## Ovafolinins A-E, Five New Lignans from Lyonia ovalifolia

Kenji Kashima,<sup>a</sup> Kaichi Sano,<sup>a</sup> Young Sook Yun,<sup>\*,a</sup> Hiroji Ina,<sup>b</sup> Akira Kunugi,<sup>a</sup> and Hideshi Inoue<sup>a</sup>

<sup>a</sup> School of Life Sciences, Tokyo University of Pharmacy and Life Sciences; and <sup>b</sup> School of Pharmacy, Tokyo University of

Pharmacy and Life Sciences; 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan.

Received September 2, 2009; accepted November 10, 2009; published online November 10, 2009

Five new lignans, ovafolinins A—E (1—5), were isolated from the wood of *Lyonia ovalifolia* (Ericaceae). The structures of 1—5 were elucidated based on 2D NMR spectroscopy, X-ray crystallography, and other chemical methods.

Key words Lyonia ovalifolia; Ericaceae; lignan; benzoxepin structure

Lignans are a widely distributed class of dimeric phenylpropanoids, and are one of the major classes of phytoestrogens<sup>1)</sup> that are known to alleviate menopausal symptoms and lower the risk of cardiovascular disease.<sup>2)</sup> Furthermore, they also possess anticancer<sup>3)</sup> and antiviral properties,<sup>4)</sup> inhibit certain enzymes<sup>5)</sup> and exhibit antioxidant activity.<sup>6)</sup> In the present study, we targeted lignans from Lvonia ovalifolia var. elliptica, a deciduous tree distributed in Taiwan, China and Japan. Yasue et al. identified lyoniols-A, -B, and -C to be toxic components isolated from the leaves,<sup>7)</sup> and lyoniside, which is a major component and lyoniresinol in the bark of this plant.<sup>8,9)</sup> In addition, Sakakibara et al. identified triterpene glycosides in this plant.<sup>10,11</sup> Herein, we report on five novel lignans, ovafolinins A (1)-E (5), isolated from the wood of L. ovalifolia. Furthermore, we have identified ovafolinins A (1)-C (3) to bear a unique benzoxepin structure.

## **Results and Discussion**

The filtrate of the aqueous EtOH extract of *L. ovalifolia* afforded new five lignans named ovafolinin A (1), B (2), C (3), D (4), and E (5) along with lyoniside (6) and lyoniresinol (7) as known compounds. The ovafolinins were isolated by successive column chromatography on highly porous synthetic resin (Diaion HP-20), subsequent silica gel chromatography, and finally preparative reversed-phase HPLC.

Ovafolinin A (1) was obtained as a colorless prisms. The molecular formula was determined to be  $C_{22}H_{24}O_8$  by HRelectrospray ionization (ESI)-MS, which showed a  $[M+H]^+$  peak at m/z 417.1523 (Calcd for  $C_{22}H_{25}O_8$ , 417.1549). The IR spectrum showed absorptions for hydroxyl groups (3392 cm<sup>-1</sup>) and aromatic rings (1615 cm<sup>-1</sup>). The UV absorption maxima occurred at 243 and 283 nm, implying the presence of conjugated double bond systems in the molecule. The <sup>1</sup>H-NMR spectrum showed signals for four methoxyl

