
Diabetes mellitus is a chronic multifactorial metabolic dis-
ease resulting from insulin deficiency or insulin resistance.
Diabetes is a life-long disease and there is no permanent
cure. Diabetes mellitus, in the 21st century is considered to
be the main threat to human health. The incidences of this
disease are increasing day by day and are estimated to reach
210 million by the year 2010 and 300 million by the year
2025.1,2) Protein tyrosine phosphatase 1B (PTP 1B) is a ubiq-
uitously expressed intracellular enzyme which causes nega-
tive regulation of insulin receptor as well as leptin signaling
system emerged as a potential target for treatment of type 2
diabetes.3,4) It has been involved in down-regulation of recep-
tor tyrosine kinase activity following stimulation of the in-
sulin or leptin receptors.5,6) Recent studies on PTP 1B knock-
out mice provided significant support for the view that PTP
1B is a key regulator of insulin signaling. PTP 1B deficient
mice showed increased insulin sensitivity and obesity resist-
ance, demonstrating that PTP 1B plays a major role in modu-
lating both insulin sensitivity and fuel metabolism.7,8) PTP
1B inhibitors could potentially ameliorate insulin resistance
and normalize plasma glucose and insulin levels without in-
ducing hypoglycemia, and could therefore be a major ad-
vancement in the treatment of type 2 diabetes.9,10) Thus, PTP
1B is highly coveted by the pharmaceutical industry and
makes it an ideal drug target for therapeutic intervention in
common human diseases such as type 2 diabetes and
obesity.11)

Quantitative structure–activity relationship (QSAR) repre-
sents an approach to correlate structural descriptors of com-
pounds with their biological activities. Three-dimensional
quantitative structure activity–relationship (3D-QSAR) stud-
ies provide deeper insight into the mechanism of action of
compounds that ultimately becomes of great importance in
modification of the structure of compounds. In addition, 3D-
QSAR also provides quantitative models, which permits pre-

diction of activity of compounds prior to the synthesis. Self-
organizing molecular field analysis (SOMFA) is a novel 3D-
QSAR methodology which has been developed by Robinson
et al.12) It is a simple and intuitive in concept and avoids the
complex statistical tools and variable selection procedures fa-
vored by other methods. The method has similarities to both
comparative molecular field analysis (CoMFA) and molecu-
lar similarity studies.13) Like CoMFA, a grid-based approach
is used; however, no probe interaction energies need to be
calculated. Like the similarity methods it is the intrinsic mo-
lecular properties, such as the molecular shape and electro-
static potential, which are used to develop QSAR models.14)

A SOMFA model could be based on any molecular prop-
erty. In the present study we have used molecular shape and
electrostatic potentials. A successful 3D-QSAR model not
only helps in better understanding of the structure–activity
relationship of any class of compounds, but also provides re-
searcher an insight at molecular level about lead compounds
for further developments. The inherent simplicity of this
method allows the possibility of aligning the training com-
pounds as an integral part of the model derivation process
and of aligning prediction compounds to optimize their pre-
dicted activities.15)

Recent studies in our laboratory have focused on refining
the molecular architecture using 3D-QSAR SOMFA ap-
proach for designing and optimization of new inhibitors for
various targets.16,17) The important aim of present studies is
to correlate the 3D-structures of sulphonamide derivatives
with their biological activities and to be able to predict the
activity of new molecules prior to their synthesis with the
hope that these molecules may be further be explored as po-
tent anti-diabetic agents.

Computational Methods
Data Set and Biological Activities A dataset of 30 molecules belong-
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Table 1. Structure of Sulphonamide Derivatives Used for the SOMFA Study

Sr. No. R1 R2 R3 R4 R5 R6 R7

1 –COCF2PO(OH)2 H NO2 H H H

2T –CF2PO(OH)2 H NO2 H H H

3 –CF2PO(OH)2 H H H H H

4T –CF2PO(OH)2 H H H OCH2COOH H

5 –CF2PO(OH)2 H H H OCH2COOH F

6T –CF2PO(OH)2 H H H OCH2COOH Cl

7 –CF2PO(OH)2 H H H OCH2COOH Br

8 –CF2PO(OH)2 H H F OCH2COOH F

9 –CF2PO(OH)2 H H H OCH2COOH CF3

10 –CF2PO(OH)2 H H H OCH2COOH OCF3

11T –CF2PO(OH)2 H H H OCH2COOH CH3

12 –CF2PO(OH)2 H H CH3 OCH2COOH CH3

13 –CF2PO(OH)2 H H COOH OH H

14 –CF2PO(OH)2 H F OCH2COOH F H

15 –CF2PO(OH)2 H H H OCH2COOH H

16 –CF2PO(OH)2 H H H OCH2COOH H
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Table 1. (continued)

