
A large number of genes from many genomes have been
determined. Translation of the genes to amino acid se-
quences and the amino acid analysis of proteins have pro-
vided a wealth of protein sequence information. In order to
elucidate the biological function of proteins, the three-dimen-
sional (3D) structures of the proteins are essential. The deter-
mination of the 3D structure of proteins has been performed
with the experimental methods such as X-ray diffraction and
nuclear magnetic resonance (NMR) spectroscopy. However,
the number of protein structures determined using the experi-
mental methods lags significantly behind the number of pro-
tein sequences. Therefore, computational approaches such as
comparative or homology modeling for accurate protein
structure prediction are urgently required.

Consensus methods have been used in the 3D modeling of
protein structures.1—3) For example, the reliability of the pre-
dicted 3D model is determined by rankings based on factors
such as the similarity between Ca atoms of two protein back-
bones in the compared models. This representative consensus
method is very useful if there are numerous accessible mod-
eling or alignment servers. Here, an amino acid sequence of
a target protein is used in the analysis of other excellent
servers or websites and the output gives the 3D model or the
sequence alignment between the target protein and a tem-
plate protein 3D structure that has been determined experi-
mentally. As shown in the Results and Discussion, we can
submit an amino acid sequence under investigation to several

web servers and obtain the 3D models or the sequence align-
ments. Thereupon, the consensus method is an available
method, in spite of the complicated way in which we must
collect 3D models and alignments created by each web
server. Consequently, improving the consensus method is
very important in creating a more accurate model based on
many 3D models and alignments. In this paper, we have im-
proved the consensus method in taking notice of the environ-
ment similarity of side-chains. We explain the algorithm of
the new consensus method mentioned above and, actually,
use our modeling method employing several server models
and sequence alignments collected. As an example of a mod-
eling target, we chose the human Cabin1 protein, a molecule
involved in p53 function, which is a very important protein
target involved in apoptosis and is combating with cancer in
tissues.4—6) Our 3D model for the N-terminal region consist-
ing of 450 residues of human Cabin1 may be useful in the
pharmaceutical, medicinal and biological fields.

In the meanwhile, 3D-Jury1) method which is the represen-
tative consensus method was one of the most powerful meth-
ods to obtain a model with accurate Ca backbone atoms. In
the 3D-Jury1) method each amino acid is represented only by
the Ca atom. As such, this method selects “good backbone”
protein models that closely match with the experimental
structure of the target protein. However, the quality of the
side-chains of the selected models is not ensured by this
method, because the 3D-Jury method does not refer to the
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coordinates of the side-chains. Thus, we report a number of
new consensus methods that consider the side-chain atoms as
well as the backbone atoms. The purpose of this approach is
to select protein models with correctly modeled side-chains
and backbone atoms. In this paper, new consensus methods
are shown to be effective and should be valuable to the pro-
tein structure modeling researchers. The scientifically appro-
priate reason for this consensus method is explained in the
Methods.

To assess the performance of our new consensus methods,
we performed the original assessment using the target pro-
teins of the latest Critical Assessment of Techniques for Pro-
tein Structure Prediction (CASP) experiment as a test set.
The CASP experiment is held once every two years with the
aim of progressing technique in the modeling of protein
structures.7—13) In these CASP experiments, each participant
receives over one hundred target protein sequences from the
CASP organizers, and returns the predicted 3D models for
each target. After the prediction period expires, the CASP as-
sessors evaluate the accuracy of models predicted by each
participating team using the Global Distance Test Total Score
(GDT_TS)14) as one of the evaluation criteria. The GDT_TS
value represents the correctness of the Ca backbone geome-
try of the predicted model. A high GDT_TS value indicates
that the predicted Ca backbone atoms match closely the po-
sition of the atoms in the native structure, which is the same
meaning as the experimental structure in this paper. The use
of the GDT_TS value for the assessment of the 3D structure
of the protein model means, by a tacit consent, that the
atomic coordinates of the side-chains will be near to the na-
tive structure if the main chain or the Ca backbone atoms of
the target protein are modeled with high accuracy. In addition
to the GDT_TS values, the accuracies of the side-chains were
used as another criterion for the evaluation of the accuracy of
the protein models.

Experimental
Methods. Side-Chain Environmental Consensus (SEC) Score We de-

fined a new consensus score that considers the environment of the side-
chains. The environment of the side-chain of a residue was assumed to be
composed of two parameters: ‘fraction buried’ (fb) and ‘fraction polar’ (fp).
The former means the fraction of the side-chain surface area buried by any
other atoms and the latter term represents the fraction of the side-chain sur-
face area that is exposed to water or covered by polar atoms.15) The denomi-
nator of both parameters is the total surface area of the side-chain. To calcu-
late the consensus score for the side-chain, we must compare the side-chain
environment at the nth residue of a particular model with that of each model
in a model set. We defined the environmental distance as a Euclidian dis-
tance between the two side-chain environments of the corresponding
residues in two models as shown in Eq. 1 and Fig. 1A. In other papers, no
researchers have reported this kind of Euclidian distance in relation to the
environment of the side-chains.

(1)

Here, env_dis(M, Mi, n) is the environmental distance between the nth
residue of a particular model M and that of model Mi which is one of mod-
els in the model set. fb(M, n) is the ‘fraction buried’ of the nth residue of
model M. fp(M, n) is the ‘fraction polar’ of the nth residue of model M. As
the first approximation, in this paper, the weight of the term of fb was as-
sumed to be equal to that of fp, though the weight value should be changed.
The assignment of env_dis to each residue is shown in Fig. 1B. The environ-
mental similarity score (sim(M, Mi) in Fig. 1B) between two models is de-
fined as the number of the corresponding residue pairs whose environmental
distance is within 0.2. The threshold of 0.2 was determined by maximizing
the total GDT_TS score using the CASP7 targets12) as a training set. Based
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Fig. 1. Schematic Diagrams of the Calculation of the Environmental Con-
sensus Score for a Particular Model M

(A) The environmental distance, env_dis, is defined as the Euclidian distance be-
tween the two side-chain environments of the corresponding amino acid residues of two
models. The model Mi is a model in the model set. The fb(M, n) and the fp(M, n) are
the ‘fraction buried’ for the nth residue of the model M and the ‘fraction polar’ for the
nth residue of the model M, respectively. Since the Ca atom was included in the calcu-
lations of the fb and fp values, all amino acid residues including glycine residue have
these values. (B) To calculate the environmental similarity score between the model M
and the model Mi, the env_dis mentioned in (A) is assigned to each residue. Residues
with the env_dis��0.2 are shaded. The environmental similarity score between model
M and model Mi (sim(M, Mi)) is defined as the number of the residues with the
env_dis��0.2. (C) The environmental similarity scores between the model M assigned
particularly and each model in the model set (M1—MN) were calculated. N means the
number of models in the model set. In other words, N is the number of pairs between
the model M and the model in the model set. sim(M, Mi) is the environmental similarity
score between the model M and the model Mi mentioned in (B). The environment con-
sensus score, env_con, of the model M is the sum of the environmental similarity scores
of the model M for each model in the model set divided by N. The model M is defined
independently for the model set of Mi (i�1 to N). (D) The distribution number of
env_connative,n of the native structures of the CASP7 targets against the horizontal axis.
The horizontal axis is the Z-score of env_connative,n for the set of the server models of
each CASP7 target. The env_connative,n is the env_con value at the nth residue of each
native structure of the CASP7 targets. The Z-score of the env_connative,n was calculated
using the average and standard deviation values of the env_con for the server models of
each CASP7 target. The vertical line at the Z-score�0 represents the average of the
env_con score among the CASP7 server models. Black, broken-black and gray lines are
the Z-scores of env_connative for the HA-TBM, TBM and FM targets, respectively. 75.6,
60.4 and 55.4% of the residues of the native structures for the HA-TBM, TBM and FM
targets, respectively, are higher than the average score of the CASP7 server models.
The higher ratio value (i.e. over 50%) shows the scientifically larger reliability of the
consensus method. HA-TBM, TBM and FM, which represent high accuracy template
based modeling, template based modeling and free modeling defined by CASP7 organ-
izers, correspond to CMeasy, CMeasy�CMhard�FR and NF in our modeling diffi-
culty presented in the Methods. Similarly, in the CASP8 targets, 74.6, 58.9 and 55.4%
of the residues of the native structures for the HA-TBM, TBM and FM targets, respec-
tively, are higher than the average score of the CASP8 server models. The data de-
scribed above show that the env_con consensus method is suitable to select the model
closest to the native structure.