groups ( $\delta$  3.23, 3.77, 3.86, 4.06) and two aromatic protons ( $\delta$ 6.26, 6.52) (Table 1). The <sup>13</sup>C-NMR spectrum showed signals for four methoxyl carbons ( $\delta$  55.8, 56.0, 59.1, 60.6), two methylene carbons ( $\delta$  69.3, 72.5), six methine ( $\delta$  37.4, 39.7, 43.0, 79.0, 100.7, 104.8), and ten guaternary carbons  $(\delta 122.9, 124.5, 128.7, 135.0, 138.6, 143.9, 144.9, 145.7,$ 146.1, 152.0) (Table 2). The  ${}^{1}H{}^{-1}H$  correlation spectroscopy (COSY), heteronuclear multiple quantum correlation (HMQC), and heteronuclear multiple bond correlation (HMBC) spectra suggested 1 was an aryltetralin-type lignan. The  ${}^{1}\text{H}-{}^{1}\text{H}$  correlations were observed between H-7 and H-8, H-8 and H-9, H-8 and H-8', H-7' and H-8', and H-8' and H-9'. The strong HMBC correlations of H-1 with C-2, C-3, C-5, C-6 and C-7 and of H-7' with C-4 suggests that 1 contains the A ring of an aryltetralin-type lignan. The existence of a B ring was confirmed by the HMBC correlations of H-7 with C-1, C-5, C-6, C-8, C-9 and C-9' and of H-7' with C-1', C-8', and C-9'. The C ring was suggested by the HMBC correlations of H-3' with C-1', C-2', and C-5' (Fig. 2). One of methoxyl groups is linked to C-4' based on the HMBC correlations of the methoxyl protons ( $\delta$  3.23) with C-4' ( $\delta$ 144.9). Another methoxyl group is connected to C-2 based on the HMBC correlation of H-1 and the methoxyl protons ( $\delta$  3.86) with C-2 ( $\delta$  146.1). The HMBC correlations of the third methoxyl protons ( $\delta$  3.77) indicated connection to C-6' ( $\delta$  145.7). The position of the fourth methoxyl group is suggested to be at C-4 by HMBC correlations of methoxyl protons ( $\delta$  4.06) and H-7' with C-4 ( $\delta$  143.9). These methoxyl group assignments were confirmed by NOE correlations of H-1 with the methyl protons of  $OCH_3$  at the positions 2, 4', and 4, respectively. HMBC correlations of H-9 with C-2' and of H-9' with C-7, and the <sup>13</sup>C-NMR chemical shifts indicate the existence of a methyleneoxy bridge between C-7 and C-9' and an ether bonding between C-2' and C-9. Based on the weak NOE correlations detected between H-1 and H-7, H-7





\* To whom correspondence should be addressed. e-mail: yun@toyaku.ac.jp

Table 1. <sup>1</sup>H-NMR (500 MHz) Spectral Data for 1—5 at 300 K<sup>a</sup>)

|        | $1^{b)}$                 | $2^{b)}$                                          | <b>3</b> <sup>c)</sup>   | <b>4</b> <sup>b)</sup>  | <b>5</b> <sup>c)</sup>   |
|--------|--------------------------|---------------------------------------------------|--------------------------|-------------------------|--------------------------|
| 1      | 6.52 (1H, s)             | 6.38 (1H, s)                                      | 7.34 (1H, s)             | 6.63 (1H, s)            | 6.99 (1H, s)             |
| 7      | 4.75 (1H, br d, 4.4)     | 2.86 (1H, br d, 17.4)<br>3.03 (1H, dd, 7.1, 17.4) | 4.82 (1H, d, 5.4)        | 7.51 (1H, s)            |                          |
| 8      | 2.32 (1H, *)             | 2.24 (1H, *)                                      | 2.76 (1H, *)             | 3.10 (1H, *)            |                          |
| 9      | 3.96 (1H, dd, 2.8, 13.3) | 3.82 (1H, *)                                      | 3.90 (1H, *)             | 3.48 (1H, br d, 9.3)    | 9.49 (1H, s)             |
|        | 4.51 (1H, *br d, 13.3)   | 4.41 (1H, dd, 2.7, 12.1)                          | 4.54 (1H, dd, 3.3, 11.9) | 4.24 (1H, dd, 6.4, 9.3) |                          |
| 2'     |                          |                                                   |                          | 7.10 (1H, d, 1.4)       | 6.31 (1H, s)             |
| 3'     | 6.26 (1H, s)             | 6.25 (1H, s)                                      | 6.33 (1H, s)             |                         |                          |
| 6'     |                          |                                                   |                          | 6.43 (1H, d, 1.4)       | 6.31 (1H, s)             |
| 7′     | 4.49 (1H, d, 2.3)        | 4.59 (1H, brs)                                    | 4.98 (1H, br s)          |                         | 4.80 (1H, s)             |
| 8'     | 2.60 (1H, *)             | 2.22 (1H, *)                                      | 2.37 (1H, *)             | 2.70 (1H, br t, 6.2)    | 3.21 (1H, dd, 4.5, 10.2) |
| 9'     | 3.73 (1H, br d, 8.5)     | 3.62 (1H, dd, 7.1, 10.6)                          | 3.51 (2H, *)             | 3.86 (1H, br d, 9.8)    | 3.12 (1H, t, 10.2)       |
|        | 4.11 (1H, dd, 2.7, 8.5)  | 3.72 (1H, *)                                      |                          | 3.99 (1H, dd, 6.2, 9.8) | 3.48 (1H, dd, 4.5, 10.2) |
| OMe-2  | 3.86 (3H, s)             | 3.81 (3H, s)                                      | 3.81 (3H, s)             | 3.93 (3H, s)            | 3.72 (3H, s)             |
| OMe-4  | 4.06 (3H, s)             | 4.06 (3H, s)                                      | 3.93 (3H, s)             | 3.95 (3H, s)            | 3.96 (3H, s)             |
| OMe-3' |                          |                                                   |                          | 3.33 (3H, s)            | 3.33 (3H, s)             |
| OMe-4' | 3.23 (3H, s)             | 3.42 (3H, s)                                      | 3.47 (3H, s)             |                         |                          |
| OMe-5' |                          |                                                   |                          | 3.76 (3H, s)            | 3.72 (3H, s)             |
| OMe-6' | 3.77 (3H, s)             | 3.74 (3H, s)                                      | 3.75 (3H, s)             | . ,                     |                          |