Sr. No. R1 R2 R3 R4 R5 R6 R7

17 –CF2PO(OH)2 H H H OCH2COOH H

18T –CF2PO(OH)2 H H H OCH2COOH H

19 –CF2PO(OH)2 H H H OCH2COOH H

20 –CF2PO(OH)2 H H H OCH2COOH H

21 –CF2PO(OH)2 H H H OCH2COOH H

22T –CF2PO(OH)2 H H H OCH2COOH H

23 –CF2PO(OH)2 H H H OCH2COOH H

24 –CF2PO(OH)2 H H H OCH2COOH H

25 –CF2PO(OH)2 H H H H H

26T –CF2PO(OH)2 Br H H OCH2COOH H

27 –CF2PO(OH)2 OCH3 H H OCH2COOH H

28 –CF2PO(OH)2 Br H H OCH2COOH H

29T –CF2PO(OH)2 OCH3 H H OCH2COOH H

30 –CF2PO(OH)2 Br H H OCH2COOH H

T: test set molecules.



ing to sulphonamide derivatives as PTP 1B inhibitors was taken from the 
literature and used for SOMFA analysis.18) The above reported series of
sulphonamide derivatives showed wide variations in their structures and po-
tency profiles. The negative logarithm of the measured IC50 (mM) against
PTP 1B enzyme as pIC50 (pIC50 or log 1/IC50) was used as dependent vari-
able,19) thus correlating the data linear to the free energy change. Since some
compounds exhibited insignificant/no inhibition, they were excluded from
the present study. SOMFA (3D-QSAR) models were generated for this series
using a training set of 22 molecules. The general structures of the training
set and test molecules are presented in Table 1. Predictive power of the re-
sulting models was evaluated by a test set of 8 molecules with uniformly dis-
tributed biological activities. The actual and predicted biological activities of
the test set molecules are presented in Table 3. Selections of test set mole-
cules was made by considering the fact that test set molecules represent
structural features similar to compounds in the training set.20) Thus the test
set compounds are true representative of the training set.

Molecular Modeling and Alignment The three-dimensional structures
of the sulphonamide derivatives were constructed with the Chemdraw Ultra
8.0 running on an Intel Pentium IV 2.80 GHz Processor/Microsoft Win XP
professional platform and were subjected to energy minimization using 
molecular mechanics (MM2). The minimization is continued until the 
root mean square (RMS) gradient value reaches a value smaller than
0.001 kcal/mol Å. The Hamiltonian approximations Austin model 1 (AM1)
method21) available in the MOPAC module22) of Chem3D is adopted for 
re-optimization until the RMS gradient attains a value smaller than 0.001
kcal/mol Å. Unless otherwise indicated, all parameters were kept default.
The final active conformation search was performed by docking all the com-
pounds into the active site using Molegro Virtual Docker (MVD) soft-
ware.23,24) The protein data bank (PDB) entry of PTP 1B enzyme used in
docking experiments is 1XBO. Docked structure of most potent compound
(28) in the active site of PTP 1B has been shown in Fig. 1.

Structural alignment is one of the most sensitive parameters in 3D-QSAR
analyses. The accuracy of the prediction of a SOMFA model and the relia-
bility of the SOMFA grids strongly depend on the structural alignment of the
molecules. The selected template molecule is typically one of the following:
(a) the most active compound; (b) the lead and/or commercial compound;
(c) the compound containing the greatest number of functional groups.25,26)

Generally, the low energy conformation of the most active compound is set
as a reference.27) In present study the compounds were aligned using docked
conformation of the most active compound (28) used as the reference com-
pound by atom based alignment technique where centroid of atoms were
used for alignment shown in Table 2. The best model was obtained using
alignment 1 where docked confirmation of the most active compound (28)
was used as template structure. The superimposition of molecules was based
on trying to minimize RMS differences in the fitting of selected atoms with
those of a template molecule (Fig. 2).

SOMFA 3D-QSAR Models In the SOMFA study, a 40�40�40 Å grid
originating at (�20, �20, �20) with a resolution of 0.5 and 1 Å respectively,
was generated around the aligned compounds.28—31) Table 4 reports four dif-
ferent models using different resolutions of grid under exploration using two
atom based alignment techniques (Table 2).

