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In various organisms, progress in sequencing technology
has enabled the analysis of the amino acid sequences of all
proteins encoded by the genome. Three-dimensional (3D)
structure databases, such as Protein Data Bank (PDB),1) have
accumulated many structures through the development of 
international projects in structural genomics. PDB structures
have been used as templates in homology or comparative
modeling procedures. Subsequently, the number of amino
acid sequences which can be used to build the tertiary struc-
ture of proteins by the homology modeling method is also 
increasing.2) The initial step for building a 3D structural
model by the homology modeling is to search for homology
in the amino acid sequence on PDB. For the homology
search, various alignment programs, including FASTA3) and
BLAST,4) are used. The candidate for alignment is often cho-
sen by referring to the various numerical values represented
by the expected value (E-value) from the search result.4) The
E-value is determined by the number of amino acid residues
for the query sequence, the length of sequence alignment ob-
tained between the query protein and the template protein,
and the sequence identity and similarity for the alignment. In
the homology modeling method, a 3D structural model is
computed by the data input as an alignment.5) A 3D structure
built by the homology modeling method is not an experimen-
tal structure; therefore, an assessment of the reliability of the
model is required. Verification by a quality assessment pro-
gram, such as a 3D–1D method, should be performed, be-
cause the experimental structure cannot be used before the
modeling prediction. To obtain a 3D structural model that is
physicochemically guaranteed, it is desirable to carry out
each model construction for all the alignment candidates
from the homology search results, and to apply the thus ob-
tained 3D structure model to 3D–1D programs, such as Ver-

ify3D6) and CIRCLE,7) which estimate the energetic stability
of 3D structures. However, it is not economically realistic to
build all the models when there are too many alignment can-
didates. Thus, the model construction of all 3D structures
with all the alignment candidates is impossible where com-
puting resources are restricted. In this paper, a new method is
introduced to selectively choose the alignment from which an
accurate model can be computed. This method predicts the
accuracy of the protein model before the modeling proce-
dure. To construct the database for the 3D structural model
represented by FAMSBASE,5,8) it is necessary to build an ac-
curate model of the amino acid sequence with many queries.
Generally, the execution time of the homology modeling
method is longer than that of the homology search, because
the modeling calculation, including moving the main chain,
is normally performed by an iterative method. Therefore, the
information on the accuracy of the modeling, which is gener-
ally obtained after the homology modeling program execu-
tion, would help to obtain a correct structure more promptly,
if the information was available prior to the execution of pro-
tein modeling. Usually, the degree of match of the character
string of an alignment (homology percent value) or E-value
is referred to after the execution of the homology search 
program represented by FASTA3) or various kinds of
BLAST(s).4,9) Although the homology percent value and E-
value are important as references for the accuracy of model
construction, other structural parameters such as the agree-
ment of the secondary structure between the target protein
and the template protein is further required to restrict the
model structure. Until now, there have been no useful param-
eters of accuracy estimation from sequence alignments ex-
cept for the E-value or homology percent value. The Power
Function (PF) score described in this paper prioritizes the re-
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sults when two or more homology search programs such as
FASTA3) or various kinds of BLAST(s)4,9) are executed. This
method is very useful where both high throughput and accu-
racy are required for modeling. The PF score is calculated
using the model length, the percent of sequence homology,
and the secondary structure agreement. Generally, structure
modeling takes longer than homology searches or sequence
alignments, meaning the PF saves on computer resources.

Methods
PDB Learning Set All 50226 sequences from PDB1) May 4th 2004

were compared with one another in a pair-wise manner using BLAST. Se-
quences having percent homology above 95%, and that were at least 80%
overlapping with each other, were clustered into 9224 families. The longest
chain of amino acid sequences in each family was selected because they
would lack fewer atomic coordinates in PDB, and the quality of the align-
ment from the longest chain is more guaranteed. We refer to the coordinate
parts of PDB, because SEQRES does not necessarily include the coordi-
nates. A non-redundant PDB dataset of 9224 chains, termed “template pro-
teins”, was then created. Although we used PDB from May 4th, 2004, which
is from five years ago, we consider that the evaluation of the content de-
scribed in this paper has not been affected by additions to the database in the
past five years. As mentioned later, we constructed 240279 3D models for
the 9224 PDB structures, and such a large number of models should provide
a good benchmark test to develop a new method. Thus the number of se-
quences present on May 4th 2004 should be sufficient to provide a statisti-
cally significant number for our Power Function analysis. Nevertheless, we
want to guarantee that the results do not change, when we recalculate the pa-
rameters for the PF using the latest PDB version. It is assumed that, to per-
form the benchmark test, we must construct about 1592000 (�240276�
(23743/9224)2) 3D models for the 23743 PDB structures present on the lat-
est PDB version of May 29th 2009. However, since we need too many com-
puter resources even if we model only the Ca backbone, the above recalcu-
lation has not been performed until now. Accordingly, it should be noticed
that the parameters for the PF is determined in the first approximation and
still improved, though the PF is significantly superior to the E-value as the
selection method of the sequence alignment giving the accurate 3D model as
mentioned in Results and Discussion. The E-value is generally used for the
estimation of the sequence alignment.

In this paper, 96 targets from the international contest Critical Assessment
of Techniques for Protein Structure Prediction 7 (CASP7)10) in 2006 were
used as a test set. As a result, the above CASP7 test set targets were re-
moved, or were not present, in the learning set of PDB from 2004.

The learning set includes not only X-ray structures, but also NMR struc-
tures and other experiments. The number of NMR structures added to the
PDB database is not negligible, and we did not eliminate these structures for
homology modeling. Although there are perturbations of structures in NMR
structure or their complexes, suitable statistical or physicochemical filtering
in the experiments should guarantee the quality of the structures. Threshold
cut off using X-ray resolution was also not set for the same reason. Although
the accuracy in the homology modeling naturally depends upon the height of
X-ray resolution for the template protein, we thought much of the number of
the amino acid residues or the sequence length of the template protein in this
paper.