a) J-Values are given in Hz in parentheses. b) In CDCl<sub>3</sub>. c) In CD<sub>3</sub>OD. \* Multiplicity was not determined due to overlapping and/or broadening of the signals.

Table 2. <sup>13</sup>C-NMR (125 MHz) Spectral Data for 1—5 at 300 K

|        | <b>1</b> <sup><i>a</i>)</sup> | <b>2</b> <sup><i>a</i>)</sup> | <b>3</b> <sup>b)</sup> | <b>4</b> <sup><i>a</i>)</sup> | <b>5</b> <sup>b)</sup> |
|--------|-------------------------------|-------------------------------|------------------------|-------------------------------|------------------------|
| 1      | 104.8                         | 105.4                         | 104.2                  | 106.6                         | 109.7                  |
| 2      | 146.1                         | 146.1                         | 149.0                  | 145.4                         | 149.5                  |
| 3      | 138.6                         | 136.3                         | 147.0                  | 139.9                         | 145.3                  |
| 4      | 143.9                         | 144.6                         | 146.9                  | 145.4                         | 147.9                  |
| 5      | 122.9                         | 122.4                         | 125.7                  | 121.1                         | 127.0                  |
| 6      | 128.7                         | 126.1                         | 132.9                  | 126.7                         | 123.9                  |
| 7      | 79.0                          | 29.3                          | 200.4                  | 81.2                          | 149.0                  |
| 8      | 43.0                          | 33.9                          | 51.6                   | 48.9                          | 136.4                  |
| 9      | 69.3                          | 80.2                          | 79.1                   | 64.1                          | 194.3                  |
| 1'     | 124.5                         | 123.8                         | 124.2                  | 134.3                         | 136.3                  |
| 2'     | 152.0                         | 152.8                         | 153.6                  | 101.7                         | 106.1                  |
| 3'     | 100.7                         | 145.3                         | 146.9                  | 146.7                         | 149.2                  |
| 4'     | 144.9                         | 136.3                         | 137.3                  | 133.3                         | 135.0                  |
| 5'     | 135.0                         | 145.4                         | 148.5                  | 146.5                         | 149.2                  |
| 6'     | 145.7                         | 101.1                         | 102.4                  | 100.2                         | 106.1                  |
| 7'     | 37.4                          | 29.9                          | 31.5                   | 86.0                          | 38.5                   |
| 8'     | 39.7                          | 43.4                          | 46.8                   | 58.4                          | 43.6                   |
| 9'     | 72.5                          | 64.8                          | 65.0                   | 64.0                          | 62.7                   |
| OMe-2  | 56.0                          | 55.7                          | 56.5                   | 56.3                          | 56.6                   |
| OMe-4  | 60.6                          | 61.5                          | 61.7                   | 61.0                          | 56.8                   |
| OMe-3' |                               |                               |                        | 61.0                          | 60.7                   |
| OMe-4' | 59.1                          | 59.6                          | 60.2                   |                               |                        |
| OMe-5' |                               |                               |                        | 56.3                          | 56.6                   |
| OMe-6' | 55.8                          | 55.9                          | 56.5                   |                               |                        |
|        |                               |                               |                        |                               |                        |

a) In CDCl<sub>3</sub>. b) In CD<sub>3</sub>OD.



