Two New Taxoids from the Leaves and Stems of Taxus chinensis

Fu-Sheng WANG* and Gui-Rong SHI

College of Pharmacy, Dali University; No. 17, Wanghua Road, Dali 671000, P. R. China. Received April 15, 2009; accepted May 25, 2009; published online June 15, 2009

Two new taxoids called 7,13-dideacetyl-9,10-debenzoyl-7 β ,9 α -p-hydroxylbenzylidenedioxy-taxchinin C (1) and 7,13-dideacetyl-2,9,10-debenzoyl-2-tigloyl-7 β ,9 α -p-hydroxylbenzylidenedioxy-taxchinin C (2) were isolated from the leaves and stems of *Taxus chinensis*. They represent the first examples of taxoids containing the 5/7/6-membered ring system with 7 β ,9 α -p-hydroxylbenzylidenedioxy groups, the structures of which were elucidated based on spectroscopic analyses, especially 1D and 2D NMR spectra.

Key words Taxus chinensis; taxoid; 7β , 9α -p-hydroxylbenzylidenedioxy-taxchinin C

The extensive utilization of paclitaxel as an anticancer agent has stimulated interest in the analysis of the various *Taxus* species to find alternative sources of paclitaxel or related compounds with improved activity. As a result, natural taxoids are increasingly being isolated and identified.^{1,2)} *Taxus chinensis* (PILGER) REHD, indigenous to China, is considered a promising source of taxoids,^{3–8)} and we have investigated the chemical constituents of *T. chinensis* in previous studies.^{9–12)}

In our continuing search for new, bioactive natural taxoids, we have reinvestigated the polar neutral fractions of the extracts from the leaves and stems of *T. chinensis* and obtained two new taxoids, 7,13-dideacetyl-9,10-debenzoyl-7 β , 9 α -p-hydroxylbenzylidenedioxy- taxchinin C (1) and 7,13-dideacetyl-2,9,10-debenzoyl-2-tigloyl-7 β ,9 α -p-hydroxyl benzylidenedioxy-taxchinin C (2). Structurally, these two new compounds are the first examples of natural taxoids containing the 5/7/6-membered ring system with 7 β ,9 α -p-hydroxylbenzylidenedioxy taxane diterpene and several synthetic analogues have been reported.^{12–14} In this paper, we report the isolation and structural elucidation of the two new taxoids.

Results and Discussion

Compound 1 was isolated as a white amorphous powder. Its molecular formula was determined to be $C_{36}H_{42}O_{11}$ based on the positive HR-electrospray ionization (ESI)-MS (*m*/*z* 673.2644 [M+Na]⁺, Calcd 673.2624). The ¹H-NMR spectrum of 1 showed four characteristic methyl signals of a taxoid skeleton at $\delta_{\rm H}$ 1.05, 1.06, 1.94, and 1.95, and the ¹³C-NMR spectrum displayed characteristic carbon resonances at $\delta_{\rm C}$ 68.4 (s, C-1), 45.1 (d, C-3), 80.3 (s, C-4), 38.4 (s, C-8), and 76.0 (s, C-15). From the above-mentioned evidence, it can be deduced that 1 is a taxoid with a 5/7/6-membered ring system.³⁾ Moreover, the carbon resonances at $\delta_{\rm C}$ 80.3 (s, C-4) and 75.1 (t, C-20), along with proton signals at $\delta_{\rm H}$ 4.02 (d, $J=7.5 \text{ Hz}, \text{ H-}20\alpha)$ and 4.42 (d, $J=7.5 \text{ Hz}, \text{ H-}20\beta)$, indicate the presence of an oxetane ring in this molecule.³⁾ Exhaustive comparison of the NMR data (Table 1) of 1 with those of the known 7,13-dideacetyl-9,10-debenzoyltaxchinin C,15) showed strong similarities except for the presence of an additional phydroxylbenzylidenedioxy group in 1, based on the carbon resonances at $\delta_{\rm C}$ 95.5 (d), 128.9 (d, 2×C), 115.4 (d, 2×C), 131.5 (s), and 158.5 (s), together with corresponding proton resonances at $\delta_{\rm H}$ 6.03 (1H, s), 7.40 (2H, d, J=8.5 Hz), and 6.83 (2H, d, J=8.5 Hz). The heteronuclear multiple bond connectivity (HMBC) correlations (Fig. 1) of H-1' with C-3' and C-7', H-3' with C-5' and C-1', H-6' with C-2', and H-7' with C-1' further confirmed the presence of the p-hydroxylbenzylidenedioxy unit. The long-range correlations between H-1' and C-7 and C-9 in the HMBC spectrum assigned the phydroxylbenzylidenedioxy group to C-7 and C-9.