on various values of env_dis including 0.2, model selection for each target of
CASP7 was performed, and the summation of the GDT_TS value of each
selected model was calculated as the total GDT_TS score. A particular
model M is compared with each model in the model set, and the summation
of the environmental similarity scores for each model in the model set was
calculated as SN sin(M, Mi) and is presented in Fig. 1C. N is the number of
models in the model set for the specific target. As shown in Eq. 2, the envi-
ronment consensus score, env_con, of model M is the summation of the en-
vironmental similarity scores for each model in the model set divided by the
number of models in the model set:

(2)

For example, in the CASP8 experiment, the first (top) models from each
server were used as the Mi model set. Since all the servers did not always
submit models for all the target proteins, the value N was different for each
target, and the average value and standard deviation of N were 65.4 and 2.9,
respectively, in the CASP8 targets.

Figure 1C shows the explanation of env_con(M) in Eq. 2. Figure 1D
shows the scientifically appropriate reason for the use of the env_con con-
sensus score. The score of the native structures of the CASP7 targets are sta-
tistically higher than the average score, which is zero as the Z-score, for each
of the CASP7 targets. Therefore, the investigation of the high env_con con-
sensus score for each target is significantly connected with that of the corre-
sponding native structure, and it has the scientific meaning as the method to
select the structure near to the native.

The env_con score corresponding to the side-chain environments does not
take into account the secondary structure agreement, although PSI-PRED,16)

which predicts secondary structures, achieved an average accuracy rate of
about 80%. Consequently, a secondary structure agreement term was added
to the env_con score term as a final Side-chain Environmental Consensus
(SEC) score and is shown in Eq. 3.

(3)

Here, Zscore(env_con(M)) and Zscore(SSscore(M)) represents the Z-score
of the env_con score and the Z-score of SSscore for the model M, respec-
tively. The SSscore represents the secondary structure agreement score
which was calculated by comparison between the secondary structure of the
3D model and the secondary structure predicted from the sequence. The sec-
ondary structure prediction from the sequence was performed using PSI-
PRED.16) The details of this score were described in reference two.15) The Z-
score is a dimensionless quantity derived by subtracting the population mean
from an individual raw score and then dividing the difference by the stan-
dard deviation of the population. Before summing the two different meas-
ures, it was necessary to normalize these scores on a common scale. The
symbol w in Eq. 3 is the weighting factor for the Z-score of SSscore. As
shown in Table 1, the value of w is dependent on the target difficulty pre-
dicted by the Support Vector Machine (SVM)17) as mentioned later. These w
values were optimized using the training set based on CASP7 targets.12) The
optimization was performed by maximizing the sum GDT_TS, which is the
summation of the GDT_TS value of the protein model with the highest SEC
score for each target. The GDT_TS value was explained in the Introduction
section, and, next, its calculation method is mentioned.

The GDT_TS value represents the correctness of the Ca backbone geom-
etry of the model, and is defined as shown in Eq. 414):

(4)

Here, GDT_Pn represents a percent of residues or Ca atoms separated by a
distance shorter than n Å from a native structure. The GDT_Pn was calcu-
lated with a sequence-dependent superposition between a native and a model
structure, where the number of residues which is separated by a distance
shorter than n Å was maximized. The residue is represented by the Ca atom.
The GDT_TS value is an average of GDT_P1, GDT_P2, GDT_P4 and
GDT_P8, and ranges from zero to 100. A score of 100 for the GDT_TS in-
dicates that all the Ca coordinates of the model structure are within 1 Å
when compared with the native or experimental structure.

Target Difficulty Prediction The target difficulty is the difficulty of the
protein modeling for a particular target. Generally, when the target protein
has a template protein with high sequence identity, the difficulty of the pro-
tein modeling for the target protein is low. Inversely, when the target protein
has no any template proteins with high sequence identity, the difficulty of

the protein modeling for the target protein is high. In order to predict the tar-
get difficulty in Table 1, the SVM17) program was used. The SVM program
is based on a new type of learning machine, which is applied to pattern
recognition estimations and other problems. Score and sequence identity (%)
values of the best alignments resulting from PSI-BLAST18) and SPARKS219)

were used as vectors for difficulty classification in the SVM. Four difficulty
classes were obtained from both alignment programs of PSI-BLAST and
SPARKS2: CMeasy, CMhard, FR and NF in ascending order of difficulty.
The two kinds of target difficulty classes resulting from the use of the two
alignment programs were combined to identify the w value in the Eq. 3 as
described in Table 1. The PSI-BLAST method is excellent for CMeasy and
CMhard due to the base of sequence-profile alignments, whereas the
SPARKS2 method is excellent for CMhard and FR due to the base of pro-
file-profile alignments. Both methods were then used to accommodate the
broad band in relation to the difficulty of the alignment. The w values in
Table 1 were determined by maximizing the total GDT_TS value based on
the training set consisting of the CASP7 target proteins. The PSI-BLAST
and SPARKS2 programs were only used to classify the modeling difficulty
of each target protein. The Z-score of SSscore was multiplied by a larger
weight value in the case of difficult modeling targets than in the case of easy
modeling targets. For the difficult targets, the SSscore term must be consid-
ered equally with the env_con term based on the Z-scores, whereas for the
easy targets the SSscore term must be weighted by 30—50% to that of the
env_con term. The env_con and SSscore terms are determined by the envi-
ronmental states of the side-chains in the protein model and the agreement
between the secondary structure of the predicted model and the secondary
structure prediction for the query sequence, respectively.

The SEC Method in the CASP8 Experiment (FAMSD_QA) In the
Seventh CASP (CASP7),12) a new prediction category called Quality Assess-
ment (QA) was implemented.20) This prediction category was introduced to
develop a model quality estimation method without information of the ex-
perimental structure of target protein. In this category, predictors estimate
the quality of the 3D models which were automatically predicted within 3 d
after the receipt of the target sequence by server teams. After the prediction
period expires, the CASP assessors of the QA category computed the corre-
lation between the observed quality in comparison with the 3D coordinates
of the target protein and predicted quality of the models achieved by the 
participating teams.20) We participated in the latest CASP experiment
(CASP8)13) in 2008 using the SEC method as a QA predictor called
‘FAMSD_QA.’21) The team name was ‘FAMSD’; however, the ‘FAMSD’
team was also a tertiary structure (TS) predictor, and therefore the inclusion
of the ‘_QA’ in the name of FAMSD avoids confusion. In this section, we
explain the FAMSD_QA method including the SEC method in the CASP8
experiment.