“Power Function (PF)” Construction from Various Homology Search
Results We used six different alignment tools [FASTA,3) BLAST,4) PSI-
BLAST,4) HMMER-Pfam,11) RPS-BLAST and IMPALA9)] to extract align-
ment features between all vs. all of the non-redundant PDB data set. For
PSI-BLAST search, the profiles for queries were generated by searching 
the National Center for Biotechnology Information (NCBI) non-redundant
(nr) database from April 25th, 2006, for amino acid sequences. For the
HMMER-Pfam search, HMM sequence alignments from the Pfam database
were searched using the hmmpfam tools of HMMER, and the profiles for
queries were generated by searching the “Pfam-A.full 22.0” database. In
both PSI-BLAST and HMMER-Pfam searches, the profile-sequence align-
ments were performed using the blastpgp tool of the PSI-BLAST package,
which uses the matrices to solve the optimized sequence alignment. For se-
quence–profile alignments, we also used RPS-BLAST and IMPALA, in the
PSI-BLAST package, to align the query sequence with the template profiles.

One difficulty in model construction is that it depends on handling the ho-
mology percent, which is also called sequence identity, to construct a model
closer to the native structure for a query sequence or target protein. Nor-

mally, we can obtain many alignments between the sequence and a set of
template proteins using the six alignment tools mentioned above. From each
of the obtained alignments, the homology percent was calculated. It is easy
to construct a 3D model for alignments having sequence identities of more
than 50%, due to the rare insertion and deletion of amino acid residues on
the sequence alignment. We thus treated the alignment having sequence
identities below 50% as objects of homology modeling. We assumed that
alignments with a homology percent value higher than a homology threshold
(HomTh) should be abandoned to classify the difficulty of model construc-
tion.

Therefore, if we express the form mathematically, surviving alignments
satisfy the following inequality,

homology percent (�)�HomTh (�) (1)

The HomTh (�) values were set to have five values of 50, 40, 30, 20, and
10%, which correspond to the variable number � in the inequality (1). A se-
quence alignment of proteins normally becomes the base for model con-
struction.

On the other hand, to assess the Ca coordinates of the backbone in the
theoretical 3D structure model with the Ca coordinates of backbone in the
experimentally obtained structure, Global Distance Test Total Score
(GDT_TS) values have been used in the CASP experiments or contests until
now.12) The GDT_TS value is a range from zero to 100, the largest value of
which is closest to the native structure.

An alignment having the highest GDT_TS value in comparison with the
3D coordinates obtained from the experimental analysis of a target protein,
is called the alignment having GDT_TSMAX in this paper, and is defined as
the “best.” Normally we cannot use this best alignment when we select some
restricted alignments, which might give correct tertiary structures. Further-
more, the alignment, which we last selected as a representative among the
restricted alignments, is called the “representative alignment.” In relation to
the best alignment, we term the representative alignment a “good alignment”
if the GDT_TS of the model constructed using the representative alignment
is equal to or more than 90% of the value of GDT_TSMAX. The value of 90%
means that the modeled structure for a target protein is very close to the best
modeled 3D structure based upon the GDT_TS evaluation. Under the condi-
tion that we must select a restricted number of alignments in the modeling
process to save computer resources, we expect to select those belonging to
the class of a “good alignment.” Thus, it was assumed that “good alignment”
satisfies the inequality,

GDT_TS (�)�GDT_TSMAX (�)�0.9 (2)

It is difficult to set the threshold of “good alignment” as a constant value
in place of GDT_TSMAX (�) due to diversity of difficulty in homology mod-
eling in a set of targets. In other words, since we must deal with the align-
ments having various sequence identities, we need mobile standard values,
such as the GDT_TSMAX (�). Therefore, the threshold is set by considering
the maximum GDT_TS values found in each of the five HomTh classes,
after the modeling process according to the detected alignments of a set of
template proteins for each queried target protein. The character � of the
GDT_TSMAX (�) is the same as that in the inequality (1). To obtain good re-
sults for the CASP protein modeling contest,13) it is very important to con-
tinuously submit the GDT_TS models satisfying the inequality (2) with
whole targets during the contest period. Moreover, such good GDT_TS
models, constructed from “good alignments,” are also very important for
high throughput modeling and in construction of a modeling database for all
proteins. Using the method prepared in this paper, the ratio of judging an
alignment as a good representative alignment in the sequence search of each
target protein is calculated in the right side of Eq. 6 (described later) for
each HomTh level of the five � categories, using several parameters. The
ratio, which is called “MGR” (Max GDT_TS Ratio), is defined by the fol-
lowing Eq. 3 of the conditional probability as shown in a vertical line (“|”).

MGR (�)�P(GDT_TS (�)�GDT_TSMAX (�)
�0.9|homology percent (�)�HomTh (�)) in the (�) category

(3)

It should be noticed that the inequality (1) is presented in relation to the
estimation of the alignment, and that the inequality (2) is related to the 3D
model constructed based upon the alignment. We use 3D models consisting
of Ca backbone coordinates to develop the benchmark test in this paper.
The modeling method of the Ca backbone is described later. It is question-
able whether the representative alignment satisfies (1) or (2) or not. The
states in which the representative alignments fit inequality (2) are counted as
a number in the Eq. 3.

2 Vol. 58, No. 1



When the GDT_TS of the model for each representative alignment is
larger than that of GDT_TSMAX�0.9, the alignment is estimated as the
“good alignment.” Thus, the ratio of “good alignment” number for the repre-
sentative alignment number belonging to the � category is estimated in the
Eq. 3. In this paper, a alignment is significant as a representative when it sur-
vived due to having the maximum value from a set of values calculated from
the power function (PF), mentioned later, for each query sequence. The pro-
tein model for this representative alignment is constructed only for the Ca
backbone structure, using the FAMS program14) to save the computer re-
sources in the homology modeling process. The GDT_TS value for this rep-
resentative alignment is substituted into the inequality (2). If the representa-
tive alignment is found to satisfy inequality (2), the query target is counted
in addition to the query target number of the numerator in Eq. 3.