The relative stereochemistry of **1** was confirmed in a rotating frame Overhauser enhancement spectroscopy (ROESY) experiment, in which cross peaks between H-2 ($\delta_{\rm H}$ 6.15, 1H, d, J=7.6 Hz) and H-9 ($\delta_{\rm H}$ 4.39, 1H, d, J=9.6 Hz) and Me-19 ($\delta_{\rm H}$ 1.95, 3H, s), H-9 and Me-17 ($\delta_{\rm H}$ 1.05, 3H, s), H-13 ($\delta_{\rm H}$ 4.64, 1H, dd, J=11.6 Hz) and Me-16 ($\delta_{\rm H}$ 1.06, 3H, s), H-5 ($\delta_{\rm H}$ 4.96, 1H, d, J=8.8 Hz), and H-6a ($\delta_{\rm H}$ 2.4, 1H, m), indicated that H-2, H-9, H-13, and C-20 are β -oriented, while correlations of H-3 ($\delta_{\rm H}$ 3.06, 1H, d, J=7.6 Hz) with H-5 ($\delta_{\rm H}$ 4.96, 1H, d, J=8.8 Hz), H-7 ($\delta_{\rm H}$ 4.11, 1H, dd, J=9.6, 8.0 Hz), and H-10 ($\delta_{\rm H}$ 5.4, 1H, dd, J=9.6, 4.3 Hz) confirmed the α -configuration of H-3, H-5, H-7, and H-10, respectively (Fig. 1). The ROESY correlations of H-1' with H-7 and H-10 established the α -orientation of H-1'. The structure of the

Fig. 1. Key HMBC (H \longrightarrow C) and ROESY Correlations (H \longleftrightarrow H) of Compound 1

No.