For all of the studies, shape and electrostatic potential were generated.
The partial least squares (PLS) algorithm32,33) was used in conjugation with
leave one out (LOO) cross-validation to develop final model. Partial least

squares (PLS), the statistical method used in deriving the 3D-QSAR models,
is an extension of multiple regression analysis in which the original vari-
ables are replaced by a small set of their linear combinations. These latent
variables (components) so generated are used for multivariate regression,
maximizing the commonality of explanatory and response variable blocks.

The cross-validated value r2
cv(q

2) can take up values in the range from 1,
suggesting a perfect model, to less than 0 where errors of prediction are
greater than the error from assigning each compound mean activity of the
model.34) Since the final equations are not very useful to represent efficiently
the SOMFA models, 3D master grid maps of the best are displayed by pro-
gram Grid-Visualizer. They represent area in space where steric and electro-
static field interactions are responsible for the observed variations in the bio-
logical activities.

Results and Discussion
In the present 3D-QSAR study, SOMFA, a novel method-

ology, was employed for the analysis with the training set
composed of 22 compounds whose inhibitory activities are
known in order to find out the molecular features responsible
for biological activities. Statistical results of SOMFA models
obtained by PLS analysis i.e. cross-validated value r2

cv(q
2)

value serves as a quantitative measure of the predictability of
the SOMFA model.35)

During the SOMFA investigation, grid spacings of 1 and
0.5 Å were investigated. The 1 Å grid spacing produces a
good correlation equal to 0.5 Å grids. This has been de-
creased marginally with the 1 Å spacing used for the results
presented (Table 4). Further increases in resolution have 
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Fig. 1. Docked Conformation of Most Active Compound (28) with PTP
1B Showing H-Bonding Interactions with the Active Site of the Enzymes Fig. 2. Superimposition of Compounds on Template Structure (28)

Table 2. Atoms Centroid Used for Alignment

Sr. No. Atoms centroids for alignment

Alignment 1 1, 3, 6
Alignment 2 2, 4, 7



produced further small increases in model quality but not
enough to warrant the extra computational time. From Table
4, we find that the results were less sensitive to resolution of
grid. The best model using alignment 1 at 0.5 Å resolution
shows good r2

cv(q
2) value than using other alignment. Good

cross-validated correlation coefficient r2
cv(q

2) value (0.751),
moderate non cross-validated correlation coefficient r2 values
(0.797), high F-test value (78.387) and low standard error of
estimation S (0.370) proves a good conventional statistical
correlation which have been obtained, and we also found that
the resultant SOMFA model have a satisfied predictive ability
r2

pred (0.616).
The actual and predicted activities of the training set are

reported in Table 3 using model I. Figures 3A and 4 showed
a good linear correlation and moderate difference between
observed and predicted values of molecules in the training
set. It is well known that the best way to validate a 3D-QSAR
model is to predict biological activities for some compounds
of test set. The SOMFA analysis of the test set composed of
8 compounds is reported in Table 4. Most of compounds in
test set show good correlation between observed and pre-
dicted values (Figs. 3B, 5).

SOMFA calculation for both shape and electrostatic poten-
tials were performed. The contribution of shape field and
electrostatic field to QSAR equation is 66% and 34%, re-
spectively. SOMFA analysis indicated that the electrostatic
contribution is of a slightly low importance while shape con-
tribution is of major importance (66%). The SOMFA electro-
static potential and shape for the analysis is presented as

master grid.
The master grid maps derived from the best model were

used to display the contribution of electrostatic potential and
shape molecular field. The master grid maps gave a direct vi-
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Table 3. Actual and Predicted Activities for Training and Test Set Mole-
cules from the Best Predictive SOMFA Model I

Compound
Actual activity Predicted Residual 

(pIC50) activity activity

1 �1.079 �0.97 �0.109
2T �0.845 �0.456 �0.389
3 �0.623 �0.544 �0.079
4T �0.222 �0.259 0.037
5 �0.477 �0.582 0.105
6T �0.477 �0.48 0.003
7 �0.602 �0.584 �0.018
8 0.000 �0.005 0.005
9 �0.602 �0.676 0.074

10 �0.699 �0.357 �0.342
11T �0.602 �0.58 �0.022
12 �0.278 �0.576 0.298
13 �0.462 �0.266 �0.196
14 �0.204 0.216 �0.420
15 0.114 �0.026 0.140
16 0.200 0.368 �0.168
17 �0.041 0.752 �0.793
18T 0.220 0.372 �0.152
19 0.000 �0.111 0.111
20 0.745 �0.107 0.852
21 1.130 0.364 0.766
22T 0.657 0.225 0.432
23 �0.954 0.324 �1.278
24 �0.833 �0.039 �0.794
25 0.677 0.023 0.654
26T 1.455 0.913 0.542
27 1.222 0.534 0.688
28 1.553 1.049 0.504
29T �0.041 0.614 �0.655
30 1.507 1.508 �0.001

T: test set molecules.