Fig. 2. Key HMBC and NOE Correlations for Determination of the Ovafolinin A (1)

and H-8, H-8 and H-8', and H-7' and H-8' (Fig. 2), the relative stereochemistry was assigned to be  $7R^*$ ,  $8S^*$ ,  $7'R^*$ , and  $8'R^*$ . Accordingly, the structure of ovafolinin A (1) was de-



Fig. 3. X-Ray Crystallographic Structure of Ovafolinin A (1)

termined as shown in Fig. 1. This assignment was confirmed by single-crystal X-ray diffraction analysis with a suitable single crystal, obtained by careful crystallization from methanol/water (Fig. 3).

Ovafolinin B (2) was obtained as a colorless prism. Its molecular formula was determined to be  $C_{22}H_{26}O_8$  by HR-ESI-MS [M+H]<sup>+</sup> m/z 419.1673 (Calcd for  $C_{22}H_{27}O_8$ , 419.1706). The IR and UV spectra of 2 were similar to those of 1. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of 2 were also similar to those of 1, indicating the presence of four methoxyl groups ( $\delta_H$  3.42,  $\delta_C$  59.6;  $\delta_H$  3.74,  $\delta_C$  55.9;  $\delta_H$  3.81,  $\delta_C$  55.7;  $\delta_H$  4.06,  $\delta_C$ 61.5), two aromatic protons ( $\delta_H$  6.25,  $\delta_C$  101.1;  $\delta_H$  6.38,  $\delta_C$ 105.4), and one oxymethylene carbon ( $\delta_H$  3.82 and 4.41,  $\delta_C$ 80.2) (Tables 1, 2). The similarity in <sup>1</sup>H–<sup>1</sup>H COSY and HMBC spectra between 2 and 1 suggest that 2 has the same basic structure as 1. Although the HMBC correlations between H-7 and C-1, C-8 and C-9 and between H-7' and C-4, C-5, C-6, C-1', and C-2' showed that 2 is aryltetralin type lignan, similar to 1, a major difference between 2 and 1 was observed based on the <sup>1</sup>H- and <sup>13</sup>C-NMR chemical shifts at position 7. The proton chemical shifts were  $\delta$  4.75 for 1 and  $\delta$  2.86 and 3.03 for 2 and the carbon chemical shifts were  $\delta$  79.0 for 1 and  $\delta$  29.3 for 2. This suggests that the oxymethin of 1 is replaced by a methylene in 2. The NOE correlations between H-1 and H<sub>a</sub>-7, H<sub>a</sub>-7 and H-8, and H-7' and H-8' of 2 were similar to those of 1 (Fig. 4). Thus, the structure of 2 was determined as shown in Fig. 1.

Ovafolinin C (3) was obtained as a yellowish-white amorphous solid. Its molecular formula was determined to be  $C_{22}H_{24}O_0$  by HR-ESI-MS  $[M+H]^+ m/z$  433.1465 (Calcd for  $C_{22}H_{25}O_9$ , 433.1499). The IR spectrum of 3 indicated the presence of hydroxyl  $(3272 \text{ cm}^{-1})$  and ketone  $(1670 \text{ cm}^{-1})$ groups. The UV absorption maxima occurred at 243 and 290 nm, suggesting the presence of conjugated double bonds in the molecule. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of 3 were similar to those of 2, with the exception that there were only signals for position 7. The signals at  $\delta$  2.86 and 3.03 in 2 were not detected in of the spectra 3. Furthermore the chemical shift for C-7 of 3 was  $\delta$  200.4 (in CD<sub>3</sub>OD), whereas that of 2 was  $\delta$  29.3 (in CDCl<sub>2</sub>). The HMBC correlations observed of H-1, H-8' and H-8 with C-7, and the IR spectrum indicate the presence of a ketone group. Thus, ovafolinin C (3) was assigned as shown in Fig. 1.