Table 1. ¹H- and ¹³C-NMR Data of 1 and 2^{a}

1

2	
δ_{H} mult. (J=Hz)	$\delta_{ m C}$
_	68.4 s

	$\delta_{ m H}$ mult. ($J={ m Hz}$)	$\delta_{ m c}$	$\delta_{ m H}$ mult. (J=Hz)	$\delta_{ m c}$
1	_	68.4 s	_	68.4 s
2	6.15 (1H, d, 7.6)	70.1 d	5.93 (1H, d, 7.6)	69.4 d
3	3.06 (1H, d, 7.6)	45.1 d	2.94 (1H, d, 7.6)	45.1 d
4	_	80.3 s		80.3 s
5	4.96 (1H, d, 8.8)	85.3 d	4.96 (1H, d, 8.8)	85.3 d
6α	2.40 (1H, m)	34.9 t	1.74 (1H, m)	34.9 t
6β	1.77 (1H, m)		2.37 (1H, m)	
7	4.11 (1H, dd, 9.6, 8.0)	76.4 d	4.06 (1H, dd, 9.8, 7.9)	76.4 d
8		38.4 s		38.4 s
9	4.39 (1H, d, 9.6)	84.4 d	4.31 (1H, d, 9.6)	84.4 d
10	5.40 (1H, dd, 9.6, 4.3)	63.4 d	5.33 (1H, dd, 9.6, 5.3)	63.4 d
11	_	137.2 s		137.4 s
12		148.3 s	_	148.1 s
13	4.64 (1H, dd, 6.6, 11.6)	77.2 d	4.58 (1H, d, 3.8)	77.2 d
14α	1.99 (1H, dd, 14.2, 7.3)	40.1 t	1.85 (1H, overlap)	40.2 t
14 <i>B</i>	2.23 (1H, dd, 14.2, 7.3)		2.11 (1H, m)	
15		76.0 s		76.0 s
16	1.06 (3H, s)	28.2 g	1.03 (3H, s)	25.0 g
17	1.05 (3H, s)	25.0 g	1.02(3H, s)	28.2 g
18	1.94 (3H, s)	11.5 g	1.90 (3H, s)	11.5 g
19	1.95 (3H, s)	14.2 g	1.83 (3H, s)	12.0 g
20α	4.02 (1H, d, 7.5)	75.1 t	4.17 (1H, d, 7.6)	75.2 t
20β	4.42 (1H, d, 7.5)		4.35 (1H, d, 7.6)	
OBz		166.9 s		
i	_	129.2 s		
0	8.08 (2H, d, 7.4)	130.3 d		
т	7.56 (2H, t, 7.5)	129.6 d		
р	7.67 (1H, t, 7.5)	134.2 d		
OAc		170.4 s	_	170.3 s
OAc	2.21 (3H, s)	22.1 q	2.13 (3H, s)	22.0 q
1'	6.03 (1H, s)	95.5 d	5.99 (1H, s)	95.5 d
2'		131.5 s		131.6 s
3', 7'	7.40 (2H, d, 8.5)	128.9 d	7.37 (2H, d, 8.5)	128.9 d
4', 6'	6.83 (2H, d, 8.5)	115.4 d	6.81 (2H, d, 8.5)	115.4 d
5'		158.5 s		158.6 s
8'				168.1 s
9'				129.9 s
10'			6.91 (1H, dd, 7.1, 1.3)	138.9 d
11'			1.82 (3H, s)	14.4 q
12'			1.88 (3H, s)	14.1 q

a) Recorded in acetone- d_6 at 400 MHz for ¹H, 100 Mz for ¹³C, δ in ppm, J in Hz.

new compound is thus established as a derivative of 7,13dideacetyl-9,10-didebenzoyltaxchinin C.3,15) Therefore, the structure of 1 was identified as 7,13-dideacetyl-9,10-debenzoyl-7 β ,9 α -p-hydroxylbenzylidenedioxytaxchinin C.

Compound 2, a colorless oil, was assigned the molecular formula C34H44O11 as deduced from the quasimolecular ion peak at m/z 651.2780 [M+Na]⁺ in the HR-ESI-MS (positive), together with the analyses of the ¹³C-NMR and distortionless enhancement by polarization transfer (DEPT) spectra. The NMR data (Table 1) of 2 revealed that it was also a taxane diterpene with a 5/7/6-membered ring system and an oxetane ring,3) featuring four methyl signals of the taxoid skeleton at $\delta_{\rm H}$ 1.03, 1.02, 1.83, and 1.90. Compound **2** had ¹H- and ¹³C-NMR spectral patterns similar to those of **1**. The only difference was the presence of a tiglyol group instead of the benzoyl in 1 due to the carbon resonances at $\delta_{\rm C}$ 168.1 (s, C-8'), 129.9 (s, C-9'), 138.9 (d, C-10'), 14.4 (q, C-11'), and 14.1 (q, C-12'), together with proton signals at $\delta_{\rm H}$ 6.91 (dd, J=7.1, 1.3 Hz, H-10'), 1.82 (s, Me-11'), and 1.88 (s, Me-12'). The tiglyol group was located at C-2 based on the ob-

Fig. 2. Key HMBC $(H \rightarrow C)$ and ROESY Correlations $(H \leftrightarrow H)$ of Compound 2

served cross peak between H-2 ($\delta_{\rm H}$ 5.93 d, J=7.6 Hz) and the ester carbonyl of tiglyol ($\delta_{\rm C}$ 168.1) in the HMBC experiment (Fig. 2). The relative configuration of 2 was identical to that of 1 based on the interpretation of the ROESY spectrum of 2 (Fig. 2). Consequently, the structure of 2 to be established as 7,13-dideacetyl-2,9,10-debenzoyl-2-tigloyl-7 β ,9 α -p-hydroxylbenzylidenedioxytaxchinin C.