Initially, we refined all the server models using the homology modeling
program FAMS22) to complement missing side-chain atoms and decrease
collisions between side-chain atoms. The FAMS program was performed
using each server model as a template structure. Since the tertiary structures
of other server teams sometimes include geometric structures unrelated to
the native structures of the proteins, the above reconstruction by FAMS
should be performed. Without this reconstruction procedure, the side-chain
environment could not be calculated correctly. Our 3D coordinates for all
the target proteins were used in the QA predictions of the CASP8 experi-
ment as the FAMSD_QA team. The SEC scores of every refined model were
calculated and normalized into the range [0, 1]. For each target protein, the
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Table 1. Optimized w Value Based on the Training Set of the CASP7 Tar-
gets

PSIBa) SPK2b) w

CMeasy CMeasy 0.3
CMhard CMeasy 0.3
CMeasy CMhard 0.5
CMhard CMhard 0.5
CMhard FR 0.5
NF CMhard 0.5
NF FR 1.0
CMhard NF 1.0
NF NF 1.0

a) Predicted difficulty obtained from the alignment score and the sequence identity
of PSI-BLAST. b) Predicted difficulty obtained from the alignment score and the se-
quence identity of SPARKS2.



value one was given for the 3D model having the maximum value of the
SEC scores in all the server models, and the value zero was applied as the
minimum value of the SEC scores. Consequently, we submitted QA predic-
tions in the range of [0, 1] for all 128 targets. Our submission data are shown
in website (CASP8 homepage: http://predictioncenter.org/download_area/
CASP8/predictions/QA.tar.gz). The results of FAMSD_QA in the CASP8
experiment, such as the correlation coefficients for each target protein be-
tween the GDT_TS and the QA prediction for 3D models of participating
server teams, will be published by the CASP8 assessors. In this paper, on the
other hand, we focus on the protein model with the highest SEC score for
each target protein to select the model closest in structure to the native con-
former. Here, we assessed the quality of models ranked first by the SEC
method and performed comparison with other CASP8 server models which
were constructed by other server teams participating in the CASP8 experi-
ment.

Combination of the SEC Method with Other Methods We combined
the SEC method with two other methods, 3D-Jury (3DJ)1) and CIRCLE
(CCL),15) as an approach to improve model selection. These combined meth-
ods were not used in the CASP8 experiment. After the CASP8 experiment,
the following methods were developed.

Initially, we combined our SEC method with the 3D-Jury method to in-
crease the accuracy of the Ca backbone. The 3D-Jury method gives the con-
sensus of the Ca atoms for each model constructed with various modeling
algorithms. Thus two types of consensus methods for the side-chains and the
main chain are included in the combined method. The combined score,
Com_score, was calculated as:

(5)

Zscore(3DJ) and Zscore(SCE) are the Z-scores of the 3D-Jury score and the
SEC score, respectively. The symbol w� in Eq. 5 is the weighting factor for
the Z-score of the SEC score and was set to 0.5. The value of 0.5 was opti-
mized value using the training set of the CASP7 targets by maximizing the
sum of the Z-score values of GDT_TS and the “correct c1” for all target
proteins. The sum of the Z-score values of GDT_TS and “correct c1“ for a
target protein is explained in the Eq. 6 described later. In this case, in rela-
tion to the importance of the correctness for all the coordinates of the main
chain and the side-chains, the training is executed to obtain a model that
closely matches the native structure. As shown by the value of the weighting
factor w��0.5, the consensus of the main chain may be superior to that of
the side-chains.

Furthermore, we re-ranked the top 3% models ranked by the
Com_score(SEC�3DJ) in Eq. 5 using the 3D–1D profile score of the CIR-
CLE (CCL) program15) to obtain models with higher quality in both the Ca
backbone and the side-chain atoms from a free energy point of view. The
value of 3% was determined based on the training set of the CASP7 targets
in a manner similar to the determination of the weighting factor w�. The
number of top 3% models varies for each target protein because the total
number of models for each target protein varied. For example, in the CASP8
experiment, the average value of the number of top 3% models was 9.2 per
one target protein. This model selection method including the CIRCLE pro-
gram is termed the 3DJ�SEC�CCL method. As the CIRCLE program
gives the 3D–1D profile score for the protein structure, the combined con-
tents of the free energy for the protein structure, the secondary structure
agreement and the consensus of the main chain and side-chains are included
in the 3DJ�SEC�CCL method as the estimation of the constructed model.

Results and Discussion
Comparison of the SEC and 3D-Jury Methods Using

the experimental structure or 3D coordinates of the target
protein for each of the CASP8 targets, we evaluated the accu-
racy of the 3D model ranked first by the SEC score actually
used by us in the CASP8 experiment. The results are dis-
cussed by comparison between the SEC and 3D-Jury meth-
ods. We calculated the GDT_TS14) value to assess Ca back-
bone geometry. Furthermore, the number of residues which
have the correct side-chain torsion angles, c1 and c2, was
used to assess side-chain conformations. The c1 torsion
angle was considered “correct” if the value was within 40 de-
grees of the experimental value.23,24) The c2 torsion angle
was considered “correct” if both the c1 and c2 values were

within 40 and 60 degrees, respectively. The number of collect
c1 and c2 torsion angles was counted when the Ca atom is
positioned within 3.5 Å from the native structure following
superposition onto the native structure using the MaxSub fit-
ting method.25) To compare our method with the 3D-Jury
method, we also assessed the models ranked first by the 3D-
Jury score. In CASP8, 121 of 128 targets were used for the
assessment and they were divided into 162 domains by the
CASP8 assessors.13) We conveniently classified these do-
mains into four categories based on the average GDT_TS
values of the top 10% server models for each domain: “easy”
(�70), “medium” (50—70), “hard” (30—50) and “very
hard” (�30). We calculated the sum of GDT_TS, average
GDT_TS, sum of the correct side-chains based on c1 or c2
values and the percentage of the correct side-chains for each
category. However, in the absence of the correct protein
backbone structure, the assessment of the side-chain quality
of the models is meaningless. In other words, since the
GDT_TS value is the index expressing the correctness of the
Ca backbone or the folding conformation near to the native
structure, two categories of “hard” and “very hard” defined
above were slighted in discussing the assessment of both
qualities of the main chain and the side-chains. Therefore, we
paid special attention to “easy” and “medium” classes be-
cause the correctness of the protein model is not guaranteed
when the GDT_TS value is below 50. We typically dealt with
three groups based on domains, which were “easy” domains
(above 70), “easy”�”medium” domains (above 50) and all
domains including the “hard” and “very hard” domains
(above 0). Table 2 shows the results of both the SEC and 3D-
Jury methods for these three groups. As for the sum and the
average of the GDT_TS values, which represent the quality
of the backbone modeling, the SEC method was found to be
slightly worse than the 3D-Jury method. However, the ratios
of correctly predicted c1 and c2 values were higher using
the SEC method. In particular, in the “easy” group, the ratios
of correctly predicted c1 and c2 values using the SEC
method were better than the 3D-Jury method by 4.7% and
4.3%, respectively. Therefore, the 3D-Jury method does not
necessarily select models with good side-chain quality due to
no consideration about the correctness of side-chain atoms.
In contrast, since our SEC score considers the side-chain en-
vironment and the secondary structure agreement of the
main chain, this method naturally ensures the selection of
good side-chain models with well positioned Ca backbone
geometries.