In the benchmark test, the numbers of query sequences or target proteins
for the five � categories were 8461, 8315, 7986, 7021, and 2911 in HomTh
levels of 50, 40, 30, 20, and 10%, respectively. We considered that the num-
bers of query sequences are large enough to obtain statistically significant
results. The ratio of the queries in a (�) category for the all queries set is
shown in Eq. 4

(4)

For example, the query ratio of HomTh level (50%) was 92% of the total
9224. Only the 8461 alignments having the maximum power function (PF)
score for each of the 8461 queries survived in PF score calculations from
among the alignments between the template protein sequences and each
query sequence. In this paper, the number of the Ca backbone model struc-
tures constructed using Full Automatic protein Modeling System (FAMS)
program14) for the alignments of all 9224 queries with the PDB non-redun-
dant template protein set is 240279. This number is huge and, because we
wanted to save computer resources, we modeled only the Ca backbone
structures when we used Eq. 3. In addition, even if the PDB database used in
the benchmark test is the latest one, it is not thought that the results changed
largely because of the largeness of the sample number in this benchmark
test.

The GDT_TS value for the model evaluation is normally calculated from
the comparison between the model and experimental structure. The best 3D
model within the presumption, which might passively have the GDT_TSMAX,
is built based upon the alignment that has highest value of the following PF
score. At this moment, the eight parameters of six ki values, and m and n
must have already been determined for the HomTh levels of 50, 40, 30, 20,
and 10% using Eq. 6.

power function�PF�ki�model length�(homology percent)m

�(secondary structure)n (5)

where ki (i�1 to 6) are coefficients, and m and n are the power numbers for
homology percent and the agreement of the predicted secondary structure of
the target or subject protein and experimental secondary structure for the
reference or experimental protein, respectively. The coefficients ki (i�1 to 6)
are introduced as weight factors for the purpose of grouping according to the
alignment ability of various programs. The PF score was designed to have a
linear correlation with the GDT_TS value.

To find the optimized six ki values, and m and n values in Eq. 5, the MGR
from Eq. 3 was used. Here, the MGR must be maximized as a function of
six ki values, and m and n values. Thus, following Eq. 6 was supposed to put
the Eq. 3 into definite shape:

(6)

The numerator is calculated by transferring into Eq. 3 for all target pro-
teins after selection of the representative alignment by sorting by largest PF
score from Eq. 5

Here, three values of model length, homology percent, and secondary
structure agreement for the set of (ki (i�1 to 6), m, n) are substituted for the
PF in Eq. 5 in the many alignments for each target protein, and, after sorting
by largest PF score, the representative alignment is determined.

By using this representative alignment, the Ca 3D model is constructed
with the FAMS homology modeling program,14) and the GDT_TS value of

this model is calculated in fitting to the experimental structure of the tem-
plate protein. This GDT_TS value is compared with the GDT_TSMAX by
transferring it into Eq. 3. This transferring process is repeated for all the tar-
get proteins or query sequences. Thus, the MGR is calculated for the set of
(ki (i�1 to 6), m, n). Equation 6 shows that the MGR depends on the param-
eters of the six ki values, and m and n used in Eq. 5. The six ki values, and m
and n were changed with an interval of 0.1.

MGR (�) is calculated for the right term having any ki (i�1 to 6), and m
and n in relation to number intervals of ki (i�1 to 6) (0.0—2.0), m (0.0—
1.0) and n (0.0—1.5), respectively. Contour plots for changing the values of
m and n of the MGR at homology thresholds of 50, 40, 30, 20, and 10% are
shown in Fig. 1. The effect on the MGR value of changing each i of ki (i�1,
2, 3, 4, 5 and 6) is shown in Fig. 2. Thus MGRMAX (�) (ki (i�1 to 6)�ai

(i�1 to 6), m�b, n�c) is determined, and the six ai (i�1 to 6) set values, b
and c are optimized for the five � values of HomTh (�). Once again, it is as-
sumed that the order of predicted GDT_TS value is determined by the size
of the scalar value of PF (ai (i�1 to 6), b, c), considering various alignment
methods described in this paper. Accordingly, the propriety for determining
the order of the modeling accuracy using the scalar of the right side in the
Eq. 5 is investigated in this paper. In Eq. 5, in addition, the PF is a supposed
function to calculate a score that corresponds to the MGR, and another re-
vised function, in place of the PF, might be reported by other researchers.
Then, using local alignment tools such as FASTA or various kinds of
BLAST, generate alignments that usually do not cover the whole query
length. The length of the amino acid sequence of the obtained local align-
ment is approximately proportional to the GDT_TS value, under conditions
where the folding between a target protein model and template X-ray struc-
ture is the same. In this paper, the power number of the model length in Eq.
5 is set to 1 in the first approximation. The homology percent value gener-
ally correlates with the accuracy of homology-based modeling structures.
The agreement regarding the secondary structure is determined by the iden-
tity percent between the PSI-PRED15) prediction of a query and the STRIDE
program.16) Since it was reported in the ref. 16 that the improvement of the
STRIDE over the DSSP relative to PDB assignment has been objectively
demonstrated, we used the STRIDE in place of the DSSP, even if both pro-
grams return the similar results.