Experimental

General Experimental Procedures Melting points were determined on an XRC-1 micro melting point apparatus and are uncorrected. Optical rotations were measured with a Horiba SEPA-300 polarimeter. UV spectra were obtained on a UV 2401 PC spectrometer. IR spectra were recorded on a Bio-Rad FTS-135 spectrometer with KBr pellets. ¹H- and ¹³C-NMR experiments were performed on a Bruker AM-400 spectrometer (¹H, 400 MHz; ¹³C, 100 MHz), while 2D NMR spectra were recorded using a Bruker DRX-500 NMR instrument. ESI-MS were taken on a Finnigan-MAT 90 instrument. HR-ESI-MS were measured with a VG Auto Spec 3000 spectrometer. Column chromatography was performed using silica gel (Qingdao Marine Chemical Inc., Qingdao, P.R. China), Lichroprep RP-18 (Merck, Darmstadt, Germany), and Sephadex LH-20 (Pharmacia Fine Chemical Co., Ltd.). HPLC was performed on Hewlett-Packard 1100 Series chromatographs using a Zorbax SB-C18 column (9.4×250 mm). Fractions were monitored by TLC, and spots were visualized by heating silica gel plates sprayed with 10% H₂SO₄ in EtOH.

Plant Material The leaves and stems of *T. chinensis* (PILG.) REHD (Taxaceae) were collected in Liangshang, Sichuan Province, P.R. China, in April 2006 and identified by Prof. Lin Zhongwen. A voucher specimen (No. 200604) has been deposited in the College of Pharmacy, Dali University, P.R. China.

Extraction and Isolation The dried leaves and stems (20 kg) of *T. chinensis* were extracted three times with 95% ethanol to give a crude extract (350 g), after concentration under a vacuum. The residue was chromatographed over a silica gel column eluted with a chloroform–acetone gradient (9:1 \rightarrow 1:1, and acetone) to give six fractions (A—E, acetone), of which three (C, D, E) (68 g) were combined and chromatographed on a DM-130 column (methanol–water, 9:1) to give a mixture of 56 g. The subfraction was chromatographed over a silica gel column eluted with a chloroform–methanol gradient (100:1 \rightarrow 50:1) to afford four subfractions, I—IV. Subfraction II was chromatographed on Sephdex LH-20 eluted with MeOH, and a mixture of compounds 1 and 2 was obtained. The mixture was further chromatographed on a silica gel column eluted with cyclohexane–chloroform–2-propanol (6.0:3.5:0.5 \rightarrow 5.0:4.5:0.5), and HPLC (methanol–water, 5.0:5.0) to give compounds 1 (9.1 mg) and 2 (4.2 mg).

7,13-Dideacetyl-9,10-debenzoyl-7 β ,9 α -p-hydroxylbenzylidenedioxy-taxchinin C (1): White powder; [α]_D²⁰ –18.7° (c=0.95, CH₃OH); UV λ_{max} nm (log ε) (CH₃OH): 202.00 (4.26); IR v_{max} cm⁻¹ (KBr): 3428, 2975, 1715, 1617, 1521, 1451, 1369, 1270, 1109, 1150, 1109, 715; ¹H- and ¹³C-NMR data, see Table 1; HR-ESI-MS m/z 673.2644 (Calcd for $C_{36}H_{42}O_{11}Na$, 673.2624).

7,13-Dideacetyl-2,9,10-debenzoyl-2-tigloyl-7β,9α-*p*-hydroxylbenzylidenedioxy-taxchinin C (**2**): Colorless oil; $[α]_D^{20} - 6.1^\circ$ (*c*=0.10, CH₃OH); UV λ_{\max} nm (log ε) (CH₃OH): 210.40 (4.38); IR v_{\max} cm⁻¹ (KBr): 3440, 2973, 2928, 1707, 1630, 1520, 1369, 1254, 1168, 1104, 1070; ¹H- and ¹³C-NMR data, see Table 1; HR-ESI-MS *m/z* 651.2780 (Calcd for C₃₄H₄₄O₁₁Na, 651.2781).

References

1) Baloglu E., Kingston D. G. I., J. Nat. Prod., 62

, 1017—1021 (1994)