Performance of the Three SEC-Related Methods We
examined the performance of three SEC-related methods
using the CASP8 targets which were not used in the training
set to determine various parameters such as the threshold
value, 0.2, of the environmental distance in the Eq. 1, the
weighting factor w (0.3, 0,5, 1.0) of the term of secondary
structure agreement in the Eq. 3, the weighting factor, 0.5, of
the term of the Side-chain Environmental Consensus (SEC)
score in the Eq. 5 and the cut-off value, 3%, of the 3DJ�
SEC�CCL method. A comparison between the SEC method
and the combined method (3DJ�SEC) showed that the aver-
age GDT_TS improved slightly from 73.7 to 74.3 without re-
ducing the c1 and c2 quality values of the side-chains (Table
3). Thus, the 3DJ�SEC method which has not been reported
in other papers was successful. Furthermore, the quality val-

Com score SEC DJ Zscore DJ w Zscore SEC_ ( ) ( ) ( )� � � ��3 3

February 2010 183



184 Vol. 58, No. 2

Table 2. Comparison between SEC and 3D-Jury

“easy”a) “easy”�“medium”b) ALLc)

3DJd) SECe) diff f ) 3DJ SEC diff 3DJ SEC diff

GDT_TS SSum 7916.07 7828.33 �87.74 10079.06 9945.39 �133.67 11020.08 10896.86 �123.22
(�1.12%) (�1.34%) (�1.13%)

GDT_TS Average 81.61 80.7 �0.91 74.66 73.67 �0.99 68.03 67.26 �0.77
(�1.13%) (�1.34%) (�1.14%)

c1 Sum 5919 6464 �545 7493 8116 �623 7977 8632 �655
(��8.43%) (��7.68%) (��7.59%)

%g) 51.20% 55.91% �4.71% 45.53% 49.32% �3.79% 40.66% 44.00% �3.34%
(��8.43%) (��7.68%) (��7.59%)

c2 Sum 3257 3637 �380 4079 4474 �395 4331 4743 �412
(��10.45%) (��8.83%) (��8.69%)

%h) 36.80% 41.10% �4.29% 32.10% 35.20% �3.11% 28.38% 31.08% �2.70%
(��10.45%) (��8.83%) (��8.69%)

a) “easy” in which the average GDT_TS of the top 10% servers is �70 consists of 97 domains. b) “easy”�”medium” in which the average GDT_TS of the top 10%
servers is �50 consists of 135 domains. c) ALL consists of 162 domains. d) First-ranked models by 3D-Jury. e) First-ranked models by SEC. f ) The difference calculated
by subtracting 3DJ from SEC. g) Percentage of the correct c1 values. h) Percentage of the correct c2 values. The text is bold when the SEC method was better than the 3D-
Jury method. The value in parentheses (as percentages) is the increase in the rate that was calculated using the value obtained from the 3D-Jury method as the standard.

Table 3. Comparison between 3D-Jury and the SEC-Related Methods

“easy”�”medium” targets

3DJa) SECb) diff e) 3DJ�SECc) diff f ) 3DJ�SEC
diff g)

�CCLd)

GDT_TS sumh) 10079.06 9945.39 �133.67 10027.21 �51.85 10076.81 �2.25
(�1.34%) (�0.51%) (�0.02%)

GDT_TS averagei) 74.66 73.67 �0.99 74.28 �0.38 74.66 0
(�1.34%) (�0.51%) (0%)

c1 sum j ) 7493 8116 �623 8208 �715 8346 �853
(��7.68%) (��9.54%) (��11.38%)

%k) 45.53% 49.32% �3.79% 49.88% �4.35% 50.71% �5.18%
(��7.68%) (��9.54%) (��11.39%)

c2 suml) 4079 4474 �395 4499 �420 4652 �573
(��8.83%) (��10.30%) (��14.05%)

%m) 32.1% 35.20% �3.11% 35.40% �3.30% 36.60% �4.50%
(��8.83%) (��10.30%) (��14.03%)

a) The 3D-Jury method. b) The SEC method. c) Combined 3D-Jury and SEC method. d) Combined 3D-Jury, SEC and CIRCLE method. e) Difference calculated
by subtracting 3DJ from SEC. The value in parentheses (as percentages) is the increase in the rate that was calculated using the value obtained from the 3D-Jury method as the
standard. f ) Difference calculated by subtracting 3DJ from 3DJ�SEC. The value in parentheses (as percentages) is the increase rate which was calculated using the value ob-
tained from the 3D-Jury method as standard. g) Difference calculated by subtracting 3DJ from 3DJ�SEC�CCL. The value in parentheses (as percentages) is the increase rate
which was calculated using the value obtained from the 3D-Jury method as standard. h) Summation of the GDT_TS value for 135 domains in the “easy”�”medium.” i) Aver-
age the GDT_TS value for the 135 domains in the “easy”�“medium.” j ) Summation of the number of the correct c1 for the 135 domains in the “easy”�”medium.” k) Per-
centage of the correct c1 for the 135 domains in the “easy”�“medium.” l) Summation of the number of the correct c2 for the 135 domains in the “easy”�”medium.” m) Per-
centage of the correct c2 for the 135 domains in the “easy”�“medium.” The shaded text indicates the difference from 3DJ for each SEC-related method. The text is bold when the
SEC-related method was superior to the 3D-Jury method.

Table 4. Ratios of the Correctly Predicted c1 and c2 Values of the Side-Chains for the 3D-Jury Method and the 3DJ�SEC�CCL Method against the 0.1
Fraction Buried (fb) Bands Determined between 0.0 and 1.0

c1b) c2c)

fba)

3DJd) 3DJ�SEC�CCLe) diff f ) 3DJd) 3DJ�SEC�CCLe) diff f )

0.0—0.1 18.9% 22.4% �3.5% 13.2% 16.5% �3.3%
0.1—0.2 29.4% 32.2% �2.8% 20.0% 21.2% �1.2%
0.2—0.3 29.5% 34.1% �4.5% 20.2% 23.9% �3.7%
0.3—0.4 34.3% 38.6% �4.2% 23.2% 27.1% �3.9%
0.4—0.5 37.3% 40.0% �2.8% 26.8% 29.2% �2.4%
0.5—0.6 36.1% 41.0% �4.9% 26.0% 29.3% �3.3%
0.6—0.7 37.8% 43.4% �5.6% 25.9% 30.3% �4.4%
0.7—0.8 40.6% 46.9% �6.4% 27.6% 34.1% �6.5%
0.8—0.9 43.4% 49.0% �5.5% 30.1% 34.6% �4.5%
0.9—1.0 49.8% 56.1% �6.4% 36.1% 42.1% �5.9%

a) Fraction of the native structure buried. A value of 1.0 means the state which is completely buried in the protein. b) Percentage of the correct c1. c) Percentage of the
correct c2. d ) The 3D-Jury method. e) Combined 3D-Jury, SEC and CIRCLE method. f ) Difference calculated by subtracting the 3DJ from the 3DJ�SEC�CCL.



ues of the side-chains improved by re-ranking with the CIR-
CLE score (3DJ�SEC�CCL). Compared with the 3D-Jury
method, the ratios of the correctly predicted c1 and c2 val-
ues improved from 45.5 to 50.7% and from 32.1 to 36.6%,
respectively.