Results and Discussion
To determine the parameter values of m, n, and ki (i�1 to

6), MGR values were calculated for all combinations of m
and n within the range of 0.0—3.0 (with a step of 0.1), and
the ranges for the ki coefficients that correspond to six kinds
of alignments were 0—2.0 (with a step of 0.1). As mentioned
in Methods, the value of ki corresponds to each weight of
various alignment methods, which include the sequence-se-
quence alignment and the sequence-profile alignment. There-
fore, the weight value of ki is required. On the other hand, if
we want to determine the m and n power numbers for each of
the various sequence alignments, more computer resources
are needed. In this paper, we determined the m and n values
as a first approximation without reference to the sequence
alignment method. Figure 1 shows contour plots of MGR de-
fined in Eq. 6 for m and n with the above ranges. In the opti-
mization process of m and n, the ki (i�1 to 6) values were
fixed to be one. The contour plots of MGR are shown in Figs.
1a to e for the five categories of HomTh. The maximum
MGR values for each category were determined using the
sets of m and n as shown in Table 1. In Fig. 2 the ki (i�6)
were determined. One value for each of the six ki was set in
the five categories of HomTh in the initial step; these values
are shown as the maximum positions in the results of Figs.
2a to e. As a first approximation, the changing of the six pa-
rameters was performed in the order of k1, k2, k3, k4, k5, and
k6, since the optimization process of eight parameters is very
complicated.

As shown in Fig. 1c, for example, the maximum value was
found in the HomTh�30% condition, and the optimized m

MGR (   for the set of  1 to 6),

number of “good alignments” selected by largeness of formula (5)

number of representative alignments satisfying the inequality formula (1)
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and n values were 0.3 and 1.3, respectively (Table 1). For
each HomTh level, optimized m, and n values were similarly
determined from the highest MGR values. Using the above
set of (m, n)�(0.3, 1.3), as shown in Fig. 2c, the MGR value
was plotted against the ki (i�1 to 6) value. In the six cases,
the MGR values were maximum around about ki (i�1, 3, 4,
5, 6)�1.0 as shown in Table 1. The n value is larger than the
m value for all HomTh levels in inequality (1). A higher n
value means that consideration of the secondary structure
agreement is more important in comparison with the homol-
ogy percent. Alignment outputs of FASTA3) and various
kinds of BLAST programs4) already involve the effect of the
homology percent ratio, as detected by model length, in their
calculations; therefore, its contribution, observed as the m
value, is relatively low in comparison with secondary struc-
ture agreement. As shown in Eq. 5, the power number for the
sequence length for a model is constantly defined to be one
in this paper. In other words, the contribution of homology
percent might be small, correlating internally with the model
length. Remarkably, the n value tends to become higher when
the HomTh levels become lower. Therefore, when the model-
ing of the target is very difficult, consideration of the second-
ary structure agreement becomes more important under these
circumstances. With HomTh�10%, however, the n value of
the power number becomes smaller with the decrease of the
power number m. The behavior of number n indicates the
contribution of the machine learning algorithm that is used
for secondary structure prediction of the PSI-PRED program.
As shown by the change of the n value, except for the case 
of HomTh�10%, consideration of the secondary structure
might be working stably, even for low homology targets. On
the other hand, the values for coefficient ki (i�1 to 6) were
around 1.0 for all HomTh levels. In BLAST,4) which includes
no profile, and FASTA3) alignments, low k values appear to
be shown for HomTh�20—30%, and no alignment results
were detected with default threshold of E-value (10) for
BLAST or FASTA at HomTh�10% level. If the contribution
of some ki values to the PF score is thought to be low
enough, the PF score could work without k values.

Application of the PF Score to CASP7 Targets The
correctness of the order sorted by largest PF score in Eq. 5
should be checked for whether the PF is useful to determine
the GDT_TS order or not. Thus, the PF score was applied to
the all 104 targets in the CASP7 contest10) in 2006 as a test
set. Six kinds of alignment were performed for the amino
acid sequences of all the 104 targets against the PDB data of
November, 2007. The alignments with experimental struc-
tures registered after the CASP7 contest were removed to
perform a fair assessment. Moreover, no experimental struc-
tures were available for 12 targets, T0284, T0285, T0286,
T0287, T0320, T0333, T0334, T0343, T0344, T0352, T0355
and T0386, in this version of PDB database. In addition,
three targets, T0336, T0337 and T0377, had no significant
alignments in the PDB sequence database. Thus, 89 targets
were evaluated. All the alignments in the obtained results
were used for model construction, including the main chain
and the side-chains, using the homology modeling program
FAMS.14) FAMS, which is the homology or comparative
modeling program, constructs the 3D model of the target
protein based on the sequence alignment between the query
sequence and the amino acid sequence of the template pro-
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Fig. 1. Contour Plots of MGR from Eq. 3 at a Homology Threshold of
HomTh�(a) 50%, (b) 40%, (c) 30%, (d) 20%, and (e) 10% for the Power
Numbers of m and n in the Eq. 5

The vertical axis and horizontal axes mean m and n values, respectively. The ki (i�1
to 6) values were fixed to be one in the contour plots of Fig. 1.



tein, or between the former and several template proteins. In
the modeling process, FAMS moves the main chain and the
side-chain atoms of the target protein alternatively in main-
taining the conformational space between the model and the
template 3D structure, and performs the conformational
search iteratively as close as possible to the native structure
in the packing state of the main chain and the side-chains. In
addition, FAMS can iteratively construct the 3D models of
both the Ca backbone and the main chain without including
the side-chains.