Ovafolinin D (4) was obtained as a yellowish-white amorphous solid. Its molecular formula was determined to be  $C_{22}H_{24}O_8$  by HR-ESI-MS  $[M+H]^+ m/z$  417.1582 (Calcd for  $C_{22}H_{25}O_8$ , 417.1549). The IR spectrum showed the presence



Fig. 4. Selected NOE Correlations of Ovafolinin B (2)

of hydroxyl groups (3270 cm<sup>-1</sup>). Conjugated systems were also suggested by the UV absorption maximum at 276 nm (log  $\varepsilon$  3.07). The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of 4 were very similar to those of 1, indicating the aryltetralin-lignan structure. The <sup>1</sup>H- and <sup>13</sup>C-NMR chemical shifts at position 7 ( $\delta$ 4.82, 81.2) at position 9' ( $\delta$  3.86/3.99, 64.1) and the HMBC correlations of H-7 with C-9' and of H-9' with C-7, indicated an ether linkage was assigned between C-7 and C-9', similar to ovafolinin A (1). Furthermore, the HMBC correlations of H-9, H-2', H-6' and H-8 with the guaternary carbon C-7' ( $\delta$  86.0) and the chemical shift of C-9 at  $\delta$  64.1 and of C-7' at  $\delta$  86.0 demonstrated the presence of an ether linkage between C-9 and C-7'. The absolute configuration of ovafolinin D (4) was established by comparison of ovafolinin D dimethyl ether (9) from ovafolinin D (4) and that prepared from lyoniside (6) as shown in Chart 1. Because the two derivatives were indistinguishable in the NMR and MS data, the absolute structure of 4 was determined as shown in Fig. 1.

Ovafolinin E (5) was obtained as a yellowish-white amorphous solid. Its molecular formula was determined to be  $C_{22}H_{24}O_8$  by HR-ESI-MS  $[M+H]^+$  m/z 417.1562 (Calcd for C<sub>22</sub>H<sub>25</sub>O<sub>8</sub> 417.1549). The IR spectrum showed absorptions for hydroxyl  $(3306 \text{ cm}^{-1})$  and carbonyl groups  $(1660 \text{ cm}^{-1})$ . The UV absorption maxima occurred at 253 (log  $\varepsilon$  4.10) and 354 nm (log  $\varepsilon$  4.01), implying the presence of conjugated double bond systems in the molecule. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra showed the signals attributed to an aldehyde group ( $\delta$ 9.49, 194.3) and olefinic carbons ( $\delta$  149.0, 136.4). The aldehyde group was located at position 9 based on correlations between H-7 and C-9, H-9 and C-8 ( $\delta$  136.3) in HMBC spectrum data. Analysis of the <sup>1</sup>H-<sup>1</sup>H COSY, HMQC, and HMBC spectra, ovafolinin E (5), unlike the others (1-4), has no ether linkage between any of carbons in the aryltetralin-lignan skeleton (Fig. 1).

Ovafolinins A (1)—E (5) were found to be inactive in the cytotoxic activity test on HL 60, HCT116, A549, and MCF7 cell lines.

Ovafolinins A (1)-C (3) were determined to be unique



Reagent; (a) CH<sub>3</sub>I/K<sub>2</sub>CO<sub>3</sub>, aceton, 5%H<sub>2</sub>SO<sub>4</sub>, (b) CuSO<sub>4</sub>/K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, CH<sub>3</sub>CN, (c) CH<sub>3</sub>I/K<sub>2</sub>CO<sub>4</sub>.

Chart 1. Derivation of Ovafolinin D Dimethyl Ether (8) from Lyoniside (6) and Ovafolinin D (4)

aryltetralin-lignans containing 7-membered ring formed by the C9–C-2' ether linkage. 1-3 bear a benzoxepin structures including the C ring of the aryltetralin-lingnan. In addition, ovafolinin D (4) is the first example of a naturally occurring aryltetralin-lignan bearing methyleneoxy-bridge.

## Experimental

**General Procedures** Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. IR spectra were recorded on a FT-IR 1710 spectrophotometer. UV spectra were obtained using a Hitachi U-2001 spectrophotometer. NMR spectra were measured on Bruker DRX-500 and DPX-400 spectrometers at 300 K. The <sup>1</sup>H-NMR chemical shifts in CDCl<sub>3</sub> and CD<sub>3</sub>OD calibrated to the residual CHCl<sub>3</sub> and CH<sub>3</sub>OH resonances at 7.26 and 3.31 ppm, respectively, and the <sup>13</sup>C-NMR chemical shifts were calibrated to the solvent peaks at 77.0 and 49.0 ppm, respectively. Mass spectra were obtained using a Micromass LCT spectrometer. Preparative HPLC was carried out on a Shimadzu LC-6AT system equipped with a SPD-10AVP detector and a reversed-phased column, Mightysil RP-18 prep (5 µg, 20×250 mm), using CH<sub>3</sub>OH : H<sub>2</sub>O or a CH<sub>3</sub>CN : H<sub>2</sub>O as the mobile phase, at a flow rate of 5 ml/min.