In order to analyze the increases in the ratios of the cor-
rectly predicted c1 and c2 values, the c1 and c2 quality val-
ues of the side-chains for the 3D-Jury and the 3DJ�SEC�
CCL methods and the given difference between the two c1
and c2 quality values of each method were calculated against
the 0.1 fraction buried (fb) band presented in Table 4. In the
fb bands of 0.6—0.7, 0.7—0.8, 0.8—0.9 and 0.9—1.0, the
c1 and c2 quality values in the 3DJ�SEC�CCL increased
by 5.5 to 6.4% and 4.4 to 6.5%, respectively, in comparison
with 3DJ. In the fb bands of 0.0—0.1, 0.1—0.2, 0.2—0.3,
0.3—0.4, 0.4—0.5 and 0.5—0.6, the c1 and c2 quality val-
ues in the 3DJ�SEC�CCL increased by 2.8 to 4.9% and 1.2
to 3.9%, respectively, in comparison with 3DJ. Therefore, it
was shown that the 3DJ�SEC�CCL method gives larger
quality ratios of the c1 and c2 values not only in the buried
regions of the protein but also for residues located on the sur-
face of the protein. The functional importance of buried or
solvent exposed side-chains depends on the function of the
protein under investigation. The 3DJ�SEC�CCL method
gave more correctly predicted c1 and c2 values as a whole
and represents a better modeling method for examining the
side-chain structure-function relationship in proteins.

As shown in Fig. 2, the quality of models ranked first by
our three SEC-related methods was compared with other
CASP8 server models. In the assessment for the total Z-score
of the GDT_TS in the CASP8 experiment, the Zhang-Server
and RAPTOR were ranked in the top 2 of the all 71 servers
that participated in the CASP8.14) Therefore, the two servers,
the Zhang-Server and RAPTOR, were included in this figure.
In Fig. 2, “easy”�“medium” domains (135 domains) were
used to calculate the accuracies of the models. The broken
line with cross symbols represents the average GDT_TS. The
three SEC-related methods were comparable in level to the
top-ranked Zhang-Server. The broken lines with triangle and
square symbols represent the ratios of correct c1 and c2 val-
ues, respectively, which are graduated in the right vertical
axis. The re-ranking method using the CIRCLE program (i.e.
the 3DJ�SEC�CCL method) performed better than the
Zhang-Server in both the c1 and c2 accuracies. The bar rep-
resents the summation of the combined Z-score for the same
135 domains. The combined Z-score (Zcombined) was calcu-
lated as the summation of the Z-scores for the GDT_TS and
the number of correct c1 torsion angles:

(6)

Here, ZGDT_TS and Zc1 represent the Z-scores for GDT_TS
and the number of correct c1 torsion angles, respectively.
Higher Zcombined values indicate that the main chain and the
side-chains were both structurally similar to the native struc-
ture in relation to ZGDT_TS and Zc1, respectively. In Table 2,
the six teams (the 3D-Jury method, the three SEC-related
methods and the two CASP8 servers (Zhang-Server and
RAPTOR)) are sorted in descending order of the Zcombined

value, which are graduated in the left vertical axis. In the as-
sessment of this Zcombined value, the 3DJ�SEC�CCL method
did better than the Zhang-Server which is the best server

among the CASP8 servers, although the SEC method and the
3DJ�SEC method followed the Zhang-Server. However, it
should be remembered in the above comparison that models
created by the Zhang-Server are used in the SEC-related
methods as shown in the explanation of Table 2.

Good Examples of the SEC-Related Methods for the
CASP8 Targets T0447 is one of the CASP8 targets, the
putative Formyltetrahydrofolate Synthetase (TM1766) from
Thermotoga maritima (pdb code 3DO6) which consists of
542 residues. Many CASP8 servers predicted this target well,
and the average GDT_TS of all server models and that of the
top 10% server models were 64.50 and 89.02, respectively.
The 3D-Jury method which is the Ca backbone consensus
method selected the HHpred5_TS1 model whose GDT_TS
was 88.24. The best GDT_TS among all server models of

Z Z Zcombined GDT TS� �( )_ χ1
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Fig. 2. Comparisons between 3DJ, Our Three SEC-Related Methods
(SEC, 3DJ�SEC and 3DJ�SEC�CCL) and the Top Two CASP8 Server
Teams: the Zhang-Server and RAPTOR

The bar represents the sum of the combined Z-score (Zcombined) in Eq. 6 (the left verti-
cal axis). The Zcombined was calculated as the summation of the Z-scores for the
GDT_TS and the number of correct c1 torsion angles. The broken lines with the cross,
triangle and square symbols represent the average GDT_TS, percentage of correct c1
values and percentage of correct c2 values, respectively (right axis). The average values
of all 71 CASP8 servers for the sum of the Zcombined, the average GDT_TS, the correct
c1 % and correct c2 % are �0.04, 60.3, 41.7 and 21.9, respectively. The values of sum
Zcombined, average GDT_TS, percentage of correct c1 values and percentage of correct
c2 values for the Zhang-Server model structures are 208.2, 74.5, 49.9 and 35.9 before
the remodeling by our FAMS homology modeling program, and they are 207.0, 74.0,
49.9 and 35.9 after the remodeling by the FAMS. Although the remodeling process im-
proves short-contacts of atom–atom with no appearance in the native structures, it does
not increase the model accuracy indicated by the GDT_TS value. About the ratio % of
the number which were selected as the top team for each target by using the 3DJ
method, the Zhang-Server, the HHpred4, the MULTICON-CLUST, the METATASSER,
the FALCON-CONSENSUS and the MULTICOM-REFINE selected above 5% were
29.7, 7.8, 7.0, 6.3, 6.3 and 5.5%, respectively. About the ratio % of the number which
were selected as the top team for each target by using the SEC method, the Zhang-
Server, the LEE-SERVER, the MUProt and the BAKER-ROBETTA selected above 5%
were 13.3, 10.9, 9.4 and 5.5%, respectively. About the ratio % of the number which
were selected as the top team for each target by using the 3DJ�SEC method, the
Zhang-Server, the MUProt and the LEE-SERVER selected above 5% were 20.3, 10.2
and 7.0%, respectively. About the ratio % of the number which were selected as the top
team for each target by using the 3DJ�SEC�CCL method, the Zhang-Server, the
BAKER-ROBETTA, the MULTICOM-REFINE, the MUProt and the LEE-SERVER
selected above 5% were 26.6, 10.9, 8.6, 6.3 and 6.3%, respectively. When the Zhang-
Server models were excluded from server models, the values of Zcombined are 196.1,
176.8 and 162.8 for the 3DJ�SEC�CCL, the 3DJ�SEC and the SEC, respectively,
and, the other hand, the values of Zcombined are 206.4 and 107.9 for the top Zhang-Server
and the second RAPTOR, respectively; the three values, 196.1, 176.8 and 162.8, ex-
cluding the Zhang-Server are inserted between both values of the top two server teams.



this target was 89.30, so the difference in the two GDT_TS
values was 1.06, which is very small in comparison with 100
of full marks (Table 5). The selection of a high quality model
was successful in terms of the GDT_TS value, i.e. accuracy
of the Ca backbone geometries. However, the number of
“correct c1” values of the model selected by the 3D-Jury
method was 243, and significantly lower than the highest
value of 319 obtained from a different server model. As
such, the 3D-Jury model showed very high quality selection
based on the backbone prediction but showed weak model
selection for side-chains positions. Conversely, the SEC
method selected the SAM-T08-server_TS3 model whose
GDT_TS and the number of “correct c1” were 87.92 and
319, respectively. Thus our SEC methods could select a pro-
tein model with very high quality in both the Ca backbone
atom positions and side-chain atoms positions. Although the
3DJ�SEC�CCL method was not used in the CASP8 experi-
ment, it also selected a high quality model (Table 5). This
may become a powerful method as a participating team in the
CASP9 (2010) experiment which will greatly contribute to
the progress of the protein modeling techniques.