Fig. 3. Graph of Actual vs. Predicted Activities for Training and Test Set
Molecules from the Best Predictive SOMFA Model

(A) Training set, (B) test set.

Table 4. PLS Statistical Results of SOMFA

Alignment 1 Alignment 2
Resolutions Resolutions

Parameter
0.5 Å 1 Å 0.5 Å 1 Å

(Model I) (Model II) (Model III) (Model IV)

r2 0.797 0.7922 0.725 0.721
r2

cv(q
2) 0.751 0.7448 0.678 0.674

S 0.370 0.374 0.430 0.433
F 78.387 76.253 52.656 51.702
r2

prediction 0.616 0.617 0.547 0.542
Sprediction 0.466 0.465 0.505 0.508

r2
cv: cross-validated correlation coefficient by leave one out method; r2: conventional

correlation coefficient; S: standard error of estimate; F: Fisher test value; r2
prediction: pre-

dictive correlation coefficient; Sprediction: standard error of prediction.

Fig. 4. Histogram of SOMFA Residual Value for Training Set



sual indication of which parts of the compounds differentiate
the activities of compounds in the training set under study.
The master grid also offered an interpretation as to how to
design some novel compounds with much higher activities.
The visualization of the electrostatic potential master grid
and shape master grid of the best SOMFA model were shown
in Figs. 6 and 7, respectively, with most active compound
(28) as the reference. Each master grid map was colored in
two different colors for favorable and unfavorable effects. In
other words, the electrostatic features were red (more posi-
tive charge increases activity, or more negative charge de-
creases activity) and blue (more negative charge increases ac-
tivity, or more positive charge decreases activity), and the
shape feature are red (more steric bulk increases activity) and
blue (more steric bulk decreases activity), respectively.

The SOMFA electrostatic potential map shows some im-
portant features, we find a high density of blue points around
substituent R2, R6 of the sulphonamide derivatives, which 
indicates some electronegative groups are favorable while
around R1, R3, R4 and R5 red points indicating some elec-
tropositive groups are favorable. Meanwhile, in the map of
shape master grid, we can find a high density of red points
around R3, R6 which means a favorable steric interaction; si-
multaneously, we also find blue points around R1, R2, R5 and
R7 where an unfavorable steric interaction may be expected
to enhance activities. The SOMFA results obtained above can
be correlated with interactions through most active com-
pound (28) in which R1 and R3 having electropositive –OH,
–N(CH3)2SO2 group interacts through H-bond with Gln 262,
Lys 120 while R6 having electronegative –COOH group in-
teracting with Ala 217 of the active site of PTP 1B.

Conclusion
We have developed predictive SOMFA 3D-QSAR model

for sulphonamide derivatives as inhibitors of PTP 1B based
on docked conformer based alignment and it exhibited statis-
tically significant predictability. The master grid obtained
from the SOMFA models indicates electrostatic and shape
potential contributions that can be mapped back onto struc-
tural features relating to the trends in activities of the mole-
cules. The present SOMFA study investigates the indispensa-
ble molecular features of sulphonamide derivatives which
can be exploited for further structural modifications of these
lead molecules in order to achieve improved PTP 1B in-
hibitory activity for the management of type 2 diabetes.
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Fig. 5. Histogram of SOMFA Residual Value for Test Set

Fig. 6. SOMFA Derived Electrostatic Grids Showing Most Active Com-
pound (28) in the Background

Blue and red indicates region where more electronegative groups or electropositive
groups, respectively, will enhance the activity at different resolutions (A) 0.5 Å, (B)
1 Å.

Fig. 7. SOMFA Derived Shape Grids Showing Most Active Compound
(28) Is Displayed in the Background

Red and blue indicates region where more steric bulk or less steric bulk, respectively,
will enhance the activity at different resolutions (A) 0.5 Å, (B) 1 Å.
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