 nM) are highly potent fXa inhibitors.25,26) Their fXa
binding affinity is about 10-fold better than that of the corre-
sponding 6-chloro analogs (1, 2), and is also about 10-fold
better than that of the corresponding 3-methylsulfonyl
analogs (3, 4). This observation confirms that the Z3 (3-
methylsulfonyl) and Z6 (chloro) substituents are synergetic to
each other for the 2-naphthyl’s binding interaction in the fXa
S1 pocket. Like inhibitors 1—4, compounds 5 and 6 have
displayed excellent enzyme selectivity toward fXa. Their 
IC50 values for thrombin, trypsin, tissue plasminogen acti-
vator, activated protein C and plasmin are all above 10 mM.

The kallikrein IC50 values for compounds 5 and 6 are 1.6 mM

and 1.9 mM, respectively. Unfortunately, fXa inhibitors 5
(2�maximum thrombin generation (TG) 2.5 mM) and 6
(2�TG 4.6 mM) have not displayed strong in vitro anticoagu-
lant activity in our human plasma thrombin generation
assay,27) probably due to their poor hydrophilicity and the re-
sulted high plasma protein binding. However, as we have re-
ported previously, the fXa inhibitors’ hydrophilicity and in
vitro anticoagulant potency can be significantly improved by
changing and optimizing the P4 moieties, without com-
promising the potent fXa binding affinity.8,9) Hopefully, the
optimal P4 motifs we have discovered can lead us to 
potent 1-(2-(6-chloro-3-methylsulfonyl)-naphthyl)-1H-pyra-
zole-5-carboxylamide-based fXa inhibitors with improved
anticoagulant activity and desired pharmacokinetic proper-
ties.

In conclusion, we have designed and synthesized biphenyl
1-(2-(6-chloro-3-methylsulfonyl)-naphthyl)-1H-pyrazole-5-
carboxylamides 5 and 6 as highly potent fXa inhibitors. 
We have discovered that the 2-(6-chloro-3-methylsulfonyl)-
naphthyl is a more potent fXa S1 binding element than the 
2-(6-chloro)-naphthyl and the 2-(3-methylsulfonyl)-naphthyl
in the class of 1-(2-naphthyl)-1H-pyrazole-5-carboxylamide-
based fXa inhibitors, due to the synergetic effect of the 6-
chloro and the 3-methylsulfonyl groups to the S1 binding in-
teraction.
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