After the 3D structures, including the main chain and the
side-chains, were constructed by FAMS,14) two important
scores were computed to compare the capability of the PF

score. One is the CIRCLE7) value, which is calculated based
upon solvent exposure and polar state of each amino acid
residue of the protein. The CIRCLE program is a 3D struc-
ture evaluation program7) that needs all the modeling struc-
tures, including the side-chains, to evaluate the quality of
various models. Another is the GDT_TS value obtained from
the fitting of each model and the experimental or natural
structure for the target protein. Thus all the GDT_TS values
were calculated for all the alignments through modeling. The
correlations between each of the two score sets and the PF
score set were analyzed. The PF score correlated well with
both the CIRCLE score set and the GDT_TS values set
(Table 2). Averages and standard deviations of the correlation
coefficients between the PF score, the CIRCLE score, and
the GDT_TS values are shown in Table 2. The statistical sig-
nificance of the differences of correlation coefficients was
evaluated using the T-test at the 1% significance level, and
higher correlation coefficients of the PF score than those of
the CIRCLE score against the GDT_TS values were con-
firmed for the 59 CM, 30 non-CM, and all 89 targets. In
Table 2, the distinction of Comparative Modeling (CM) tar-
get and non-CM target was judged from the support vector
machine trained with E-value and the homology percent
value of PSI-BLAST.4) The treatment of the SVM with E-
value and the homology percent value of PSI-BLAST were
exercised using the set of the CASP6 targets. Then, we per-

January 2010 5

Fig. 2. MGR Value Plots Verifying ki (i�1 to 6), (i�1: PSI-BLAST, i�2: BLAST, i�3: RPS-BLAST, i�4: IMPALA, i�5: FASTA, i�6: Pfam-BLAST)
of HomTh�(a) 50%, (b) 40%, (c) 30%, (d) 20%, and (e) 10% Using the Fixing Condition of Parameters m and n in Table 1

When the ki (i�p) value is changed from 0.0 to 2.0 in the 0.1 step, other five ki (i≠p) (i�1 to 6) values were fixed to about one. Arabic numerals of 1 to 6 on the curves in Figs.
2a to e indicate the above alignment methods in the changes of ki (i�1 to 6) values. As the first approximation, changing the six parameters was carried out in the order of k1, k2, k3,
k4, k5, and k6. In the optimization process of ki (i�1 to 6), the set values of m�b and n�c giving the maximum values in the contour plots of MGR in Figs. 1a to e were used as the
two parameters of m and n.

Table 1. Optimized m, n and ki, (i�1: PSI-BLAST, i�2: BLAST, i�3:
RPS-BLAST, i�4: IMPALA, i�5: FASTA, i�6: Pfam-BLAST) Values with
Maximizing MGR in Eq. 6

HomTh m n k1 k2 k3 k4 k5 k6

50 0.3 0.8 1.1 1.0 1.1 1.1 1.0 1.1
40 0.3 0.9 1.1 1.0 1.1 1.1 1.0 1.1
30 0.3 1.3 1.0 0.8 1.0 1.0 0.9 1.0
20 0.2 1.4 1.0 1.0 1.0 1.0 0.9 1.0
10 0.0 1.2 1.0 — 1.0 1.0 — 1.0

Using the Eq. 6, MGR values maximized for the set of m and n in the five categories
were 84.7, 85.2, 84.4, 88.4 and 94.6 in HomTh levels 50, 40, 30, 20 and 10%, respec-
tively.



formed the distinction of CM category and non-CM category
for each of the CASP7 targets. We must distinguish between
CM category and non-CM category before the selection
process of the best 3D model among many constructed mod-
els by the CIRCLE, because the CIRCLE scoring equation of
the model selection for the CM target is different from that
for the non-CM target. In this paper we use “homology mod-
eling” to mean the same as “comparative modeling.” The
CM targets and the non-CM targets represent the proper
query sequence for comparative modeling and free modeling,
respectively. For the CM targets, the PF score using the ho-
mology search tools of FASTA3) and various BLAST4) pro-
grams showed a high correlation against the GDT_TS value.
Figure 3 shows the correlation maps for T0288 and T0283 as
typical examples of CM and non-CM targets, respectively, in
CASP7. The correlation maps for other targets are supplied
on the web site (http://www.bio.chuo-u.ac.jp/iwadate/PF
score/). Thus, the method allowed us to choose the align-
ments giving higher GDT_TS values from the homology
search results, using the PF score. In other words, we can re-
move the alignments giving lower GDT_TS values before 3D
modeling from among the alignment candidates. In the case

of the non-CM targets, the correlation coefficient of the PF
score was higher against the GDT_TS, although that of the
CIRCLE score was almost zero against the GDT_TS. The PF
method showed a correlation value of 0.69, which is a mean-
ingful value for the non-CM targets. Additionally, the results
indicated that it was relatively difficult for the non-CM tar-
gets to provide meaningful information about GDT_TS val-
ues using only the CIRCLE score, which is said to be useful
in selecting the model closest to the native structure.7) This
indicated that the supposition of Eq. 6 in the methods was
appropriate. Equation 6 dictates that the GDT_TS value will
be predicted based upon the model length, the homology per-
cent or the sequence similarity, and the secondary structure
agreement.

On the other hand, because the PF score correlated with
the CIRCLE score with a value of only 0.68 for the CM tar-
gets, the propensity of the model estimation is different be-
tween the PF and CIRLCE methods. The PF method does
not have a strong internal correlation for selecting models
with larger GDT_TS values in comparison with the CIRCLE
method. This fact is significant for the development of a se-
lection method for the model closest to the native structure.

6 Vol. 58, No. 1

Table 2. Averages and Standard Deviations of Correlation Coefficients between Power Function (PF Score), CIRCLE Score, and GDT_TS Value

PF score vs. CIRCLE PF score vs. GDT_TS CIRCLE vs. GDT_TS

r r r r r r

Average of CM targets (59 targets) 0.68�0.25 0.56�0.29 0.95�0.05 0.89�0.06 0.76�0.23 0.64�0.28
Average of non-CM targets (30 targets) �0.01�0.39 0.02�0.31 0.69�0.13 0.70�0.13 0.01�0.30 �0.05�0.30

Average of all 0.45�0.45 0.38�0.39 0.86�0.15 0.83�0.13 0.51�0.44 0.41�0.44

Three correlation coefficients were calculated for each target protein in the CASP7 contest. r indicates Pearson product-moment correlation coefficient. r indicates Spearman’s
rank correlation coefficient.