**Plant Collection** Wood from *L. ovalifolia* was collected in Saitama Prefecture, in October 2000, and the plant origin was identified by Dr. H. Ina (Tokyo University of Pharmacy and Life Sciences, Japan).

**Extraction and Isolation** Fresh wood chips (15 kg) from *L. ovalifolia* were extracted using MeOH. After removal of MeOH *in vacuo*, the residue was dissolved in water. The aqueous layer was separated from the precipitates, and placed on a HP-20 column (DIAION). Elution with H<sub>2</sub>O/MeOH mixtures (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100) and acetone afforded seven fractions (frs. Lo 1—7). Fraction Lo 5 (26.1g) was subjected to silica gel (Merck Kieselgel 60) column chromatography eluting sequentially with CHCl<sub>3</sub>/MeOH mixture (50:1, 20:1, 10:1, 7:3, and 1:1). The CHCl<sub>3</sub>/CH<sub>3</sub>OH (50:1) fraction (681.7 mg) was evaporated and applied to ODS HPLC eluting with CH<sub>3</sub>CN:H<sub>2</sub>O (70:39) to afford **1** (37.8 mg) and **5** (3.6 mg), and with CH<sub>3</sub>CN:H<sub>2</sub>O (70:39) to afford **2** (5.2 mg), **3** (3.2 mg) and **4** (3.7 mg).

Ovafolinin A (1): Colorless prisms,  $[\alpha]_D^{25} - 37.3^{\circ}$  (*c*=0.36, MeOH). IR (neat) cm<sup>-1</sup>: 3392, 2940, 1615. UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 243 (3.86), 283 (3.58). <sup>1</sup>H- and <sup>13</sup>C-NMR spectrometric data are given in Tables 1 and 2, respectively. HR-ESI-MS *m/z*: 417.1523 [M+H]<sup>+</sup> (Calcd for C<sub>22</sub>H<sub>25</sub>O<sub>8</sub>, 417.1549).

Ovafolinin B (2): Colorless prisms,  $[\alpha]_D^{25} + 52.0^{\circ}$  (*c*=0.26, MeOH). IR (neat) cm<sup>-1</sup>: 3370, 2936, 1613. UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 283 (3.99) nm. <sup>1</sup>H- and <sup>13</sup>C-NMR spectrometric data are given in Tables 1 and 2, respectively. HR-ESI-MS *m*/*z*: 419.1673 [M+H]<sup>+</sup> (Calcd for C<sub>22</sub>H<sub>27</sub>O<sub>8</sub> 419.1706).

Ovafolinin C (3): Amorphous solid,  $[\alpha]_D^{25} + 105.7^{\circ}$  (*c*=0.11, MeOH). IR (neat) cm<sup>-1</sup>: 3272, 2938, 1567. UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 290 (3.85). <sup>1</sup>H- and <sup>13</sup>C-NMR spectrometric data are given in Tables 1 and 2, respectively. HR-ESI-MS *m/z*: 433.1465 [M+H]<sup>+</sup> (Calcd for C<sub>22</sub>H<sub>25</sub>O<sub>9</sub> 433.1499).

Ovafolinin D (4): Amorphous solid,  $[\alpha]_D^{25} - 33^\circ$  (c=0.09, MeOH). IR (neat) cm<sup>-1</sup>: 3389, 2930, 1614. UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 276 (3.07). <sup>1</sup>H- and <sup>13</sup>C-NMR spectrometric data are given in Tables 1 and 2, respectively. HR-ESI-MS m/z: 417.1582 ([M+H]<sup>+</sup> (Calcd for C<sub>22</sub>H<sub>25</sub>O<sub>8</sub> 417.1549).

Ovafolinin E (5): Amorphous solid.  $[\alpha]_{15}^{25}$  +105.7° (c=0.16, MeOH); IR (neat) cm<sup>-1</sup>: 3272, 2938, 1567. UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 290 (3.85). <sup>1</sup>H- and <sup>13</sup>C-NMR spectrometric data are given in Tables 1 and 2, respectively. HR-ESI-MS m/z: 417.1562 [M+H]<sup>+</sup> (Calcd for C<sub>22</sub>H<sub>25</sub>O<sub>8</sub> 417.1549).