For target T0447, Fig. 3 shows the superposition of the na-
tive structure (white), the model selected by the 3D-Jury
method (gray) and the model selected by the 3DJ�SEC�
CCL method (black) for particular side-chains which have
been labeled. In Fig. 3A, residues L142, I144, V149 and
V221 (gray) are positioned in different orientations when
compared to the corresponding position of the residues in the
other two structures. The side-chains for these residues from
the native structure and 3DJ�SEC�CCL model are in good
agreement. In Figs. 3B, C and D, similarly, residues F150,
I211, I220, R222 (Fig. 3B), T154, I183, T185 (Fig. 3C), T60,
S85 and I255 (Fig. 3D) are in different spatial positions for
the 3D-Jury model when compared to positions of the same
side-chains in the native and 3DJ�SEC�CCL structures.
Higher accuracies of the torsion angles of the side-chains in
the 3DJ�SEC�CCL model than in the 3DJ model (Table 5)
were explained from the comparisons of the deviations of the
side-chains from the native conformation. The environment
of fb and fp for a residue is determined in the free energy
state of the residue of the protein. Therefore, it is reasonable
that the modeling accuracy is improved as a whole in the in-

clusion of the side-chain environment.
Ca-atom fluctuations in the protein for the target T0447

were calculated with Normal Mode Analysis (NMA),26—30)
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Table 5. Correctness of Our Three Models Obtained from the Three Meth-
ods, SEC, 3DJ�SEC and 3DJ�SEC�CCL in Comparison with Two Mod-
els Obtained from the Two Methods, Best GDT_TS and 3DJ, Tested on One
of the CASP8 Targets, T0447

Model GDT_TS c1a) c2b)

Best GDT_TSc) 89.30 312 188
3DJd) 88.24 243 132
SECe) 87.92 319 181
3DJ�SECf) 87.96 319 190
3DJ�SEC�CCLg) 87.59 319 195

a) c1 is the number of correct c1 torsion angles. b) c2 is the number of correct
c2 torsion angles. c) Best GDT_TS is the highest GDT_TS model among all CASP8
server models for the T0447 target. d) 3DJ indicates the model selected by the 3D-
Jury method. e) SEC indicates the model selected by the side-chain environment
consensus (SEC) method. f ) 3DJ�SEC indicates the model selected by the com-
bined method of the 3D-Jury and the SEC score. g) 3DJ�SEC�CCL indicates the
model selected by the combined method of the 3D-Jury, the SEC and the CIRCLE
score. Our SEC-related methods were shaded. This table indicates that the selections of
a protein model using the SEC-related methods were achieved with very high quality in
both the Ca backbone and side-chains.

Fig. 3. Comparisons between the Native Structure, Model Selected by 3D-
Jury Method and Model Selected by the 3DJ�SEC�CCL Method for Tar-
get T0447

Superposition of native structure, model selected by 3D-Jury method and model se-
lected by the 3DJ�SEC�CCL method for target T0447. White, gray and black show
native structure, model selected by the 3D-Jury method and model selected by the
3DJ�SEC�CCL method, respectively. It is shown that white side-chains of native
structure overlap to black side-chains of 3DJ�SEC�CCL model more than gray side-
chains of 3D-Jury model. Since the conformation of the side-chain is intrinsically re-
lated to the function of the protein (e.g. the catalytic triad consisting of histidine, serine
and aspartic acid residues in the serine-proteases is a good example35)), the conforma-
tions of the black colored side-chains of the 3DJ�SEC�CCL model may be useful in
explaining the biological function of the target T0447. In this paper, the PyMol pro-
gram36) was used to present the protein structures.



which is an analysis method that uses harmonic molecular
dynamics. The Ca-atom fluctuations of the native structure,
the model selected by the 3D-Jury and the model selected by
the 3DJ�SEC�CCL were near identical as a whole. As
shown in Fig. 4, however, when we compared the Ca-atom
fluctuations of the three structures in the peptide regions of
206—230, 239—267 and 449—469, the superposition of the
3DJ�SEC�CCL model with the native structure was better
than the superpositioning between the native structure and
the 3DJ model. Therefore, it was shown that the higher accu-
racy of the side-chains of the 3DJ�SEC�CCL model brings
the harmonic molecular dynamics of the main chain closer to
the native structure. Since protein dynamics is generally re-
lated to biological functions such as protein–protein interac-
tions27,28,30) and protein–ligand docking,31) the 3DJ�SEC�
CCL method may provide biologically valuable 3D models.

For the target T0412, in order to show better quality of the
side-chains in the 3DJ�SEC�CCL method, we described
the positions of L47 and F49 in Fig. 5A and N31, D32 and
I33 in Fig. 5B. The side-chains of these residues in the
3DJ�SEC�CCL model are in good agreement with side-
chain positions in the native structure. However, the side-
chains of the best GDT_TS model are positioned in different
orientations with respect to the spatial orientations of these
side-chains in the native structure. The target T0412 is a

good example, in which the side-chain conformations in the
3DJ�SEC�CCL method are much closer to the native struc-
ture in comparison with the best GDT_TS model. Again, the
3DJ�SEC�CCL method giving the structure nearer to na-
tive means that the methods considering the free energy state
such as SEC and CCL are important in the protein modeling.

For the target T0511, in order to show better quality of the
side-chains in the 3DJ�SEC�CCL method, we described
the positions of I70 and N75 in Fig. 6A and N96 and L146 
in Fig. 6B. Side-chain positions in the 3DJ�SEC�CCL
method are in good agreement with side-chains positions in
the native structure. In contrast, for the 3DJ�SEC model, the
position of the side-chains differs to the position of the same
side-chains in the native structure. The target T0511 is a
good example, in which the side-chain conformations in the
3DJ�SEC�CCL method are much closer to the native struc-
ture in comparison with the 3DJ�SEC method. This fact
means that both methods of SEC and CCL considering the
free energy state are significant in the protein modeling.

Poor Example of SEC-Related Methods for the CASP8
Targets T0498 is one of the CASP8 targets and consists of
56 residues. In this target, many template proteins with
�50% sequence identity were obtained, and these templates
were classified into two folds which were dissimilar. One
fold is an all-alpha protein such as pdb code 2FS1 (Fig. 7B),
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Fig. 4. Ca-Atom Fluctuations Calculated with Normal Mode Analysis (NMA)26) for Target T0447

The gray, broken and black lines denote Ca-atom fluctuations of the native structure (pdb code 3DO6), the model selected by the 3D-Jury method and the model selected by the
3DJ�SEC�CCL method, respectively. In three regions of target sequence, 206—230, 239—267 and 449—469, comparison of Ca-atom fluctuations is shown. In these regions,
the Ca-atom fluctuations of the 3DJ�SEC�CCL based model were nearer to that of the native structure than the 3D-Jury based model, although the Ca-atom fluctuations of both
the 3D-Jury based model and the 3DJ�SEC�CCL based model were similar to that of the native structure as a whole.