Fig. 3a. Matrix Correlation Map for Three Variables, PF Score, CIRCLE
Score, and GDT_TS Value, of the T0288 Target in CASP7, as a Typical Ex-
ample of the 58 CM Targets

The diagonal three panels show histograms of each variable’s distribution. The upper
right three panels show two correlation coefficients of Pearson’s method (r) and Spear-
man’s method (r). PF score, CIRCLE score, and GDT_TS value range from 0 to
80000, from �45 to 60, and from 0 to 100, respectively. For example, two correlation
coefficients of the PF score against the GDT_TS value are r�0.94 and r�0.81. Those
of the PF score against the CIRCLE score are r�0.88 and r�0.81.

Fig. 3b. Matrix Correlation Map for Three Variables, PF Score, CIRCLE
Score, and GDT_TS Value, of the T0283 Target in CASP7, as a Typical Ex-
ample of the 30 Non-CM Targets

The diagonal three panels show histograms of each variable’s distribution. The upper
right three panels show two correlation coefficients of the Pearson’s method (r) and
Spearman’s method (r). PF score, CIRCLE score and GDT_TS value range from 0 to
70000, from �100 to 20 and from 8 to 26, respectively. For example, two correlation
coefficients of the PF score against the GDT_TS value are r�0.80 and r�0.79. Those
of the CIRCLE score against the GDT_TS value are r�0.24 and r�0.79.



In Table 3, the maximum GDT_TS values after modeling for
all the alignments detected in six homology search tools are
called the GDT_TSMAX values. Moreover, the averages of
GDT_TSMAX for CM and non-CM targets show the averages
for the modeling of CM and non-CM targets of all the
CASP7 targets. The average GDT_TSMAX values differ
greatly by 39.5 between the CM and the non-CM targets. The
difference of the technical difficulty of the modeling is clear.
The average GDT_TS value, 62.2, in the models chosen with
the CIRCLE score is almost same as that, 62.7, obtained
from the PF score for the CM targets, though it is lower by
6.3 than the average GDT_TSMAX. For the non-CM targets,
the PF score had a little more selection capability, because
the average GDT_TS values were 18.0 and 23.9 for the CIR-
CLE and PF scores, respectively. Thus, we can select the
models having the ratios of 92 and 82% of GDT_TSMAX for
CM and non-CM targets, respectively, using the PF score.
The circle score selected models having ratios of 91 and 62
% of GDT_TSMAX for CM and non-CM targets, respectively.
Moreover, the GDT_TS of models selected as the top rank-
ing model by the PF score had high correlation coefficients
of 0.92, 0.93 and 0.97, against the GDT_TSMAX for CM,
non-CM and all targets, respectively. This indicated that the
PF score proposed in Eq. 5 was very useful in selecting the
sequence alignments having higher GDT_TS values. Natu-

rally, we cannot obtain the actual GDT_TS value in the
process of comparative or homology modeling, since the 3D
structure of the query sequence has not been experimentally
determined yet.

Combined Method of the PF Score and the CIRCLE
Value Although the PF method showed a good correlation
with the CIRCLE method, as shown by the 0.68 score for the
CM targets in Table 2, the differences indicated that a com-
bined method might be effective.

We made the combined method between the PF score and
the CIRCLE score for the model constructed. First, for a
query sequence or a target protein, the PF scores of all align-
ments detected by FASTA and various kinds of BLAST were
calculated and ranked by size. Second, the model construc-
tion by homology modeling using FAMS program14) was per-
formed for the alignments until a certain (Xth) number of the
PF score. Finally, the CIRCLE scores of the constructed
models were calculated, and we selected the model that had
the highest CIRLCE score until the (Xth) number of the PF
score. Concretely, for target proteins in the class of CM or
non-CM in the contest, the calculations were executed to find
the models having the highest CIRCLE score in the limita-
tion (Xth) number of the PF score for each query sequence.
As shown in Fig. 4a, the combination of the CIRCLE score
and the PF score was superior to the CIRCLE score alone for
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Table 3. Averages and Standard Deviations of the Number of Models for Each Target, GDT_TSMAX Value, GDT_TS Value of a Top Ranking Model Se-
lected by CIRCLE Score, and GDT_TS Value of a Top Ranking Model Selected by PF Score

GDT_TS of top GDT_TSa) of top 
Numbers of models GDT_TSMAX

a) ranking model selected by ranking model selected by 
CIRCLE score PF score

Average of CM targets (59 targets) 672.44 68.52�15.79 62.24�20.01 (0.91) 62.73�16.39 (0.92)
Average of non-CM targets (30 targets) 127.80 29.05�14.93 18.04�16.13 (0.62) 23.94�14.34 (0.82)

All 488.85 55.22�24.29 47.34�28.13 (0.86) 49.65�24.19 (0.90)

a) Correlation coefficients between GDT_TSMAX and GDT_TS of models selected by PF score as a top ranking score are 0.92 (for 59 CM targets), 0.93 (for 30 non-CM tar-
gets), and 0.97 (for all targets).

Fig. 4a. Vertical and Horizontal Axes Show the Sum of Each GDT_TS
Value of Selected Models, Sorted about the Size by CIRCLE Score from 1st
to Xth Ranking and Xth Ranking, Respectively, with the PF Score

The larger values of the sum of the GDT_TS values of 59 CM targets show that the
combination method of PF score and CIRCLE score is effective.

Fig. 4b. Vertical and Horizontal Axes Show the Sum of Each GDT_TS
Value of Selected Models, Sorted about the Size by CIRCLE Score from 1st
to Xth Ranking and Xth Ranking, Respectively, with the PF Score

The larger values of the sum of the GDT_TS values of 30 non-CM targets show that
the combination method of PF score and CIRCLE score is effective.