**Conversion of Lyoniside (6) to Lyoniresinol Dimethyl Ether (8)** Lyoniside (6, 1 g, 1.8 mmol) and CH<sub>3</sub>I (1 ml) were stirred in acetone (40 ml) at room temperature for 66 h to afford lyoniside dimethyl ether (330 mg) by silica gel chromatography (CHCl<sub>3</sub>: MeOH=10:1). This product was dissolved in EtOH (10 ml) and treated with an aqueous solution 5% H<sub>2</sub>SO<sub>4</sub> (2 ml) at 110 °C under reflux for 7 h. After cooling, H<sub>2</sub>O was added to the mixture, and it was extracted with AcOEt. The AcOEt layer was dried over Mg<sub>2</sub>SO<sub>4</sub>, evaporated, and subjected to silica gel column chromatography (CHCl<sub>3</sub>: MeOH=20:1). The product was isolated and crystallized from benzene to yield lyoniresinol dimethyl ether (**8**, 208 mg). Lyoniresinol dimethyl ether: HR-ESI-MS [M+Na]<sup>+</sup> m/z: 471.2015 (Calcd for C<sub>24</sub>H<sub>32</sub>O<sub>8</sub>Na, 471.2019).

Oxidation of Lyoniresinol Dimethyl Ether (8)<sup>12,13)</sup> Lyoniresinol dimethyl ether (8, 40 mg, 0.089 mmol, 14.4 ml  $CH_3CN$ ),  $CuSO_4 \cdot 5H_2O$ (24 mg, 0.15 mmol, 1.6 ml H<sub>2</sub>O) and K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (51.6 mg, 0.19 mmol, 4.4 ml H<sub>2</sub>O) were refluxed for 0.5 h at 120 °C, diluted with H<sub>2</sub>O, and extracted with AcOEt. Ovafolinin D dimethyl ether (9, 2.9 mg) was isolated by HPLC (CHCl<sub>2</sub>: AcOEt=3:1). Ovalifolin D dimethyl ether (9); Amorphous solid,  $[\alpha]_{p}^{25}$  -60° (c=0.05, MeOH). <sup>1</sup>H-NMR (CDCl<sub>2</sub>)  $\delta$ : 7.07 (1H, d, J=1.7 Hz, H-2'), 6.61 (1H, s, H-6), 6.39 (1H, d, J=1.7 Hz, H-6'), 4.83 (1H, d, J=5.4 Hz, H-7), 4.25 (1H, dd, J=6.4, 9.5 Hz, H-9a), 4.04 (1H, dd, J=6.3, 9.8 Hz, H-9'a), 3.93 (1H, overlapped, H-9'b), 3.92 (3H, s, H-3'), 3.90 (3H, s, H-3), 3.86 (3H, s, H-4'), 3.76 (3H, s, H-4), 3.73 (3H, s, H-3'), 3.46 (1H, dd, J=8.5, 9.5 Hz, H-9b), 3.32 (3H, s, H-5'), 3.13 (1H, dd, J=6.4, 9.5 Hz, H-8), 2.73 (1H, dd, J=6.3, 6.1 Hz, H-8'). <sup>13</sup>C-NMR (CDCl<sub>3</sub>) δ: 154.0 (C-3), 153.2 (C-3'), 152.5 (C-5'), 152.4 (C-5), 143.4 (C-4), 139.7 (C-1'), 136.4 (C-4'), 131.0 (C-1), 121.1 (C-2), 106.7 (C-6), 101.2 (C-6'), 100.2 (C-2'), 85.9 (C-7'), 81.0 (C-7), 64.3 (C-9), 64.0 (C-9'), 60.8 (-OCH<sub>3</sub>), 60.6 (-OCH<sub>3</sub>×2), 57.9 (C-8'), 56.1 (-OCH<sub>3</sub>), 56.0 (-OCH<sub>3</sub>), 55.9 (-OCH<sub>3</sub>), 49.0 (C-8). HR-ESI-MS m/z: 445.1860 [M+H]<sup>+</sup> (Calcd for C<sub>24</sub>H<sub>29</sub>O<sub>8</sub>Na, 445.1862).