Fig. 5. Comparisons between the Native Structure, the Beset GDT_TS Model and Model Selected by the 3DJ�SEC�CCL Method for Target T0412

White, gray and black show native structure, the best GDT_TS model and model selected by the 3DJ�SEC�CCL method (3DJ�SEC�CCL based model), respectively. The
GDT_TS, correctly predicted c1 and correctly predicted c2 values for the best GDT_TS model were 79.7, 54 and 33, respectively. The GDT_TS, correctly predicted c1 and cor-
rectly predicted c2 values for the 3DJ�SEC�CCL based model were 78.2, 67 and 39, respectively. The target T0412 is a good example, in which the side-chain conformations in
the 3DJ�SEC�CCL method are near to the native structure in the comparison with the best GDT_TS model.



whereas the other fold is an alpha–beta protein such as pdb
code 2IGD (Fig. 7C). The experimental structure of this tar-
get was similar to pdb code 2FS1 like fold (Fig. 7A). How-
ever, most of the CASP8 server models were constructed
based on the pdb code 2IGD like proteins. The models which
have a pdb code 2FS1 like fold (correct fold) were a minority
in the CASP8 server models. In this case, the consensus
methods such as the 3D-Jury or our SEC-related method se-
lected a model which was the incorrect fold, because the ma-
jority of the server models were incorrect fold. Thus, the
consensus methods such as the 3DJ method and the SEC-re-
lated methods will fail to select the correct models if the ma-
jority of the servers make incorrect predictions, even if there
are some correct models present in all the server models.

Application of the 3DJ��SEC��CCL Method for
Human Cabin1 Protein Human Cabin1 (also known as
Cain) is a ubiquitously expressed 2220 residue protein that
regulates protein phosphatase activity of calcineurin and the
transcriptional activity of myocyte enhancer factor 2
(Mef2).4—6) Jang et al. have reported that Cabin1 regulates
expression of a subset of p53 target genes in both human and
mouse cells in the absence of genotoxic stress.4—6) Further-
more, they had reported that Cabin1 physically interacts with
p53 and negatively regulates p53 on specific p53 target pro-
moters by regulating chromatin structure.4) We implemented
the 3D structure prediction of human Cabin1 using the

3DJ�SEC�CCL method. We found modeling or alignment
servers on the internet as shown in Table 6. After we deter-
mined the sequence region to create a model by our FAMSD
method,32) we submitted 450 residues of the N-terminal se-
quence of Cabin1 to servers in Table 6. Alignments obtained
from the alignment servers were used to construct the 3D
models with the FAMS program. For models obtained from
the modeling servers, the reconstruction procedure with the
FAMS program was performed to decrease collisions be-
tween side-chain atoms. Consequently, forty candidate mod-
els were obtained. The average value and standard deviation
of the sequence identity between the target and template pro-
teins were 12.4 and 4.3%, respectively. The modeling for the
12.4% value of the sequence identity is generally thought to
be very difficult. The 3DJ�SEC�CCL method was used to
select the best model among the forty candidate models. Ten
models that were ranked first in each of the ten servers were
then used as the model set presented in Fig. 1C. As a result,
the model based on the SP3 method was selected from the
forty candidate models. Figures 8A and B show the 3D mod-
els for human Cabin1, which were predicted using the mod-
eling or alignment servers, and Figs. 8C and D show the
model obtained using the 3DJ�SEC�CCL method. The 3D
coordinates of this model are obtained at http://mammalia.
gsc.riken.jp/human_famsd/SEC/human_cabin1.pdf. This
model may provide insight into the structure-function rela-
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Fig. 6. Comparisons between the Native Structure, the Model Selected by the 3DJ�SEC Method and the Model Selected by the 3DJ�SEC�CCL Method
for Target T0511

White, gray and black represent the native structure, the model selected by the 3DJ�SEC method (3DJ�SEC based model) and the model selected by the 3DJ�SEC�CCL
method (3DJ�SEC�CCL based model), respectively. The GDT_TS, correctly predicted c1 and correctly predicted c2 values for the 3DJ�SEC based model were 81.5, 95 and 55,
respectively. The GDT_TS, correctly predicted c1 and correctly predicted c2 values for the 3DJ�SEC�CCL based model were 83.7, 107 and 63, respectively. The target T0511 is
a good example, in which the side-chain conformations in the 3DJ�SEC�CCL method match closely the native structure in comparison with the model selected using the
3DJ�SEC method.

Table 6. Modeling or Alignment Servers Located on the Internet That Were Used for the 3D Structure Prediction of Human Cabin1

No. Server name URL in the internet Number of candidate models

1 3D-PSSM http://www.sbg.bio.ic.ac.uk/�3dpssm/index2.html 2
2 FFAS03 http://ffas.ljcrf.edu/ffas-cgi/cgi/ffas.pl 5
3 FUGUE http://tardis.nibio.go.jp/fugue/prfsearch.html 2
4 genThreader http://bioinf.cs.ucl.ac.uk/psipred/psiform.html 5
5 I-TASSER http://zhang.bioinformatics.ku.edu/I-TASSER/ 5
6 PHYRE http://www.sbg.bio.ic.ac.uk/�phyre/ 1
7 SAM-T02 http://compbio.soe.ucsc.edu/HMM-apps/T02-query.html 5
8 SP3 http://sparks.informatics.iupui.edu/hzhou/anonymous-fold-sp3.html 5
9 SPARKS2 http://sparks.informatics.iupui.edu/hzhou/sparks2.html 5

10 FAMSD Our modeling method32) 5

Forty candidate models corresponding to the model M in Fig. 1C were obtained from the 10 servers. The numbers of 2, 5, 2, 5, 5, 1, 5, 5, 5 and 5 are the number of the candi-
date models obtained from No. 1 to No. 10 servers, respectively. The total number of candidate models from the ten servers was 40. The set of 10 models corresponding to the
model set, M1 to MN, in Fig. 1C were determined from 10 models that represented each of 10 internet servers.



tionship of the protein and therefore may be useful in the
pharmaceutical, medicinal and biological fields.

Conclusion
We have developed new consensus methods for the pur-

pose of selecting high quality models which account for both
the Ca backbone and side-chain atom positions. The new
consensus methods are based upon the consideration of the
side-chain environment, which is determined in the free en-
ergy state of the amino acid residue of the protein. As shown
in Fig. 1, this SEC method employs a very simple algorithm,
and it is scientifically appropriate consensus method in the
set of all the server models for the CASP7 or CASP8 targets.
The SEC method reinforces the traditional consensus method

for the main chain, 3D-Jury, in terms of selecting models
with side-chains of high quality. Thus, models were selected
with improved quality both in the Ca backbone and side-
chain positions when the SEC method was used in combina-
tion with the 3D-Jury method (3DJ�SEC). Accordingly, the
3DJ�SEC method including both consensus of the main
chain and the side-chains in addition to the secondary struc-
ture agreement is useful. Moreover, in the calculations of the
combined score, Com_score(3DJ�SEC) in Eq. 5, contribu-
tion of the Z-score term of the 3D-Jury score was greater
than that of the SEC score as shown by the weighing factor
w� in Eq. 5. As such, the consensus of the backbone is more
important than the consensus of the side-chains during selec-
tion process of a 3D protein model.