CM targets. The total GDT_TS value for the CM targets gave
lower values over the 55th rank of the PF score. If the CIR-
CLE method were superior to the combined PF and CIRCLE
method, the sum of GDT_TS values would increase against
the rank of the PF score in Fig. 4a. The 3D structures from
homology modeling for the 1st to Xth PF scores need to be
the target protein model set having a very high total GST_TS
value. For each query sequence, the 3D models obtained
from the selection of the PF score were reassessed with the
CIRCLE score, and, again, the results were sorted by the
size. Thus, the protein model for each target protein in the
class of CM or non-CM was selected using the CIRCLE
score among the 3D structures constructed after being se-
lected by the size of PF score. As already noted, the CIRCLE
score can select a model near to the native or experimental
structure from the models constructed for the sequence align-
ments of the 1st to Xth PF score. The CIRCLE score helps
the PF score in selecting the model near to the native struc-
ture from a free energy point of view, using the 3D–1D
score. It should be noted that the combined PF and CIRCLE
method is available within the limited ranking of the PF
score.

In Fig. 4a, the CIRCLE score functioned until the ranking
of the PF score reached about 50. The high estimation of the
selection of the 3D model by the CIRCLE program is shown
against the ranking order of PF score, X, of 10 to 50, as
shown in the higher total GDT_TS values of the vertical axis

for the CM targets. For the non-CM targets of Fig. 4b, the
sum of the GDT_TS or the total GDT_TS value showed the
highest value at PF rank of X�5, and the value decreased
rapidly at around X�10. In the ranking value of from 10 to
40, the level of the total GDT_TS value was relatively higher.
Thus, for using the combination of the CIRCLE score for the
PF score, the rank of the PF score at which models should be
included are 1st to 40th and 1st to 10th for CM and non-CM
targets, respectively. These results indicated that, for the CM
targets and the non-CM targets, the combined method of the
PF and CIRCLE methods was useful for obtaining a model
having a high GDT_TS value.

Comparison with E-Value The E-value of various ho-
mology search programs has been used as a statistical index
for considering the degree of agreement of the character
string of an alignment. Comparison between the alignment
chosen by E-value and that chosen by the PF score is shown
in Table 4. The results of the comparison for all the 89 tar-
gets are available on the web site shown at the end of this
section. In Table 4, the targets having a difference of less
than 2.0 between the GDT_TS values of two models selected
by the E-value and the PF score are not listed. Using the se-
lections performed by the E-value and by the PF score, we
chose the same alignment in 12 targets among the 59 CM
targets. Selection of the same alignment by the two methods
indicates that, because the same experimental structure was
used in a limited fashion in the 20% ratio of the CM targets,
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Table 4. Comparison of GDT_TS Values between Two Models Selected Using E-Value and PF Score for (A) CM Targets and (B) Non-CM Targets in the
CASP7 Contest

(A) CM targets (B) Non-CM targets

Min
GDT_TS selected by

Min 
GDT_TS selected by

Target Target
E-value

E-value PF score
E-value

E-value PF score

T0288 1.00E-29 72.8 � 80.22 T0299 1.20E-02 10.2 � 13.83
T0289 1.00E-81 40.15 � 43.89 T0300 5.50E-02 22.19 � 19.1
T0297 1.00E-61 61.02 � 64.22 T0304 3.00E-02 12.38 � 23.6
T0302 5.00E-50 74.81 � 53.98 T0306 4.80E-02 11.58 � 20.26
T0303 7.00E-62 68.3 � 59.26 T0314 1.60E-01 13.92 � 17.22
T0311 2.00E-15 51.86 � 55.05 T0319 4.00E-14 14.44 � 17.22
T0313 1.00E-140 67.48 � 70.17 T0325 8.30E-04 36.69 � 10.82
T0316 5.00E-72 20.74 � 28.09 T0327 5.00E-03 33.65 � 50.96
T0318 1.00E-135 47.39 � 56.85 T0335 7.40E-02 17.86 � 51.19
T0322 2.00E-25 53.7 � 57.75 T0347 2.50E-02 15.56 � 8.67
T0329 1.00E-45 65.48 � 48.74 T0348 3.00E-04 10.66 � 45.9
T0330 5.00E-47 60.22 � 43.67 T0350 8.00E-04 10.68 � 26.71
T0331 9.00E-38 49.46 � 64.93 T0351 5.40E-02 20 � 28.75
T0338 2.00E-62 50.29 � 57.91 T0353 2.60E-01 32.06 � 25.59
T0339 1.00E-125 55.02 � 67.49 T0354 1.00E-03 11.04 � 13.12
T0357 1.00E-15 23.67 � 39.2 T0358 8.00E-03 14.77 � 37.88
T0364 3.00E-31 67.97 � 62.4 T0361 7.00E-04 14.48 � 10.67
T0366 5.00E-33 82.61 � 75 T0369 4.00E-13 60.37 � 56.12
T0367 3.00E-42 69.4 � 77.2 T0372 1.00E-02 5.45 � 7.8
T0373 5.00E-31 64.93 � 60.61 T0382 1.60E-02 18.6 � 21.49
T0374 1.00E-32 62.5 � 55.47 T0383 4.20E-01 8.6 � 20.2
T0376 2.00E-90 62.9 � 58.15

Total of all 30 targets 584.96 718.07
T0378 5.00E-66 58.5 � 69.5
T0379 4.00E-44 50.49 � 46.81
T0380 2.00E-32 65.96 � 57.45
T0384 1.00E-106 57.79 � 64.67

Total of all 59 targets 3681.31 3701.01

The targets having differences of less than 2.0 between GDT_TS values of two models selected by E-value and PF score are not listed. In (A), the numbers of ‘�’ and ‘�’ are
15 and 11, respectively, and, in the (B), they are 15 and 6, respectively. In this table, the superior ratios of the PF method to the E-value method are 1.4 and 2.5 times for CM and
non-CM targets, respectively.



the two methods select the template proteins independently.
The PF score selected alignments that showed higher
GDT_TS values for 28 targets, and the E-value selected
alignments that showed higher GDT_TS values for 19 tar-
gets. In non-CM targets, we chose the same alignment in
23% (7 targets) of the 30 targets. The two methods also se-
lect the template proteins independently for the non-CM tar-
gets. The PF score selected alignments that showed a higher
GDT_TS values in 17 targets, and the E-value selected six
targets with higher GDT_TS values. Thus the superiority of
the PF method in comparison with the E-value method was
demonstrated. The T-test confirmed that this alignment selec-
tion superiority of the PF method over the E-value method was
confirmed at the 5% (p-value�0.03624) significance level.