**Methylation of Ovafolinin D (4)** CH<sub>3</sub>I (1  $\mu$ I) and anhydrous K<sub>2</sub>CO<sub>3</sub> (8 mg) were added to a solution **4** (1.2 mg, 0.0029 mmol) in acetone (0.04 ml) while stirring. Then the mixture maintained with stirring for 30 h at room temperature. After evaporation and purification of the crude product by HPLC (CHCl<sub>3</sub>: AcOEt=3 : 1) afforded the methylated product (0.5 mg). <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 7.08 (1H, d, *J*=1.7 Hz, H-2'), 6.62 (1H, s, H-6), 6.39 (1H, d, *J*=1.7 Hz, H-6'), 4.82 (1H, d, *J*=5.3 Hz, H-7), 4.26 (1H, dd, *J*=6.3, 9.7 Hz, H-9a), 4.04 (1H, dd, *J*=6.3, 9.7 Hz, H-9'a), 3.93 (1H, overlapped, H-9'b), 3.93 (3H, s, H-3'), 3.46 (1H, overlapped, H-9b), 3.33 (3H, s, H-5'), 3.12 (1H, dd, *J*=6.3, 9.7 Hz, H-8), 2.73 (1H, dd, *J*=6.3, 6.1 Hz, H-8'). HR-ESI-MS *m/z*: 445.1882 [M+H]<sup>+</sup> (Calcd for C<sub>24</sub>H<sub>29</sub>O<sub>8</sub>Na, 445.1862).

X-Ray Crystallographic Study of Ovalifolin A (1)  $C_{22}H_{24}O_8$ , M=416.41, 0.49×0.45×0.38. Single-crystal X-ray analysis was carried out on a Mac Science DIP diffractometer with MoK $\alpha$  radiation ( $\lambda$ =0.71073). The data indicated the monoclinic space group, *Cc*, *a*=19.6130 (19) Å, *b*=7.0010 (7) Å, *c*=15.2280 (8) Å, *V*=1955.5 (3) Å<sup>3</sup>, *Z*=4, *D<sub>x</sub>*=1.414 Mg m<sup>-3</sup>, 2081 measured reflections, 2081 independent reflections, 1589 observed reflections [*I*>2 $\sigma$ (*I*)], *R*1=0.0387, *wR*2=0.0899 (observed data), GOF=0.930; *R*1=0.0476, *wR*2=0.0925 (all data). The structure was solved by direct methods using the maXus crystallographic software package, and refined by full-matrix least-squares on F2 using the program SHELXL-97. Crystallographic data for the structure of **I** have been deposited in the Cambridge Crystallographic Data Centre under deposition number CCDC 722340.

**Acknowledgements** The authors are grateful to Prof. H. Morita and Dr. T. Hosoya for cytotoxicity assay.

## References

- Tham D. M., Gardner C. D., Haskell W. L., J. Clin. Endocrinol. Metabol., 83, 2223—2235 (1998).
- Li P. C., Mark D. H. F., Poon M. K. T., Ip S. P., Ko K. M., *Phytomedicine*, 3, 217–221 (1996).
- 3) Imbert T. F., *Biochimie*, **80**, 207–222 (1998).
- 4) Charlton J. L., J. Nat. Prod., 61, 1447-1451 (1998).
- Nikaido T., Ohmoto T., Noguchi H., Kinoshita T., Saitoh H., Sankawa U., *Planta Med.*, 43, 18–23 (1981).
- Fauré M., Lissi E., Torres R., Videla L. A., *Phytochemistry*, 29, 3773–3775 (1990).
- 7) Yasue M., Kato T., Kishida T., Ota H., *Chem. Pharm. Bull.*, **2**, 171–171 (1961).
- 8) Yasue M., Kato T., Yakugaku Zasshi, 81, 526-528 (1960).
- 9) Yasue M., Kato T., Yakugaku Zasshi, 81, 529-532 (1960).
- Sakakibara J., Hotta Y., Yasue M., Yakugaku Zasshi, 95, 911–918 (1975).
- Sakakibara J., Hotta Y., Yasue M., Yakugaku Zasshi, 95, 1085–1091 (1975).
- LaLonde R. T., Ramdayal F., Sarko A., Yanagi K., Zhang M., J. Med. Chem., 46, 1180—1190 (2003).
- 13) LaLonde R. T., Zhang M., J. Nat. Prod., 67, 697-699 (2004).