The 3D–1D profile score CIRCLE has been shown to se-
lect the model that is closest to the native structure. We have
combined the CIRCLE score (CCL) with the 3DJ�SEC con-
sensus method. The 3DJ�SEC�CCL method includes the
3D–1D profile score based upon the residue unit of the
amino acid, the score of the secondary structure agreement
and the consensus methods for both the main chain and the
side-chains of a protein model. The consensus method of the
side-chain environment is based on the consensus of the free
energy state of the residue of the protein. The 3DJ�SEC�
CCL method, in which we use the CIRCLE score after reduc-
ing the number of candidates using the consensus method,
may be very effective in the biological, pharmaceutical and
medicinal fields. The example of a modeling application was
presented in the Results and Discussion using the human
Cabin1 protein, which has functional connections with p53
activity and cancer.

Recently, top-ranked servers in the CASP8 experiment
such as the Zhang-server33) and ROBETTA34) became avail-
able to the science community via websites. If more servers
that participated in CASP8 become publicly available, the
SEC-related methods may be very useful in providing higher
quality models in terms of both main chain and side-chain
atom position when compared to other individual servers.

Acknowledgment This work was partially supported by the Ministry of
Education, Culture, Sports, Science and Technology, Grant-in-Aid for Scien-
tific Research (B), 08021917, 2007.

References and Notes
1) Ginalski K., Elofsson A., Fischer D., Rychlewski L., Bioinformatics,

19, 1015—1018 (2003).
2) Wallner B., Elofsson A., Proteins, 69 (Suppl. 8), 184—193 (2007).
3) Wallner B., Elofsson A., Protein Sci., 15, 900—913 (2006).
4) Jang H., Choi S. Y., Cho E. J., Youn H. D., Nat. Struct. Mol. Biol., 16,

910—915 (2009).
5) Tolstonog G. V., Deppert W., Nat. Struct. Mol. Biol., 16, 900—901

(2009).
6) Vousden K. H., Cell, 103, 691—694 (2000).
7) Moult J., Hubbard T., Bryant S. H., Fidelis K., Pedersen J. T., Proteins,

29, (Suppl. 1), 2—6 (1997).
8) Moult J., Hubbard T., Fidelis K., Pedersen J. T., Proteins, 37, (Suppl.

3), 2—6 (1999).
9) Moult J., Fidelis K., Zemla A., Hubbard T., Proteins, 45, (Suppl. 5),

2—7 (2001).
10) Moult J., Fidelis K., Zemla A., Hubbard T., Proteins, 53 (Suppl. 6),

334—339 (2003).
11) Moult J., Fidelis K., Rost B., Hubbard T., Tramontano A., Proteins, 61

(Suppl. 7), 3—7 (2005).
12) Moult J., Fidelis K., Kryshtafovych A., Rost B., Hubbard T., Tramon-

tano A., Proteins, 69 (Suppl. 8), 3—9 (2007).
13) CASP8 homepage �>http://www.predictioncenter.org/casp8/index.cgi�,

February 2010 189

Fig. 8. Predicted 3D Models for Human Cabin1 Using the 3DJ�SEC�
CCL Method

(A) and (B) show the 3D models for human Cabin1 which were predicted using the
modeling or alignment servers, and (C) and (D) show the models derived from the
3DJ�SEC�CCL method. Models (A) and (C) are presented in a different orientation
to models (B) and (D). The 3D coordinates of this model are available at http://mam-
malia.gsc.riken.jp/human_famsd/SEC/human_cabin1.pdf. This model should be useful
in the pharmaceutical, medicinal and biological fields interested in understanding the
relationship between the structure and function of human Cabin1. In (A) and (B), mod-
els obtained from various servers are colored to be unit colors for each server model,
and the SP3 based model which was selected by the 3DJ�SEC�CCL method is col-
ored red. In (C) and (D), N- and C-terminal regions of the protein are colored red and
blue, respectively.

Fig. 7. A Comparison between the Native Structure of T0498, 2FS1
Structure and 2IGD Structure

(A) The native structure of T0498. N- and C-terminal regions of the protein are col-
ored red and blue, respectively. (B) The NMR structure of pdb code 2FS1. This struc-
ture is similar to the experimental structure of T0498. The sequence identity with the
target protein (T0498) was 54%. (C) The X-ray structure of pdb code 2IGD. This struc-
ture is not similar to the experimental structure of T0498. The sequence identity with
the target protein (T0498) was 57%.



2008.
14) Zemla A., Nucleic Acids Res., 31, 3370—3374 (2003).
15) Terashi G., Takeda-Shitaka M., Kanou K., Iwadate M., Takaya D.,

Hosoi A., Ohta K., Umeyama H., Proteins, 69 (Suppl. 8), 98—107
(2007).

16) Jones D. T., J. Mol. Biol., 292, 195—202 (1999).
17) Vapnik V., “The Nature of Statistical Learning Theory,” Springer-Ver-

lag, New York, 1995.
18) Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z.,

Miller W., Lipman D. J., Nucleic Acids Res., 25, 3389—3402 (1997).
19) Zhou H., Zhou Y., Proteins, 55, 1005—1013 (2004).
20) Cozzetto D., Kryshtafovych A., Ceriani M., Tramontano A., Proteins,

69 (Suppl 8), 175—183 (2007).
21) CASP8 abstracts �http://www.predictioncenter.org/casp8/doc/CASP8_

book.pdf�, 2008.
22) Ogata K., Umeyama H., J. Mol. Graph. Model., 18, 258—272, 305—

306 (2000).
23) Fischer D., Elofsson A., Rychlewski L., Pazos F., Valencia A., Rost B.,

Ortiz A. R., Dunbrack R. L. Jr., Proteins, 45 (Suppl. 5), 171—183
(2001).

24) Fischer D., Rychlewski L., Dunbrack R. L. Jr., Ortiz A. R., Elofsson
A., Proteins, 53 (Suppl. 6), 503—516 (2003).

25) Siew N., Elofsson A., Rychlewski L., Fischer D., Bioinformatics, 16,

776—785 (2000).
26) Kamiya K., Sugawara Y., Umeyama H., J. Comput. Chem., 24, 826—

841 (2003).
27) Nojima H., Takeda-Shitaka M., Kanou K., Kamiya K., Umeyama H.,

Chem. Pharm. Bull., 56, 635—641(2008).
28) Nojima H., Takeda-Shitaka M., Kurihara Y., Kamiya K., Umeyama H.,

Chem. Pharm. Bull., 51, 923—928 (2003).
29) Kurihara Y., Watanabe T., Nojima H., Takeda-Shitaka M., Sumikawa

H., Kamiya K., Umeyama H., Chem. Pharm. Bull., 51, 754—758
(2003).

30) Nojima H., Takeda-Shitaka M., Kurihara Y., Adachi M., Yoneda S.,
Kamiya K., Umeyama H., Chem. Pharm. Bull., 50, 1209—1214
(2002).

31) Okimoto N., Futatsugi N., Fuji H., Suenaga A., Morimoto G., Yanai
R., Ohno Y., Narumi T., Taiji M., PLoS Comput Biol., 5, Epub (2009).

32) Kanou K., Iwadate M., Hirata T., Terashi G., Umeyama H., Takeda-
Shitaka M., Chem. Pharm. Bull., 57, 1335—1342 (2009).

33) http://zhang.bioinformatics.ku.edu/I-TASSER/.
34) http://robetta.bakerlab.org/.
35) Umeyama H, Hirono S, Nakagawa S., Proc. Natl. Acad. Sci. U.S.A.,

81, 6266—6270 (1984).
36) http://pymol.sourceforge.net/.

190 Vol. 58, No. 2