Our PF method consists of three elements; (1) the length
of a model; (2) the degree of homology percent or sequence
identity of characters composed of amino acid sequence; and
(3) agreement ratio of the secondary structure. Terms of (1)
and (2) are also contained in the E-value method. We showed
that the agreement of the secondary structure might con-
tribute a little to CM targets and lot to non-CM targets. The
superiority ratios of the PF method against the E-value
method are 1.5 (�28/19) and 2.8 (�17/6) for CM and non-
CM targets, respectively. For CM targets, the total GDT_TS
value, 3701, of the models selected using the PF method was
larger by 37 than the 3681 selected using the E-value
method. For non-CM targets, the total GDT_TS value, 718,
of the models selected using the PF method was larger by
133 than the 585 selected using the E-value method.

Superimposed views of T0331 and T0327 are shown in
Fig. 5 as modeling examples of CM and non-CM targets, re-
spectively. We have shown that the PF score is more effective
than the E-value score in the comparison between the
GDT_TS values for both scores. Superimposed views of an-
other 87 targets are supplied on the web site (http://www.bio.
chuo-u.ac.jp/iwadate/PFscore/).

Nevertheless, as the E-value method shows superiority to
the PF method by 42% and 29% for the CM and non-CM tar-
get, respectively, in Table 4, a good researcher should prop-
erly use both methods as the case requires.

We have discussed the results shown in the Tables and Fig-
ures of this paper, and deduce that the PF score is very use-
ful. However, we did not analyze in detail the reason why this
score is powerful. To clarify this point, investigation of the
results of several more benchmark tests is required. We used
six different alignment tools [FASTA,3) BLAST,4) PSI-
BLAST, HMMER-Pfam,10) RPS-BLAST and IMPALA9)] to
extract alignment features between all vs. all of the non-re-
dundant PDB data set. However, these local alignment tools
occasionally provide only a short alignment, especially for
the non-CM targets. According to these local alignment pro-
grams, only a protein segment would be modeled instead of
whole protein domain, which is the state of the native or ex-
perimental structure. In this case, core residues might be ex-
posed to water, which would probably lead to a bad CIRCLE
score based upon 3D–1D score, even if the protein segment
has a good GDT_TS value. When we obtain such a protein
segment from a difficult alignment between the target protein
and the template protein, how should a benchmark test be
performed that includes the core residues exposed to water in
relation to the Power Function? We could consider the PF as

including the term of the total areas of the core residues ex-
posed to water when we refer to the experimental structure
becoming the template protein. Next, we mixed NMR struc-
tures, and high-resolution and low-resolution X-ray struc-
tures in the dataset. Naively speaking, NMR structures and
low-resolution X-ray structures would be bad templates. We
incorporated high-resolution X-ray structures composed of
long sequences into this paper in a first approximation, but
we have not performed the training about the appropriateness
of this approximation. In future, we should check which tem-
plates of NMR structures, low-resolution X-ray structures
and high-resolution X-ray structures become good templates,
as judged by their GDT_TS score, which shows the accuracy
of the Ca backbone of the main chain with no consideration
of the accuracy of the side-chains. Moreover, if we use the
PDB learning set combining the templates of NMR struc-
tures, low-resolution X-ray structures and high-resolution X-
ray structures, in addition to the PDB sequences set having
homology percent values above 95%, and overlapping at
least 80% with each other, how the selection using the PF
score changes becomes very interesting. Next, we employed
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Fig. 5a. Superimposed View of Model Structures Selected by PF Score
(Green) and E-Value (Blue), against Native Structure (Red) in the T0331
Target as an Example of the 59 CM Targets in CASP7

The green structure is closer than the blue one against the red experimental structure.
As the GDT_TS value, 64.93, of the model selected by PF score is larger, by 15.47,
than that of the model selected by the E-value (49.46), the green structure from the PF
score is closer to the red native structure than the blue structure from the E-value.

Fig. 5b. Superimposed View of Model Structures Selected by PF Score
(Green) and E-Value (Blue) against Native Structure (Red) in the T0327 Tar-
get as an Example of the 30 Non-CM Targets in CASP7

As the GDT_TS value, 50.96, of the model selected by PF score is larger, by 17.31,
than that of the model selected by the E-value (10.68), the green structure from the PF
score is closer to the red native structure than the blue structure from the E-value.



PSI-PRED prediction for the target protein in the agreement
of the secondary structure between the target protein and the
template protein, but we have not checked the relationship
between the prediction accuracy and the PF score perform-
ance. Because we have thought that the agreement ratio be-
tween the prediction accuracy of PSI-PRED and the second-
ary structure of the template protein almost depends upon the
prediction accuracy of PSI-PRED from the results shown in
the ref. 15. The prediction accuracy described in the paper of
the PSI-PRED method was about 76% in the average, and
the prediction accuracy of PSI-PRED varies depending on
the target protein. Thus, it was assumed that the relationship
between the prediction accuracy and the PF score perform-
ance is naturally positive correlation. Lastly, the correlations
of the PF score with the alignment coverage of the domain,
the X-ray resolution of templates and the prediction accuracy
of PSI-PRED should be evaluated in a future paper, because
those positive or negative correlations might affect the per-
formance of the PF score.
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